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Abstract—Recently, there has been a lot of interest around
multi-task learning (MTL) problem with the constraints tha t
tasks should share a common sparsity profile. Such a problem
can be addressed through a regularization framework where the
regularizer induces a joint-sparsity pattern between taskdecision
functions. We follow this principled framework and focus on
ℓp−ℓq (with 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2) mixed-norms as sparsity-
inducing penalties. Our motivation for addressing such a larger
class of penalty is to adapt the penalty to a problem at hand
leading thus to better performances and better sparsity pattern.
For solving the problem in the general multiple kernel case,
we first derive a variational formulation of the ℓ1 − ℓq penalty
which helps up in proposing an alternate optimization algorithm.
Although very simple, the latter algorithm provably converges to
the global minimum of the ℓ1 − ℓq penalized problem. For the
linear case, we extend existing works considering accelerated
proximal gradient to this penalty. Our contribution in this
context is to provide an efficient scheme for computing the
ℓ1− ℓq proximal operator. Then, for the more general case when
0 < p < 1, we solve the resulting non-convex problem through
a majorization-minimization approach. The resulting algorithm
is an iterative scheme which, at each iteration, solves a weighted
ℓ1 − ℓq sparse MTL problem. Empirical evidences from toy
dataset and real-word datasets dealing with BCI single trial EEG
classification and protein subcellular localization show the benefit
of the proposed approaches and algorithms.

Index Terms—Multi-task learning, multiple kernel learning,
sparsity, mixed-norm, Support Vector Machines

I. I NTRODUCTION

Multi-Task Learning (MTL) is a statistical learning frame-
work which seeks at learning several models in a joint manner.
The idea behind this paradigm is that, when the tasks to
be learned are similar enough or are related in some sense,
it may be advantageous to take into account these relations
between tasks. For instance, when the number of samples
for learning are small, transferring some knowledge from one
task to another while learning can be advantageous in term
of generalization performances. Several works have provided
empirical evidence on the benefit of such a framework [9],
[15], [23], [35]. Application domains that have been shown
to benefit from multi-task learning are medical diagnosis [5],
drug therapy prediction [6], vaccine design [21] or conjoint
analysis [1].

However, the notion of relatedness between tasks is vague
and depends on the problem at hand. For instance, one can
consider that models resulting from related tasks should be
similar to a single model [15], [23]. In other works, task’s

relatedness is represented through a probabilistic model [52].
Prior knowledge on tasks are then translated into an appropri-
ate regularization term or into a hierarchical Bayesian model
that can be handled by a learning algorithm [14], [50], [20].

In this work, we consider that tasks to be learned share
a common subset of features or kernel representation. This
means that while learning the tasks, we jointly look for
features or kernels that are useful for all tasks. In this context
of joint feature selection with multiple related tasks, several
works have already been carried out. For instance, Jebara et
al. [22] has introduced a maximum entropy discrimination for
solving such a problem. Some other works cast the problem
into a probabilistic framework which uses automatic relevance
determination and a hierarchical Bayesian model for selecting
the relevant features [5], [49]. Another trend considers a regu-
larization principle and thus minimizes a regularized empirical
risk with a regularization term that favors a common sparsity
profile for all tasks. Such an approach has been investigated
by Argyriou et al. [2] and Obozinski et al. [33]. In these
latter works, the authors propose aℓ1− ℓ2 regularization term
which can be interpreted as a convex extension of the sparsity-
inducingℓ1 norm in single task learning.

As made clear in the sequel, our contribution in this paper
lies in between multi-task and multiple kernel learning. Indeed,
we provide a methodological framework for learning each task
decision functions while these functions use an optimal, in
some sense, linear combination of only few kernels. This point
highlights the relation between our contribution and multiple
kernel learning. Imposing that the few selected kernels are
similar across the tasks is the point that defines task’s related-
ness. Following Obozinski et al. [33] and Argyriou et al. [2],
we induce this sparsity in joint kernel representation through
a regularization principle where the regularization term is a
mixed-norm penalty.

In practice and in theory as proved by the works of Lounici
et al. [31], a fixed non-adaptive penalty like theℓ1 − ℓ2
mixed norm, is beneficial with respects to other penalties only
under certain situations. Hence, it seems natural that different
penalties may suit better to different data structures. This
motivates us to investigate the use of a larger class of mixed-
norm penalty that can be adapted to the data at hand. We
focus here on the class ofℓp − ℓq mixed-norm penalty where
0 ≤ p ≤ 1 and1 ≤ q ≤ 2. Our objective in usingp < 1 is to
make the kernel representation across tasks sparser than using
p = 1; such an increased sparsity profile being valuable in a
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presence a large amount of noisy features or irrelevant kernels.
Furthermore, the sparser representation induced byp < 1
is expected to enhance models interpretability and improve
evaluation computational efficiency. Varyingq between1 and
2 allows the task decision functions to adapt themselves to the
importance of the task relatedness. Indeed, it would be clear in
the following thatq = 1 makes the task learning independent
while q > 1 ties them through the mixed-norm. Rationales on
why we have not investigated cases where2 < q < ∞ will
also be discussed.

Our aim in this paper is to present a simple algorithm
for handling the optimization problem resulting of the use of
ℓp− ℓq mixed-norms regularizers in the multi-task framework
and to provide empirical evidences that making the choice ofp
andq adaptive with respects to the data at hand works as good
as or better than a fixedℓ1 − ℓ2 penalty in various situations.
Algorithmically, we first show that, for the general multiple
kernel case, a variational formulation of theℓ1 − ℓq mixed-
norm can be obtained. Such a novel formulation helps us in
deriving a simple alternate algorithm for solving the sparse
ℓ1− ℓq multi-task problem which provably converges towards
the solution of the problem. For the linear case, as such an
algorithm may not be efficient, we extend existing works [11]
on accelerated proximal gradient to handle the case ofℓ1− ℓq
norm. We essentially provide a novel way for computing the
proximal operator of this mixed-norm. At a second stage, we
address the case of the non-convexℓp − ℓq (0 < p < 1)
regularization term. The difficulty raised by this non-convex
problem is tackled via a Majorization-Minimization (MM)
approach [19]. This leads to an iterative scheme which solves
at each iteration, a reweightedℓ1 − ℓq multi-task learning
problem.

