
LEARNING SPATIAL FILTERS FOR MULTISPECTRAL IMAGE SEGMENTATION

Devis Tuia, Gustavo Camps-Valls

Image Processing Laboratory (IPL)
Universitat de Val̀encia, Spain

{devis.tuia, gustavo.camps}@uv.es
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ABSTRACT
We present a novel filtering method for multispectral satel-
lite image classification. The proposed method learns a set
of spatial filters that maximize class separability of binary
support vector machine (SVM) through a gradient descent
approach. Regularization issues are discussed in detail and
a Frobenius-norm regularization is proposed to efficiently
exclude uninformative filters coefficients. Experiments car-
ried out on multiclass one-against-all classification and tar-
get detection show the capabilities of the learned spatial fil-
ters.

1. INTRODUCTION

In recent years, kernel methods and in particular support
vector machines (SVM) [1, 2], have been extensively used
for the classification (segmentation) of multispectral, hyper-
spectral and radar images with excellent results [3]. Among
the problems raised by satellite imagery, one of the most
challenging is the one regarding the increase of spatial res-
olution brought by last generation satellites, named Very
High Resolution (VHR), that provide imagery at metric –or
even submetric– resolution. Besides the obvious advantages
of such increase in image resolution, VHR imagery raises a
series of signal processing problems related, in particular,
to the change in the spectral signature of the classes to be
detected. The finer spatial resolution implies the increase
of the intraclass variance of the classes, since small objects,
such as chimneys or pedestrians, become visible in the im-
age. Therefore, the signature of a particular class becomes
highly variable and robust algorithms exploiting spatial in-
formation becomes strictly necessary. Certainly, such high
geometrical resolution could be considered as a noise source
but undoubtedly may also be beneficial because it allows a
clearer definition of shapes and edges of the objects, espe-
cially in urban settings.

A great attention has been paid tospatial filtering of
remote sensing images to improve recognition. Two ba-
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sic families of spatio-spectral classifiers are encountered in
the literature: (1) feature extraction (or preprocessing)tech-
niques, and (2) filtering (or post-classification) methods.In
the first case, the spectral signature of a given pixel is com-
bined with the spatial information obtained from the neigh-
bors through window or region-based approaches, such as
morphological filtering [4, 5], geometrical features [6], or
Markov random fields [7, 8]. The spatial and spectral fea-
ture vectors are then jointly classified. The second approach
essentially performs spatial smoothing of a pixel-based clas-
sification map, and is often calledpost-regularization. The
approach is mainly based on morphological operators, such
as the majority voting scheme [9–12]. The generally low
improvement in accuracy of these methods is due to the
strong dependence of classifier’s performance and filter de-
sign.

Considering spectral and spatial information jointly in
the classifier typically leads to better results. However, ex-
tracting contextual features for classification gives riseto
several problems: 1) critical parameters need to be tuned,
such as the scale and extent of the spatial relations; 2) the
quality of the feature extraction technique may hamper the
representation capabilities of the classifier; and very im-
portantly, 3) by combining spatial and spectral information
sources, thecurse of dimensionalityproblem is worsened.
The latter problem was alleviated with the introduction of
composite kernels [13], in which dedicated kernels for the
spectral and spatial information are combined. The frame-
work has been recently extended to deal with convex com-
binations of kernels throughmultiple kernel learning[14,
15]. In both cases, however, the methodology still relies
on performing anad hocspatial feature extraction before
kernel computation, typically limited to second-order statis-
tics, Gray-level coocurrence matrices (GLCM) [16], or mor-
phological reconstruction features [17, 18]. Yet successful,
the approach strongly relies on user’s previous knowledge
about the particular image statistics to properly design the
filters.

In this paper, we propose an alternative way to jointly
learn (optimize) the SVM classifier and a convolution fil-
ter separating the class of interest from the others through



a particular gradient-descent approach [19]. Since the pre-
processing phase, i.e. the definition and selection of the fil-
ters, is integrated into the learning process, the proposedap-
proach adapts the filter to the problem at hand, and is able
to significantly improve classification results. The method
is tested in two challenging VHR image classification sce-
narios: one-class target detection and multi-classification of
land-cover types. The remainder of the paper is organized as
follows: Section 2 describes the proposed algorithm and the
optimization of the convolutional filter. Section 3 presents
the data and the setup considered for the experiments dis-
cussed in Section 4. Finally, Section 5 concludes the paper.

