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Introduction Multispectral Image segmentation

Multispectral Image segmentation

I In multispectral images we have high
spatial variability of the spectral
signature

I VHR images allows us better
recognition, but noisy maps

I Strong intraclass variance, higher than
interclass

I Including spatial, not only spectral
info, is mandatory!

⇒ Spatial regularization
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Introduction Spatial Filtering

Spatial Filtering
Spatial filtering solves such problems:

I Mathematical morphology [Benediktsson et al., 2005, Tuia et al., 2010]

I Geometrical features [Inglada, 2007]

I Composite kernels with spatial filters [Camps-Valls et al., 2006]
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But remain the problem of defining

I what kind of features,

I at what scale, ...

In this paper we propose to
learn the spatial filter that maximizes separability of the classes

in a SVM framework.
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Large Margin Filtering Definitions

Definitions

I X ∈ Rr1×r2×d is an image containing r1 × r2 pixels ∈ Rd .

I Xi,j,k = Xp,k ais the kth component of pixel p = (i , j).

I 2D convolution filter band-by-band:

X̃p,k =

f ,f∑
u=1,v=1

Fu,v,k Xp+(u,v)−f0,k

where f0 = f /2 and F ∈ Rf×f×d .

I RBF kernel between filtered pixels:

K̃p,q = k(X̃p,., X̃q,.) = exp

(
−||X̃p,. − X̃q,.||2

2σ2

)
, (1)

where σ is the kernel width or bandwidth.
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Large Margin Filtering Optimization Problem

Optimization Problem

Large Margin Filtering [Flamary et al., 2010]

min
g,F

{
1

2
‖g‖2 +

C

n

∑
p∈Sl

H(Yp, g(X̃p,.))

︸ ︷︷ ︸
SVM objective function

+ λΩ(F)︸ ︷︷ ︸
Filter regularization

}
(2)

where:

I H(Yp, g(X̃p,.) = max(0, 1− Yp · g(X̃p,.)) is the SVM hinge loss.

I C and λ are the regularization parameters.

I Ω(·) is a 3D Frobenius Norm: Ω(F) =
∑f ,f ,d

u,v,k F2
u,v,k

I g(·) is the SVM decision function:

g(X̃p,.) =
∑
q∈Sl

αqYqk(X̃q,., X̃p,.) + b, (3)

where αp are the dual variables of problem.
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Large Margin Filtering Optimization Problem

Solving the problem

Approach

I Convex problem for a fixed F.

I We can always find the optimal decision function g∗ for a fixed F.

I Do gradient descent on F and stay in the optimal g∗ space
[Bonnans and Shapiro, 1998]:

min
F

J(F) = min
F

J ′(F) + λΩ(F) (4)

with:

J ′(F) = min
g

{
1

2
‖g‖2 +

C

n

∑
p∈Sl

H(Yp, g(X̃p,.))

}
(5)

Algorithm [Flamary et al., 2010]

I Conjugate Gradient descent on F + linesearch.

I Solve a SVM at each cost calculation in the linesearch.
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Results Dataset

Dataset and experimental setup

Dataset

I VHR QuickBird image of the city of Zurich, Switzerland.

I 7 classes, difficult to discriminate ’buildings’ classes (’residential’ vs ’commercial’).
If merged, difficulty to discriminate ’buildings’ and ’roads’

Compared Models

1. SVM pixel classifier.

2. AvgSVM, averaged pixel classifier.

3. WinSVM, classification of a window of pixels.

4. KF-SVM, Large margin filtering.
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Results Binary classification

Binary Classification

Method Class Training #Class AUC Kappa
Pixels Pixels

SVM
Residential ∼ 5000 2000

0.904 0.638
AvgSVM 0.916 0.689
WinSVM 0.947 0.730
KF-SVM 0.938 0.742

SVM
Buildings∗ ∼ 4000 1000

0.938 0.706
AvgSVM 0.946 0.779
WinSVM 0.970 0.807
KF-SVM 0.974 0.815

∗ Pixels from classes ‘Residential’ and ‘Commercial’.

Results

I The estimated Area Under the ROC Curve (AUC) and Kappa coefficient are
computed.

I Improving over the SVM classification and average Filtering.

I Similar results between KF-SVM and WinSVM (slightly better Kappa).
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Results Multiclass classification

Multiclass classification

Method Classes Filter
size

Training
Pixels

[%]OA Kappa

SVM
7 9 ∼ 5000

75.11 0.685
AvgSVM 83.68 0.796
WinSVM 82.98 0.785
KF-SVM 85.32 0.816

SVM
6∗ 9 ∼ 5000

83.04 0.772
AvgSVM 89.48 0.860
WinSVM 91.71 0.889
KF-SVM 91.45 0.885
∗ Pixels from classes ‘Residential’ and ‘Commercial’.

Results

I WinSVM and KF-SVM give similar results and both outperform SVM and AvgSVM.

I But with KF-SVM, only pixels are classified.

I Optimal preprocessing done by filtering.
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Results Visualization

Segmentation Visualization

Image SVM KF-SVM

Results

I Smoothed borders thanks to the filtering.

I ’Commercial Buildings’ (red class) detected
over ’Buildings’ (orange class).

I What about the filters ? ⇒ Fourier transform
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Results Visualization

Filter Visualization (1)

Class: Houses, Residential buildings
Magnitude of the FT for different components
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I Low pass but larger band (houses are small).

I Green, Red and InfraRed are selected.

(Orange)
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Results Visualization

Filter Visualization (2)

Class: Commercial buildings
Magnitude of the FT for different components

Blue filter for Commercial
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I Low pass but small band to detect large
buildings.

I Red is the most discriminant feature.

(Red)
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Conclusion

Conclusion

Large Margin Filtering

I Method to learn jointly a SVM pixel classifier and a spatial filtering.

I Large margin spatial filtering/Preprocessing.

I Possibility to use other classifier after filtering, e.g. GMM.

I Visualization for the filtering, no black box approach.

Future Work

I Propose other regularization terms.

I Going local, a global filter is limited.

I Test the method in hyperspectral images, where stacking approaches fail.
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