In the next section, we present the general formulation of
the sparse MTL problem as well as a brief review of closely
spirit-related works. Algorithmic developments are presented
in Section III. Then, some empirical results that illustrate the
behavior of our algorithms are given in Section IV while
some concluding remarks are drawn in Section V. For a
sake of reproducibility, the Matlab code used for this paper
is available at http://asi.insa-rouen.fr/enseignants/∼arakotom/
code/SparseMTL.html

II. M ULTI -TASK FEATURE/KERNEL SELECTION

FRAMEWORK

This section introduces our sparse MTL framework and
discusses related works available in the literature.

A. Framework

Suppose we are givenT classification tasks to be learned
from T different datasets(xi,1, yi,1)

n1

i=1, · · · , (xi,T , yi,T )
nT

i=1,
where anyxi,· ∈ X andyi,· ∈ {+1,−1} andni denotes thei-
th dataset size. For a given taskt, we are looking for a decision
function of the form:

ft(x) =

M
∑

k=1

ft,k(x) + bt ∀t ∈ {1, · · · , T } (1)

where a functionf·,k belongs to a Reproducing Kernel Hilbert
Space (RKHS)Hk of kernel Kk, bt is a bias term andM
is the number ofbasis kernels provided. Depending on the
input spaceX , Hk can take different forms. For instance, if
X = R

d, Hk can be a subset ofRd built from a single or
several dimensions. In some other situations,Hk can be also
an infinite dimension space defined implicitly by its kernel
(e.ga Gaussian kernel).

The objective of this work is to learn the decision function
ft for each task under the constraints that all these functions
share a common sparsity profile of their kernel representation.
Hence, the pursued hope is to build a learning algorithm able
to yield many vanishing functionsft,k for all t.

For achieving this goal, we cast our problem as the follow-
ing optimization problem:

min
f1,··· ,fT

C ·
∑

t,i

L(ft(xi,t), yi,t) + Ω(f1, · · · , fT ) (2)

whereL(ft(x), y) is a loss function,Ω a sparsity-inducing
penalty term involving all functionsft and C a trade-off
parameter that balances both antagonist objectives. Hereafter,
we will focus on a Hinge loss function, denoted asH(f(x), y),
although our algorithm can be straightforwardly applied to
other losses.

B. Joint sparsity-inducing penalty

Since few years now, there has been a large interest around
sparse models. While different approaches are possible for
generating sparse methods [17], [26], sparsity are usually
induced by a penalty function [10] or a proper type of Bayesian
modeling [46], [47].

For a single task empirical minimization problem, sparse
models are usually induced by the use of aℓ1-norm regularizer
[45]. For a Multi-Task Learning problem, this approach can
be properly generalized by the use of appropriate norm. For
instance, Obozinski et al. and Argyriou et al. [2], [33] propose
a regularizer of the form :

Ω(f1, · · · , fT ) =

M
∑

k=1

(

T
∑

t=1

‖ft,k‖
2
Hk

)1/2

.

This latter regularizer is aℓ1 block-norm that tends to produce
sparse kernel solutions. For single task problem, such a reg-
ularizer has been used for sparse kernel selection in multiple
kernel learning problem [3]. For single task linear problem,
this regularizer is equivalent to aℓ1-norm penalty.

In order to be more data-adaptive, this regularizer can be
generalized as :

Ωp,q(f1, · · · , fT ) =

M
∑

k=1

(

T
∑

t=1

‖ft,k‖
q
Hk

)p/q

(3)

where typically0 ≤ p ≤ 1 andq ≥ 1. For this regularizer, aℓq
norm is applied to the vector of all task norms inHk and then
a ℓp norm or pseudo-norm is applied to the resulting vector.
The ℓq norm in the regularizer controls the weights of each
task for the spaceHk and how this kernel representation will
be shared across tasks. For instance, large value ofq (such as
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q =∞) means that as soon as‖ft,k‖Hk
is non-zero, another

task t′ can have a non-zero norm forft′,k without increasing
significantly the regularizerΩp,q. Note that forp = 1 and
q = 1, the regularizer can be decoupled and thus the learning
problem boils down to beT independent problems. Theℓp
pseudo-norm controls the sparsity of the kernel representation
for all tasks. Forp < 1, regularizer (3) is expected to produce
sparser solutions than forp = 1, hence using such a mixed-
norm penalty is expected to be more efficient in presence of
many irrelevant variables or kernels. Note that this kind of
mixed-norm regularizer has already been proposed for single
task learning for achieving composite absolute penalization
[53] or for composite kernel learning [44].

However, in the context of multi-task learning, only some
particular cases of the mixed-normΩp,q have been considered.
Obozinski et al. [33] usep = 1 and q = 2 while Liu et al.
[27], [28], Quattoni et al. [37], [36] and Chen et al. [11] have
considered the use ofp = 1 andq =∞. For all these works,
the authors have focused on convex situations sinceΩp,q is
known to be convex wheneverp, q ≥ 1 and non-convex for
p < 1 and q ≥ 1. Recently, several works on learning single
sparse models have stressed the need of non-convex penalties
for achieving better sparsity profile. For instance, Knightet al.
[25] suggested the use of the so-called Bridge penalty which
simply consists in replacing theℓ1 norm with a ℓp pseudo-
norm with 0 < p < 1. In our multi-task learning framework,
this can be naturally generalized by using the regularizer given
in Equation (3) with0 < p < 1. For instance, two very
recent works have focused on theoretical properties of the
mixed-normΩp,1 andΩ1,q for variable selection in multiple
regression problems [18], [29].