2. LARGE MARGIN FILTERING FOR REMOTE
SENSING IMAGES

In this section, large margin image filtering is proposed and
issues regarding regularization are discussed in detail. In
[19], the authors proposed to learn a one-dimensional con-
volution of the signals to enhance signal sequence labeling.
In this paper, this approach is extended to pixel classifi-
cation of remote sensing multidimensional images: in this
case, the filtering corresponds to learning a convolution ker-
nel that promotes maximum margin between classes. Ad-
ditionally, the the filtered SVM proposed in [19] is here ex-
tended to the non-linear case, through Gaussian kernels.

2.1. Definitions

Consider an imageX ∈ R
r1×r2×d, wherer1 × r2 is the

spatial extent – the considered pixels – andd is the number
of components, that can be spectral bands, textural features
or any kind of index retrieved from the image. To ease nota-
tion, we defineXi,j,k = Xp,k as thekth component of pixel
p = (i, j). Since the approach proposed is supervised, a list
of n labeled pixelsp = (i, j) ∈ Sl is available, as well as a
corresponding labels vectorYp ∈ {−1, 1}, ∀p ∈ Sl .

As stated in the introduction, a 2-dimensional convolu-
tion may be applied to the image in order to enhance dis-
criminative information. In this case, the convolution is
performed by applying per component convolution matri-
ces that are stored inF ∈ R

f×f×d, wheref is the size of
the bidimensional square filters. When convoluting, the fil-
ter is centered on the current pixel. The filtered imageX̃ is
defined by:

X̃p,k =

f,f∑

u=1,v=1

Fu,v,k Xi+u−f0,j+v−f0,k (1)

=

f,f∑

u=1,v=1

Fu,v,k Xp+(u,v)−f0,k

wheref0 = f/2. The filter coefficients inF define the type
of smoothing/enhancement performed by the convolution.

For instance, smoothing can be achieved by applying an av-
erage filter corresponding to a matrixFi,j,k = 1

f2 , ∀(i, j, k).
Finally, we define the RBF kernel between the filtered

pixelsp andq:

K̃p,q = k(X̃p,., X̃q,.) = exp

(
−
||X̃p,. − X̃q,.||

2

2σ2

)
, (2)

whereσ is the kernel width or bandwidth. This kernel will
be used in all the following experiments.

2.2. Optimization problem

A possible approach to contextual filtering is to extract con-
textual filters and then select the relevant ones by feature
selection. In this paper, we propose to jointly learn the
pixel classifier and the 2D convolution with large margin
constraints. This double objective can be formulated with
the following minimization problem:

min
g,F

{
1

2
‖g‖2 +

C

n

∑

p∈Sl

H(Yp, g(X̃p,.)) + λΩ(F)

}
(3)

whereH(Yp, g(X̃p,.) = max(0, 1 −Yp · g(X̃p,.)) is the
SVM hinge loss,C and λ are regularization parameters,
Ω(·) is a differentiable regularization function ofF andg(·)
is the decision function defined here for the filtered pixelp:

g(X̃p,.) =
∑

q∈Sl

αqYqk(X̃q,., X̃p,.) + b, (4)

whereαp are the dual variables of problem (3),k(·, ·) is a
valid kernel function as the RBF function defined above and
b is the bias term.

Note that the two leftmost terms in (3) correspond to a
SVM problem for filtered pixels iñX. Thus this problem
implicitly depends on the variableF. This objective func-
tion is non-convex with respect to both variables. However,
for a fixedF, the optimization problem with respect tog(·)
is convex and reduces to a SVM problem on the filtered im-
age. Let us denote the objective function of Eq. (3) asJ(F).
Then this problem reduces to minimize with regard toF:

J = J ′(F) + λΩ(F) (5)

with:

J ′(F) = min
g

{
1

2
‖g‖2 +

C

n

∑

p∈Sl

H(Yp, g(X̃p,.))

}
(6)

whereg(·) is defined in Equation (4). Due to the strong
duality of the SVM problem,J ′(·) can be expressed in dual
form as the constrained maximization problem:

max
α

{
−

∑

(p,q)∈S2

l

YpYqαpαqK̃p,q +
∑

p

αp

}
(7)

s.t.
C

n
≥ αp ≥ 0 ∀p ∈ Sl and

∑

p

αpYp = 0



with α the dual variables used in the decision function (4).
According to [20], and for a givenF∗, J ′(·) is differentiable
with respect toF. This means that at the pointF∗, the gra-
dient ofJ(·) can be computed.

In [19], the authors proposed to solve the problem in (5)
with a gradient descent onJ(F ) alongF. In the non-linear
case, and when an RBF kernel is used, the gradient ofJ ′(·)
with respect toF is:

∇J(F)u,v,k =
∑

(p,q)(Xp+(u,v)−f0,k −Xq+(u,v)−f0,k)

×(X̃p,k − X̃q,k)K̃p,qYpYqα
∗
pα

∗
q,

whereα∗ is the SVM solution for a fixedF. Note that this
sum needs to be done only for the pixelp that are support
vectors.