As we can see, there are a lot of algorithmic works that
address the case wherep = 1 and q ∈ {2,∞}. These
works usually aim at developing efficient algorithms in the
linear decision function. The novelty of our contribution lies
in considering a larger class (p ≤ 1 and 1 ≤ q ≤ 2) of
mixed-norm penalties while keeping the kernel framework.
By choosingp and q in these intervals, we aim a better
adaptivity of the penalty to the datasets at hand. However,
in this paper, we only focus on algorithms for solving the
resulting optimization problems, while the task of efficiently
selectingp andq has been left for future works. Furthermore,
although we have focused on the use of Hinge loss function,
the algorithms we propose in the sequel are generic enough
to handle different type of loss functions in the optimization
problem as well as heterogeneous loss functions.

As we have stated, we do not consider in this paper cases
where 2 < q < ∞. There is a main reason for this.
Indeed, we believe that asq becomes greater than2, the
ℓ1 − ℓq regularizer rapidly becomes numerically equivalent to
a ℓ1,∞ one. This point can be made clear from the relation

(
∑

i |ai|
q)1/q = |ak|

(

∑

i |
ai

ak
|q
)1/q

wherek is the index of

the largest|ai|. Hence, since there already exists efficient
method forℓ1,∞ sparse multi-task learning [36], we have not
addressed this case in this present work. However, we still
plan in a forthcoming work, to provide a better analysis of the
use of theseℓ1 − ℓq penalties so as to understand in which

situations they may perform better than theℓ1 − ℓ∞ penalty.

III. A LGORITHMS FOR JOINTLY SPARSE MULTI-TASK SVM

In this section, we propose some algorithms for solving
the sparse multi-task SVM problem when usingΩp,q as a
regularizer with valuesp ≤ 1 and 1 ≤ q ≤ 2. At first, we
consider the convex case whenp = 1 and then we introduce
an algorithm which solves the problem forp < 1.

A. A smooth formulation ofℓ1 − ℓq regularized problem

The algorithm we propose is based on a variational formu-
lation of the mixed-normΩ1,q(·). The following proposition
extends the one of Michelli et al. [32] to mixed-norm. Similar
propositions have been derived for multiple and composite
kernel learning [38], [44]. Here and in what follows,u/v is
defined asu/0 =∞ if u 6= 0 and0/0 = 0.

Proposition 1: if s > 0 and {at,k ∈ R : k ∈
[1, · · · ,M ], t ∈ [1, · · · , T ]} such that at least one|at,k| > 0,
then the following minimization problem over elementsdt,k
admits a unique minimum

min
{dt,k}







∑

k,t

|at,k|
2

dt,k
: dt,k ≥ 0,

∑

k

(

∑

t

d
1/s
t,k

)s

≤ 1







=





∑

k

(

∑

t

|at,k|
q

)1/q




2

(4)

whereq = 2
s+1 . Furthermore, at optimality, we have:

d⋆t,k =
|at,k|

2s
s+1

(

∑

u |au,k|
2

s+1

)
1−s
2

∑

v

(

∑

u |au,v|
2

s+1

)
s+1
2

(5)

Proof: (Sketch) The proof proceeds by writing down
the Lagrangian of the minimization problem and deriving the
optimality condition wrt todt,k. Then, we get

d
1/s
t,k = λ−1/(s+1)|at,k|

2/(s+1)

(

∑

u

d
1/s
u,k

)
1−s
1+s

whereλ is the Lagrangian multiplier associated to the mixed-
norm constraint. From these optimality conditions, we derive
∑

u d
1/s
u,k =

(

λ−1
(
∑

u |au,k|
2/s+1

)s+1
)1/2s

. Then since at
optimality, the mixed-norm inequality becomes an equality,

we haveλ =
(

∑

k

(
∑

t |at,k|
2/s+1

)(s+1)/2
)2

. Plugging all
these equations into the optimality conditions ofdt,k proves
the above proposition.

Hence, by settingat,k = ‖ft,k‖Hk
, the above proposition

gives a variational formulation ofΩ1,q(·)
2. It is interesting

to note how the mixed-norm on functionsft,k transfers to
another mixed-norm on the weightsdt,k. We can see that
for q = 1, this latter mixed-norm decouples. Whenq → 2,
which correspond to multiple kernel learning for a single task
[3], we have s → 0 and the mixed-norm on the weight
becomes a mixed supnorm. This means that at optimality,
all the weights{d.,k} associated to non-zero{a·,k} should
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have similar values. Indeed, suppose that for taskst and t′,
dt′,k < dt,k and at,k, at′,k are non-zero, then the objective
value can be decreased by settingdt′,k = dt,k. For this case,
it would have been preferable to consider a single weightdk
associated to each RKHSHk.

Now let us consider the optimization problem related to our
sparse multi-task learning problem forp = 1 and1 ≤ q ≤ 2 :

min
f1,··· ,fT

C ·
∑

t,i

H(ft(xi,t), yi,t) + Ω1,q(f1, · · · , fT )
2 (6)

Since the penalty term is convex and the square function is
strictly monotonically increasing function onR+, squaring the
penalty term in the objective function as above, leads to an
equivalent optimization problem without the squaring. Here
the equivalence is understood as for any hyperparameter value
C, there exists a hyperparameterC′ related to the optimization
problem without the squaring term (as in Equation 2) so that
the solutions of both problems are equal (a more formal proof
of this claim is detailed in the appendix). Then, owing to the
variational formulation ofΩ1,q(f1, · · · , fT )

2, we can rewrite
the optimization problem related to a sparse multi-task SVM
as

min
f1,··· ,fT ,d

C
∑

t,iH(ft(xi,t), yi,t) +
∑

t,k
‖ft,k‖

2

dt,k

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t
(7)

with s = 2−q
q . We can note that the objective function of

this optimization problem is smooth and convex and that the
feasible domain is convex ifs ≤ 1. After, re-arranging the
sums, we have the following equivalent optimization problem:

min
d

J(d) =
∑

t Jt(d)

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t
(8)

with

Jt(d) = min
ft

C
∑

i

H(ft(xi,t), yi,t) +
∑

k

‖ft,k‖
2

dt,k

= − min
0≤αt≤C,αT

t y=0

1

2
αT
t Gt(d)αt − αT

t 1 (9)

where [Gt(d)]i,j = yi,tyj,t
∑

k dt,kKk(xi,t, xj,t) and {αt}
are the vectors of Lagrangian multipliers related to the Hinge
loss in problemJt(d). The second equality of equation 9 is
due to Lagrangian duality and the strong duality of an SVM
problem. We can note from these equations that for a fixed
matrix d (matrix with entriesdt,k), each task can be trained
independently.