2.3. Regularization and Algorithm

Themost important part of our method is the choiceof the
regularization termΩ(·) in (5), that must be easily differ-
entiable in order to compute the gradient ofJ(F ). Simi-
larly to [19], we use here a regularization term based on the
Frobenius norm of the 3-dimensional matrixF:

Ω(F) =

f,f,d∑

u,v,k

F2
u,v,k (8)

This regularization term is differentiable and the gradient is
easy to compute. Minimizing this regularization term can
be seen as minimizing the filter’s energy. In terms of classi-
fication, the filter matrix can be seen as a kernel parameter
weighting neighboring pixels. Moreover, the Gaussian ker-
nel defined in (2) shows that the component-wise convolu-
tion can be seen as a scaling of the spectral channels before
kernel computation. For this reason, the kernel parameterσ
does not need to be optimized in the procedure and can be
set to the value of1.

The intuition of how this regularization term influences
the filter learning is the following: suppose that the decision
function g(·) has been learned by minimizing onlyJ ′(·).
In this case, the learned filter matrix will simply maximize
the margin between classes. But adding the Frobenius reg-
ularizer will force non-discriminative filter coefficientsto
vanish, thus minimizing their impact on the kernel of the
neighboring pixels.

In order to solve the optimization problem, we propose
a conjugate gradient (CG) descent algorithm alongF with a
line search for finding the optimal step. The method is de-
tailed in Algorithm 1, whereβ is the CG update parameter
andDi

F represents the descent direction for theith iteration.
For the experiments, we used theβ proposed by Fletcher
and Reeves (see [21]). In the implementation proposed, the
iterations in the algorithm may be stopped by two criteria:

Algorithm 1 KF-SVM solver
SetFu,v = 1/f for v = 1 · · · d andu = 1 · · · f
Set i=0, SetD0

F = 0
repeat

i=i+1
Gi

F ← gradient ofJ ′(F) + λΩ(F) wrt. F

β ←
‖Gi

F
‖2

‖Gi−1

F
‖2

(Fletcher and Reeves)

Di
F ← −G

i
F + βDi−1

F

(Fi, α∗)← Line-Search alongDi
F

until Stopping criterion is reached

either a threshold on the relative variation ofJ(F ) or on the
norm of the variation of the coefficients inF.

Due to the non-convexity of the objective function, it is
difficult to provide an exact evaluation of the solution com-
plexity. However, we know that the gradient computation
isO(n2

s · f
2) with ns being the number of support vectors.

WhenJ(F ) is computed in the line search, aO(n2 ·d) SVM
is solved and aO(n · f · d) filtering is applied. Note that,
in order to speed up the method, warm-start initialization is
used when using iteratively the SVM solver.

3. DATASETS AND EXPERIMENTAL SETUP

The proposed method is tested on a VHR QuickBird image
of the city of Zurich, Switzerland (see Fig. 1). The dataset
considered represents a residential area in the South-West
part of the city. Seven classes were labeled by photoint-
erpretation. The main challenge is to distinguish between
the two classes of buildings and of roads by applying spa-
tial filtering, because the spectral difference between these
couples of classes is really low.

In the experiments, four models have been compared:
i) a standard SVM, ii) a SVM that considers pixels filtered
by local averaging with af × f moving window (AvgSVM

Fig. 1. QuickBird scene of suburbs of Zurich (left) and
labeled pixels (right). Legend:dark green = trees; light
green = meadows; black = speedway; brown = roads; or-
ange = residential buildings; red = commercial buildings;
blue = shadows.



Table 1. Results for binary classification.
Method Class Training #Class AUC Kappa

Pixels Pixels

SVM
Residential ∼ 5000 2000

0.904 0.638
AvgSVM 0.916 0.689
WinSVM 0.947 0.730
KF-SVM 0.938 0.742

SVM
Buildings∗ ∼ 4000 1000

0.938 0.706
AvgSVM 0.946 0.779
WinSVM 0.970 0.807
KF-SVM 0.974 0.815

∗ Pixels from classes ‘Residential’ and ‘Commercial’.

hereafter), iii) a SVM using a stacked vector of the reflectance
values of the localf×f neighborhood (WinSVM [19] here-
after) and iv) the proposed KF-SVM, learning a filter of
the same size for each channel and classifier. From the la-
beled pixels available in the ground survey,4, 000 to 5, 000
are used for training,5, 000 for validation, and26, 000 for
testing. RBF kernels have been used in all cases. Regard-
ing the kernel parameterσ, it has been optimized by cross-
validation for the SVM and AvgSVM methods, while for
KF-SVM it is kept to a standard value of1, since its opti-
mal value is learned directly from the filter: as each band of
the image is filtered before the computation of the kernels,
it is always possible to find a regularization parameterλ re-
turning a solution which is equivalent to the one that would
have been obtained when using an optimal kernel value (see
Section 2.3 for more details). In conclusion,C andσ pa-
rameters have been validated for the SVM, AvgSVM and
WinSVM methods whileC andλ have been validated for
KF-SVM.

4. RESULTS AND DISCUSSION

In this Section, the experiments are presented for two classi-
fication scenarios: firstly, a binary classification problemis
considered. Secondly, a multiclass setting, where as many
one-against-all binary SVM as the number of classes are
solved.

4.1. Binary classification

Table 1 shows the results for the binary problem with classes
‘Residential buildings’ and ‘Buildings’. For the latter, we
merged the residential and commercial buildings classes.
The numerical results show good performance of KF-SVM,
that strongly improves the AvgSVM result, with an increase
between 4 and 6% in the estimated kappa statistic. With
respect to WinSVM, the proposed method provides similar
results, with a slight improvement of the Kappa coefficient,
confirming the observations done for the linear case in [19].

Table 2. Results for multiclass classification.
Method ClassesFilter

size
Training
Pixels

[%]OA Kappa

SVM
7 9 ∼ 5000

75.11 0.685
AvgSVM 83.68 0.796
WinSVM 82.98 0.785
KF-SVM 85.32 0.816

SVM
6∗ 9 ∼ 5000

83.04 0.772
AvgSVM 89.48 0.860
WinSVM 91.71 0.889
KF-SVM 91.45 0.885

∗ Pixels from classes ‘Residential’ and ‘Commercial’.

Regarding the ROC curve, the AUC is only slightly im-
proved by the proposed approach, since the detection is al-
ready very good with the mean filter. Nonetheless, by look-
ing at the curves of Fig. 2, KF-SVM results in a global im-
provement of the results of SVM and AvgSVM, which can
be characterized by an increase in the location of theγ–
point, i.e. the closest point to the (0,1) corner of the ROC. In
this sense, KF-SVM maximizes the true positive rate (tpr)
while minimizing the false positive rate (fpr). Compared to
WinSVM, theγ–points of the two methods are practically
identical for both classification problems.

4.2. Multiclass classification

Multiclass classification results are shown in Table 2: for
the 7–classes setting, the inclusion of spatial information
strongly improves the results of the SVM, whose overall ac-
curacy is increased by +8–10%. This result was expected,
because the use of contextual information allows to discrim-
inate the classes with no strong spectral differences, cf. Sec-
tion 3. This can be seen in the classification maps reported
in Fig. 3: KF-SVM allows the detection of the class ‘Com-
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Fig. 2. Details of the ROC curves for the (a) ‘Residential
Buildings’ and (b) ‘Buildings’ targets. The dots correspond
to theγ-points,γ = argmin{fpr2 + (1− tpr)2}.
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Fig. 3. Classification maps for the SVM and the proposed KF-SVM, forthe whole scene and two interesting regions.

mercial buildings’, whose difference with respect to the res-
idential buildings in uniquely related to the size of the ob-
jects. Moreover, KF-SVM enforces a smooth classification
result and avoids noisy classification maps. With respect to
the mean filter, KF-SVM provides a gain of about +2% in
both accuracy and estimated kappa statistic, suggesting that
an appropriate filter has been learned from data, at the same
time avoiding the oversmoothing of the mean filter and tak-
ing advantage of the spatial context of the pixel. The same
order of gain is observed with respect to WinSVM.

Regarding the6–classes setting, the standard SVM model
leads to better results, since the size variability of buildings
is no more taken into account. Nonetheless, both the filter
approaches still improve the SVM result by +6–8% and the
difference of about 2% between the two filters holds. For
this easier6 classes setting, WinSVM (which is convex) per-
forms optimally and provides the best results, that slightly
outperform the proposed KF-SVM (+ 0.5% in overall accu-
racy), which only proposes an approximated solution.