This latter formulation shows how our sparse multi-task
SVM problem is related to Multiple Kernel Learning (MKL)
problem. At first, we remark that Equations (8-9) boil down to
be the MKL problem when only one single task is considered
[38]. When several tasks are in play, the matrixd makes
explicit that tasks are linked through their shared sparse kernel
representation. Equations (8-9) suggest the use of similar
algorithms than those proposed for solving MKL problem,
for instance a reduced gradient algorithm as in SimpleMKL
[38] or a Semi-Infinite programming approach as proposed by
Sonnenburg et al. [42]. Instead of adapting these methods to

our problem, we present in the sequel a simple approach for
solving problem (8).

B. An alternate optimization algorithm for theℓ1 − ℓq case

We introduce one of our contribution of this work which is
a simple iterative algorithm based on block-coordinate descent
for solving theℓ1−ℓq problem. We show that such a coordinate
descent approach boils down to an alternate optimization
scheme which provably converges to the minimizer of the
problem.

At first let us define the objective function of our problem
(7) as

R(d, f) = C
∑

t,i

H(ft(xi,t), yi,t) +
∑

t,k

‖ft,k‖
2

dt,k
(10)

wheref defines the set of all functions{ft,k} After appropriate
initialization of the weight matrixd, our block-coordinate
descent algorithm consists in alternatively minimizing :

(i) problem (10) with respects to{f} while keeping the
matrix d fixed. This step simply consists in solvingT
single-task SVM problems which, at stepv, results in
the following decision function for taskt :

f
(v)
t (·) =

∑

i,k

α
(v)
i,t yi,td

(v−1)
t,k Kk(xi,t, ·) + b

(v)
t

with

α
(v)
t =











argmin
αi,t

1
2

∑

i,j αi,tαj,tGi,j,t −
∑

i αi,t

s.t
∑

i αi,tyi,t = 0,
0 ≤ αi,t ≤ C ∀i

whereGi,j,t = yi,tyj,t
∑

k d
(v−1)
t,k Kk(xi,t, xj,t).

(ii) problem (7) with respects tod with {f} being fixed.
Because of the relation between the{α(v)

t } and the
{f

(v)
t,k (·) =

∑

i α
(v)
i,t yi,td

(v−1)
t,k Kk(xi,t, ·)}, this problem

is equivalent to solve (4) with, at stepv

at,k = ‖f
(v)
t,k ‖Hk

= d
(v−1)
t,k

√

∑

i,j

α
(v)
i,t α

(v)
j,t yi,tyj,tKk(xi,t, xj,t)

= d
(v−1)
t,k

√

α
(v)T
t K̃k,tα

(v)
t

where [K̃k,t]i,j = yi,tyj,tKk(xi,t, xj,t). According to
proposition (1), we have a closed-form solutiond(v)t,k of
this problem given by equation (5) which now writes as :

d
(v)
t,k =

‖f
(v)
t,k ‖

2s
s+1

Hk

(

∑

u ‖f
(v)
u,k‖

2
s+1

Hk

)
1−s
2

∑

u′

(

∑

u ‖f
(v)
u,u′‖

2
s+1

Hk

)
s+1
2

(11)

Owing to the convexity and the smoothness of the objective
function, such an algorithm should converge towards the
minimizer of problem (8). In what follows, we give more
details on the descent and convergence properties of this
algorithm.



5

Proposition 2: Suppose that all the Gram matricesKk,t (the
matrix of general termKk(xi,t, xj,t)) for all tasks are strictly
positive definite, givend(v−1) with ∀t, k, d

(v−1)
t,k 6= 0, at each

iterationv > 1 of the alternate scheme, ifd(v) 6= d
(v−1) then

the cost function strictly decreases

R(d(v), f (v)) < min
f

R(d(v−1), f) < R(d(v−1), f (v−1)) (12)

and we haved(v)t,k > 0.
Proof: The proof proceeds by considering that the right

and the left inequalities respectively derive from the optimality
of theα(v) in step (i) and thed(v) in step (ii) of the alternating
scheme. The details are given in the appendix.

The above proposition makes clear that as iteration goes,
the objective value decreases if the algorithm is properly
initialized to a matrix with non-zero elements Furthermore,
since the objective function is bounded from below, the iterates
of the objective value converge. This proposition also suggests
that our algorithm can get stuck into a fixed point. However
as made clear in the following proposition, the sequence of
{f (v)} and {d(v)} also converge and eventually such a fixed
point would be the minimizer of our problem.

Proposition 3: For v ∈ N
∗, for 1 ≤ q ≤ 2, under the

hypothesis that all Gram matricesKk,t are strictly positive
definite andd(1) 6= 0, the sequence{d(v), f (v)} converges to
the minimizer ofR(d, f) subject to the constraints ond :

∑

k

(

∑

t

d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t

Proof: For a sake of clarity, the proof of this proposition
has been postponed to the appendix. Globally, it follows
the same lines of the convergence proof of the alternate
optimization algorithm proposed by Argyriou et al. [2].