4.3. On filter weights

Unlike blackbox approaches as SVM or WinSVM, the pro-
posed KF-SVM provides a smoothing filter maximizing mar-
gin separation. Such discriminative filters can be further
used, for instance to train a second classifier using them
as features. This opens a set of challenging opportunities
to exploit the convolution obtained. A first step is to ana-
lyze the filter’s weights, as they are learned directly from
the data. Training the classifier returns a proper convolu-
tion filter whose weights represent the signal characteristics.
A possible statistic summarizing the filter is the Frobenius
norm of the filterper spectral channel, as discussed in Sec-
tion 2.3. Figure 4 shows the variation of the Frobenius norm
coefficients, in (8), during the optimization of the model for
the classification of the particularly interesting ‘Buildings’
class. Note that, for this problem, the near infrared band is

enhanced in the mixture, since it carries the most suitable
information to discriminate the buildings from the vegeta-
tion classes.

5. CONCLUSION

In this paper, we presented an algorithm learning the ap-
propriate convolutional filter for the classification of VHR
remote sensing images. The algorithm jointly learns a SVM
classifier and a 2D filtering of the image in order to max-
imize the margin between the classes. The algorithm has
shown good results in two challenging remote sensing prob-
lems: VHR imagery multiclass classification and detection
in urban settlements. KF-SVM showed similar results with
respect to a contextual SVM using a stacked features ap-
proach (WinSVM). However, these results are obtained us-
ing much lower dimensional vectors and hence the mehtod
is more robust to overfitting. Also, this may be of great im-
portance if the filter is learned as a preprocessing step before
using a Bayesian or GMM classifier: in this case a method
using the stacked approach might fail because of the higher
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dimensionality induced [22].
Here we included the KF-SVM in one-versus-all schemes

but, the optimization in one-versus-one schemes would re-
port filters optimized to discern among pairs of classes. Such
filters could help solving problems with highly overlapping
classes in conjunction with standard SVM. Besides, a pos-
sible improvement of the current algorithm should take into
account the local characteristics of the image, returning point-
wise convolution filters. These will be studied in the fu-
ture since they certainly are issues for most aerial and VHR
satellite image.

Acknowledgment

The authors would like to thank Prof. M. Kanevski (IGAR,
University of Lausanne) for providing the QuickBird data.

6. REFERENCES

[1] B. Boser, I. Guyon, and V. Vapnik, “A training algorithm
for optimal margin classifiers,” in5th ACM Workshop on
Computational Learning Theory, Pittsburgh, USA, 1992, pp.
144–152.

[2] V. Vapnik, Statistical Learning Theory, Wiley-Interscience,
NJ, USA, 1998.

[3] G. Camps-Valls and L. Bruzzone,Kernel methods in Remote
Sensing Image Processing, Wiley and Sons, 2009.

[4] P. Soille,Morphological Image Analysis: Principles and Ap-
plications, Germany:Springer-Verlag, 2003.

[5] J. A. Benediktsson, M. Pesaresi, and K. Arnason, “Classifi-
cation and feature extraction for remote sensing images from
urban areas based on morphological transformations,”IEEE
Transactions on Geoscience and Remote Sensing, vol. 41,
no. 9, pp. 1940–1949, Sept. 2003.

[6] J. Inglada, “Automatic recognition of man-made objects in
high resolution optical remote sensing images by SVM clas-
sification of geometric image features,”ISPRS Journal of
Photogrammetry Rem. Sens., vol. 62, pp. 236–248, 2007.

[7] R. C. Dubes and A. K. Jain, “Random field models in image
analysis,”J. Appl. Stat., vol. 16, no. 2, pp. 131–163, 1989.

[8] Q. Jackson and D. Landgrebe, “Adaptive bayesian contextual
classification based on Markov random fields,”IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 40, no. 11,
pp. 2454–2463, Mar. 2002.

[9] I. Tomas, “Spatial postprocessing of spectrally classified
Landsat data,” Photogrammetic Engineering and Remote
Sensing, vol. 46, pp. 1201–1206, 1980.

[10] J. Ton, J. Sticklen, and A. Jain, “Knowledge-based segmen-
tation of Landsat images,”IEEE Transactions on Geoscience
and Remote Sensing, vol. 29, pp. 222–231, Mar 1991.

[11] B. Solaiman, R. Koffi, M. Mouchot, and A. Hillion, “An
information fusion method for multispectral image classifi-
cation postprocessing,”IEEE Transactions on Geoscience
and Remote Sensing, vol. 36, no. 2, pp. 395–406, Mar 1998.

[12] Y. Zhang, “Detection of urban housing development by fus-
ing multisensor satellite data and performing spatial feature
post-classification,”International Journal of Remote Sens-
ing, vol. 22, no. 17, pp. 3339–3355, 2001.

[13] G. Camps-Valls, L. Ǵomez-Chova, J. Mũnoz-Maŕı, J. Vila-
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