A key point for the convergence of the algorithm is that
the weight matrix should be initialized to non-zero value.
However, if so, as iteration goes, a given weightd

(v)
t,k does not

strictly vanish. This can be interpreted as a weak point for an
algorithm that should provide sparse solutions. However, along
the iteration,d(v)t,k may rapidly converge towards zero and can
rapidly reach a neglectable value. Details on how we have
evaluated solution’s sparseness are given in the experimental
section.

The computational complexity of this algorithm is difficult
to evaluate. However, we know that at each iteration,T SVM
trainings and the weight matrixd computation are needed.
Each SVM training scales inO(n3

t,sv) while computingd is
aboutO(T ·M ·n2

t,sv) with nt,sv being the number of support
vectors related to taskt. In practice, we take advantage of
warm-start techniques when solving the quadratic program-
ming associated to each SVM task, making the algorithm very
efficient even compared to gradient descent techniques coupled
with warm-starting [13] similar to those used in SimpleMKL.
Numerical experiments given in the sequel will support such
a claim.

Many previous works on joint-sparse multi-task learning
have been carried to in a linear framework thus leading

to efficient algorithms. Here, by considering a kernelized
framework, our algorithm still relies on a sequence of SVM
trainings. This can be considered as very time-consuming.
However, according to very recent works on multiple kernel
learning [43], [24], using such a wrapper approach (which
first solves an SVM then update the weightsd) is still
competitive compared to other algorithms. Hence, although
we have not carried out extensive comparisons, we believe
that our approach is relatively efficient (and at least is
better than gradient descent techniques as proved in the
experimental section). Note that in a linear frameworki.e
eachHk is associated to one dimension ofRd, the kernel
matrix Kk is a rank one matrix and our algorithm wastes
many computational efforts in computing

∑

t dt,kKk (see
step (i)). Hence, instead of computing these kernels, we can
directly compute this sum through the inner product of the
data. We have implemented this simple trick and named this
version of our approach, in the experiments, as the linear
alternate optimization. We will see that some interesting gain
in computational effort can be obtained.

Although we have focused on SVM and the Hinge loss
function, our approach can be applied to any convex loss
function as long as the problem with fixedd can be easily
solved. For instance, with a square-loss function, minimizing
problem (10) boils down to be a weighted kernel rigde
regression. Furthermore, our approach can handle situations
where the loss functions for each task are heterogeneous.
Indeed, in such cases, we would like to solve

min
f1,··· ,fT ,d

C
∑

t,i Lt(ft(xi,t), yi,t) +
∑

t,k
‖ft,k‖

2

dt,k

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t
(13)

where each loss functionLt(·, ·) depends on each task and
can be either related to a regression or classification problem.
This framework has been very recently investigated by Yang
et al. and is motivated by applications in genetic association
mapping [51]. Our algorithm straightforwardly applies to these
problems. Indeed, in our alternate optimization algorithm, the
loss functions are taken into account only in the first step,
whered is kept fixed. Thus each task learning decouples and
the heterogeneity of loss functions does not pose difficulty.

C. A proximal method for the linearℓ1 − ℓq case

Recently, several works have proposed efficient algorithms
for penalized linear multi-task learning withℓ1 − ℓ2 or ℓ1 −
ℓ∞ norms [30], [11]. These approaches are essentially based
on accelerated proximal gradient (APG) method [4]. We have
extended these algorithms to the case ofℓ1− ℓq norms. Since
we have exactly followed the same steps of Chen et al. [11], we
only detail how we have numerically computed the proximal
operator of theℓ1 − ℓq norm.

Let us consider each linear classifier related to a taskt as
ft(x) = wT

t x+bt and the matrixW = [w1, · · · , wT ] ∈ R
d×T .

At each iteration of the AGP algorithm, one has to use the so-
called proximal operator which maps a matrixV ∈ R

d×T to
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the unique minimizer of

min
X∈Rd×T

1

2
‖X − V ‖2F + λ

d
∑

k=1

‖Xk,·‖q

This problem can be decomposed ind independent problems
which consist of

min
x∈RT

1

2
‖x− v‖2 + λ‖x‖q (14)

for each dimension of the problem. Forq = {1, 2,∞}, this
problem has a closed-form solution which makes the global
APG algorithm very efficient. Unfortunately, for1 < q < 2,
one has to numerically solve this problem. However, con-
sidering a q′ such that1/q + 1/q′ = 1, it can still be
shown that if‖v‖q′ ≤ λ then the solution is0. In the other
case, we have considered subgradient descent method and
iterative reweighted least-square (IRLS) [41]. Since we found
out that the latter is more efficient due to the simple structure
of the problem, our numerical implementation uses such an
approach. It is simple to show by writing the optimality
conditions of problem 14 that the IRLS algorithm consists
at each iteration(z) in updatingx according to the formula
x(z) = [P (z)]−1v with

P (z) = diag

(

1 +
λ

‖x(z−1)‖q−1
q

|x(z−1)|q−2

)

which is just a componentwise vector multiplication.
An important remark is that the accelerated proximal algo-

rithm considered here present a fast convergence rate when
the loss function is continuously differentiable with Lipschitz
gradient (for instance logistic or square loss). In our case, the
Hinge loss is non-smooth therefore, we cannot guarantee any
convergence rate. However as Chen et al. [11] also noticed,
considering the subgradient of the Hinge loss instead of the
gradient leads to very good computational efficiency. As we
will show in the experimental section, this AGP algorithm
is indeed very fast forq = 2. For 1 < q < 2, although
we do not have a closed-form solution of problem (14), the
numerical scheme we propose is still very efficient. Regarding
sparsity, unlike the alternate optimization algorithm, the solu-
tion provided by this proximal approach is exactly sparse up
to numerical precision.

D. The non-convexℓp − ℓq case

Now that we are able to solve the sparse MTL problem
using aℓ1− ℓq mixed-norms, we propose an algorithm which
solves the non-convex case whereℓp − ℓq (with 0 < p < 1
and 1 ≤ q ≤ 2 ). For this novel situation, let us rewrite the
regularization term as

Ωp,q =

M
∑

k=1

g(‖f·,k‖q) with ‖f·,k‖q =

(

∑

t

‖ft,k‖
q
Hk

)1/q

(15)

for the linear case,‖f·,k‖q = (
∑

t |Wk,t|
q)1/q , and where

the upper level penalty function isg(u) = up, u > 0 with
p < 1. Clearly, this function is non-convex. To address this
issue, we investigate the use of majorization-minimization

(MM) algorithms [19] which form a general framework for
optimizing non-convex objective functions. For our multi-
task problem, we propose a majorization that enables us to
take advantage of theℓ1 − ℓq MTL solver that we proposed
above. Indeed, sinceg(u) is concave in its positive orthant, we
consider the following linear majorization ofg(·) at a given
point u0 :

∀u > 0, g(u) ≤ up
0 + pup−1

0 (u− u0)

Note that this linear majorization can also be obtained from
the Fenchel inequality related to the Legendre-Fenchel trans-
formation of the differentiable functiong(u) [40]. We could
have proposed a tighter majorization ofg(·) by using for
instance a local quadratic approximation. However, the main
advantage of a linear majorization is that it leads to a simple
algorithm. Indeed, at iterationz, applying this linear majoriza-
tion of g(‖f·,k‖q), around a‖f (z)

·,k ‖q yields to a majorization-
minimization algorithm forℓp − ℓq multi-task learning which
consists at a given(z + 1)th iteration, in solving :

min
f1,··· ,fT

C
∑

t,i

H(ft(xi,t), yi,t) +
∑

k

p
‖f·,k‖q

‖f
(z)
·,k ‖

1−p
q

This latter equation shows that, in order to solve the non-
convexℓp − ℓq problem using a MM approach, one needs to
iteratively solve a weightedℓ1 − ℓq multi-task problem :

min
f1,··· ,fT

C
∑

t,i

H(ft(xi,t), yi,t) +

M
∑

k=1

βk‖f·,k‖q (16)

where βk are some coefficients that depend on the current
functionsft,k. They are defined at thez-th iteration as:

βk =
p

‖f
(z)
·,k ‖

1−p
, ∀ k = 1, · · · ,M (17)

This definition of theβk implicitly requires the strict positivity
of ‖f·,k‖. To ensure this condition, a small termǫ is added
to ‖f·,k‖ in (15). Hence, we useβk = p

ǫ+‖f
(z)
·,k

‖1−p
. This trick

suggested as well by [8] avoids numerical instabilities and
overall prevents from having an infinite regularization term for
‖f·,k‖. In some other context, thisǫ term can play a smoothing
role if chosen adaptively [12]. However, in this work, we have
kept it fixed atǫ = 0.001.

Now, the equivalent optimization problem with smooth
regularization term is :

min
f1,··· ,fT ,d

C
∑

t,iH(ft(xi,t), yi,t) +
∑

t,k β
2
k
‖ft,k‖

2

dt,k

s.t
∑

k

(

∑

t d
1/s
t,k

)s

≤ 1, dt,k ≥ 0 ∀k, t

(18)
where s = 2−q

q . Note that the optimality conditions of this
problem with respects toft,k is simply given by the expression
ft,k(·) =

dt,k

β2
k

∑

i αi,tyi,tKk(xi,t, ·). Consequently, at each
MM iteration, we have to solve a weighted sparse MTL
problem, where the weights are applied to the basis kernels.
Hence, problem (18) can be solved using theℓ1−ℓq algorithm
just by replacing the kernelKk(x, x

′) with 1
β2
k

Kk(x, x
′).

Details of theℓp−ℓq problem solver are given in Algorithm
1. About its complexity, we can state that since theℓp − ℓq
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Algorithm 1 ℓp − ℓq sparse MTL solver.

βk = 1 for k = 1, · · · ,M
ComputeKk,t kernel matrices for all tasks
repeat
Kβ

k,t ←
Kk,t

β2
k

for all k

Solveℓ1 − ℓq MTL problem with kernelsKβ
k,t

Updateβk using Equation (17)
until convergence of theβ’s

algorithm is based onniter iterations of theℓ1− ℓq algorithm
(after appropriate rescaling of the kernels), its complexity can
be approximated asniter times theℓ1−ℓq algorithm complex-
ity. However, here again, we can speed-up the convergence of
ℓp − ℓq, algorithm by warm-starting theℓ1 − ℓq with results
from previous iteration. Empirical experiments have shown
that niter are typically lower than10.

The local convergence of Algorithm 1 is guaranteed. Indeed,
the MM programming approach proceeds by surrogating the
concave part of the objective function with its affine ma-
jorization at each iteration. Therefore, the minimized function
decreases until convergence to at least a local minimum [19].

IV. N UMERICAL EXPERIMENTS

In this section, we present some numerical experiments that
demonstrate the utility of using aℓp − ℓq penalty instead of
a ℓ1 − ℓ2 one. They have been carried out on a toy dataset
and on real datasets concerning BCI electro-encephalogram
signals classification and protein subcellular localization.

Before delving into the experimental details, we provide
some remarks on how we have evaluated the sparsity of our
algorithm’s output. Let us denote the vectors of components
sk =

∑

t dt,k or sk =
∑

t |Wk,t| depending on the used
algorithm. We define the setS = {k ∈ 1, · · · ,M : sk > γ}
where γ is a threshold that allows us to neglect non-zero
components due to numerical errors (diagonal loading of
kernels to as to make them positive definite has been set to
1e−6). For the toy problem, we have setγ = 1e−5 which we
believe is small enough so as to provide rather pessimistic
estimation of the vector sparseness. We have also consid-
ered an heuristic for adaptively settingγ for our alternate
optimization algorithm which provides dense although small
outputs. In such a case, we have setγ = 0.01 · maxk(sk).
The rationale behind this heuristic is that kernels or variables
that have weights significantly smaller than the largest onedo
not influence the decision function. As a numerical criterion
for sparsity evaluation, for the toy problem, since we know
the true relevant variablesS⋆, we have considered the F-
measure betweenS andS⋆. For the other problems, we have
evaluated the cardinality ofS using the adaptive threshold.
All performances reported are evaluated based on kernels and
variables in the setS.

A. Toy dataset

Our aim throughout this first experiment is first to analyze
the convergence of our alternate optimization algorithm and

TABLE I
COMPARING THE COMPUTATIONAL EFFICIENCY(IN SECONDS) OF

DIFFERENT LINEAR APPROACHES FORℓ1 − ℓq PENALTY. THE
EXPERIMENTAL SET-UP ISd = 100, r = 4, T = 4 AND n = 100.

ℓ1,q penalty
Methods q = 2 q = 4

3

Kernel Altern. Opt 1.02 ± 0.20 1.08± 0.20
Linear Altern. Opt 0.59 ± 0.06 0.64± 0.08
Proximal Descent 0.06 ± 0.01 0.10± 0.20

then to compare anℓ1 − ℓ2 and anℓp − ℓ2 (with p < 1)
penalties in term of classification performance.

The toy problem is the same as the one used by Obozinski
et al. [33]. Each task is a binary classification problem inR

d.
Among thesed variables, onlyr of them define a subspace
of R

d in which classes can be discriminated. For theser
relevant variables, the two classes follow a Gaussian pdf with
mean respectivelyµ and−µ and covariance matrices randomly
drawn from a Wishart distribution.µ has been randomly drawn
from {−1,+1}r. The otherd−r non-relevant variables follow
an i.i.d Gaussian probability distribution with zero mean and
unit variance for both classes. In this experiment, we are
interested in feature selection, thus, for anyk, Hk is the finite
dimension subspace built from thekth component ofRd. We
have respectively sampledn, nv andnt number of examples
for training, validation and testing. For some experiments, n
is varying, but we have always setnv = n andnt = 5000.
Before learning, the training set has been normalized to zero
mean and unit variance and the validation and test sets have
been rescaled accordingly.

1) Comparing convergence forℓ1−ℓ2 penalty: To evaluate
the quality of the solution provided by our alternate optimiza-
tion algorithm when considering aℓ1 − ℓ2 penalty, we have
compared it to the solution obtained by a reduced gradient
algorithm similar to the one used for SimpleMKL [38]. Both
algorithms are wrapper algorithms which in a inner loop solve
several SVM problems with fixed kernel and in a outer loop
optimize the weightsd. The main difference between the two
approaches is the way the matrixd is updated. Note that in our
comparison, both methods take advantage of warm-start tech-
niques for successive SVM retrainings. The stopping criterion
we have used are the following. For our alternate optimization
methods, we stop whenmax(|d(v+1)−d

(v)|) < 0.001 (where
the max is considered componentwisely). For the reduced
gradient approach, since we can check the KKT conditions
without additional computational cost [38], we also imposed
that before stopping, the KKT conditions should be satisfied
up to a tolerance of0.1 for eachdt,k. Here, the comparison
has been carried out for a hyperparameterC = 100 and for
T = 4 tasks.

Figure 1 presents the results of this comparison. On the
left, we have plotted an example of how the objective value
decreases with respects to the CPU time. All the computations
have been carried out on a single core of a Bi-Xeon machine
with 24 Gb of memory. Source codes are in Matlab. We remark
that for a given computational time, using the update equations
of d given in Equation (5) yields to a faster convergence.
Such a finding is corroborated by quantitative evaluation
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Time Grad Desc (s) 19.8± 7.8 23.8± 5.8
Time Altern. Opt. (s) 1.39± 0.2 1.5± 0.2
Diff. Obj (10−4) 1.43± 0.7 1.3± 0.8
‖∆d‖∞(10−3) 2.1± 1.5 2.1± 1.3

Fig. 1. Comparing our block-coordinate descent algorithm in its kernel version with a gradient descent approach similar to the one used for multiple kernel
learning in SimpleMKL. The left panel shows an example of howthe objective value varies with respects to the CPU time. Theright table summarizes the
time needed for the gradient descent algorithm and for our method before convergence. Relative difference of objectivevalue and the maximal difference
between the weights returned by the two algorithms are also reported. All the criteria are averaged over10 different training sets and with a fixed uniform
and random non-zero initializations. The experimental set-up is d = 100, r = 4, T = 4 andn = 100 with C = 100.

performances given in the right of Figure 1. We show in
that table, that for very similar objective values and matrix
d, our alternate optimization algorithm converges faster than
the reduced gradient approach. The gained factor is about15.

Table I compares the computational efficiency of several
algorithms for solving a linear toy problem. We have compared
the kernelized and linear versions of our alternate optimization
algorithm as well as the proximal gradient algorithm which is
stopped when the variation of its objective value is smaller
than0.001. Here, we have chosen algorithm hyperparameters
so as to perfectly recover the sparsity pattern.

Firstly, we can see that in the linear case, the simple trick
which consists in directly computing the sum

∑

k dt,kKk from
the examples, yields in a substantial saving of computational
efforts for our algorithm (regardless ofq). When q = 2,
the proximal algorithm is very efficient with a gain factor
of about 10. For q = 4

3 , the method we proposed for
numerically computing the proximal operator still yield to
efficient algorithm with gain of about6.

2) Comparing performance:In this experiment, we aim
at showing that by using aℓp − ℓ2 penalty which provides
a more aggressive sparsity pattern, we are able to reduce
test error compared to aℓ1 − ℓ2 penalty. We also provide
empirical evidence that for this toy problem, the variablesthat
are recovered using theℓp− ℓ2 penalty are more relevant than
those recovered by theℓ1− ℓ2 one. As a baseline comparison,
we have also considered sparse separated SVM (each single
SVM is trained according to its task data) and a sparse pooled
SVM (a single SVM is trained according to all task data).
Since the problem is linear, we have used the accelerated
gradient algorithm but we have also checked how the linear
version of our alternate optimization approach behaves.

The two penalties have been compared through different
experimental situations where we have varied some parameters
of the toy probleme.g the number of tasks, the number of
training examples, the number of relevant variables. Model
selection have been included into the comparison. Hence,
hyperparameters have been tuned by means of a validation set
and a validation error. For bothℓ1−ℓ2 andℓp−ℓ2 sparse MTL,
hyperparametersλ (proximal algorithm) andC (alternate opti-
mization) have been respectively selected among10 different
values logarithmically sampled from the interval[3, · · · , 60]

and[0.01, · · · , 100]. For theℓp−ℓ2 penalty, sparsity parameter
p has also been selected among the value[0.2, 0.5, 0.75, 0.9].
For each experimental situations, trials have been replicated
20 times.

Results are summarized in Figure 2. The figure shows that
regardless the experimental situations considered, aℓp − ℓ2
penalty leads to better performances than theℓ1 − ℓ2 one and
the ℓ1 separated SVM (results of the pooled models have not
been reported since they are always worse than0.20). The
statistical significance of this claim has been evaluated using
a Wilcoxon signed rank test. The test shows that the difference
in performance is significant at a level of0.05 except in
few situations (e.g first marker of the second and fourth
plots from left to right). One can also see that the alternate
optimization and the proximal algorithm lead to statistically
equivalent performances when usingℓp − ℓ2 penalty except
for few cases when the number of training example is small.
We have checked that this is due to a model selection problem :
the proximal algorithm seems to be more sensitive to the
choice ofλ. Figure 3 gives a rationale on why theℓp − ℓ2
penalty performs better. We have evaluated the F-measure
of S compared to the true relevant variables. Theℓp − ℓ2
penalty does a better job in recovering relevant variables (even
when theℓ1− ℓq algorithm is our non-exactly sparse alternate
optimization algorithm). The use of an adaptive threshold also
lead to good estimation of relevant variables. Missing models
in the plots have F-measures always lower than0.3. This
means for instance that anℓ1 − ℓ2 penalty trained with an
alternate optimization algorithm have too many weights so that
∑

t dt,k > 1e − 5. As the numberr of true relevant variable
increases, the gap of performance betweenℓ1− ℓ2 andℓp− ℓ2
penalties tends to reduce. This can be easily justified sincein
this case, theℓp−ℓ2 penalty becomes too aggressive and tends
to discard relevant variables. We can thus conclude that theuse
of an ℓp − ℓ2 penalty is more adapted to situations where the
number of relevant variables is small compared to the problem
dimensionality. This point is also illustrated in Figure 4.We
can note there that the model selection procedure tends to
choose larger value ofp as the number of relevant variables
increases. This clearly shows that if no prior knowledge on the
sparsity level is available, adaptive data-driven penaltynorms
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Fig. 2. Performance (test error ) comparisons betweenℓ1 − ℓ2 ( red, dash-dotted),ℓp − ℓ2 (blue, solid) multi-task models trained with proximal algorithms,
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performance than theℓp − ℓ2 penalty both trained with proximal algorithms.
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are valuable.

B. BCI P300 single trial problem

We also illustrate the usefulness of sparse Multi-Task learn-
ing on a Brain-Computer Interface problem. Indeed, sparse
MTL can be very relevant to BCI because of the need for chan-
nel/variable selection and because of the data variabilitywith
respects to different subjects. Our objective here is to show that
sharing information between subjects through sparse multi-
task learning can lead to improvement in performance while
reducing the number of variables involved in the recognition
task. The dataset we consider is the BCI P300 Speller dataset
used by Hoffmann et al. [16]. For this BCI paradigm, a subject

is presented a six-symbol matrix where symbols are flashed in
random order. A large P300 evoked potential can be recorded
in the electro-encephalogram (EEG) signals recorded from the
subject’s scalp in response to the intensification of the desired
symbol. Each trial corresponds to the EEG signals related to
the response of a given flash. Hence, the classification task is
to recognize whether this trial contains or not a P300 evoked
potential. The datasets involve9 subjects including disabled
ones. All preprocessing steps we used are those described by
Hoffmann et al. The steps include : referencing, band-pass
filtering, downsampling, single trial extraction, windsorizing,
scaling and feature vector construction. In our experiments,
we have restricted ourselves to a8 channel configuration (Fz,
Cz, Pz, Oz, P7, P3, P4, P8) which leads after downsampling
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TABLE II
AVERAGE AUC PERFORMANCES OF7 DIFFERENT ALGORITHMS ON THEBCI DATASET. THE NUMBER OF VARIABLES THAT HAVE BEEN KEPT IN THE

DECISION FUNCTION IS ALSO GIVEN. SEPSVM AND SEPℓ1 SVM RESPECTIVELY DENOTE ASVM AND A SPARSESVM CLASSIFIER TRAINED ON
ISOLATED DATASETS FOR EACH SUBJECT. FULL SVM AND FULL ℓ1 SVM ARE THE CLASSIFIERS TRAINED ON ALL EXAMPLES. TOP) n = 300. BOTTOM)

n = 400.

MTL1,2 MTLp,2 MTL1,q SepSVM Sepℓ1 SVM Full SVM Full ℓ1 SVM
AUC 76.5± 0.6 76.1± 0.5 76.5± 0.6 75.6± 0.8 73.4± 1.3 67.1± 0.6 67.0± 0.6
# Var 191± 26 134± 33 201± 23 256 118± 30 256 238± 7
p-val 0.00019 0.00897 0.00014 - 0.00006 0.00006 0.00006

MTL1,2 MTLp,2 MTL1,q SepSVM Sepℓ1 SVM FullSVM Full ℓ1 SVM
AUC 78.2± 0.6 77.8± 0.7 78.3± 0.6 77.4± 0.9 75.1± 1.3 67.9± 0.6 67.9± 0.6
# Var 205± 18 150± 35 209± 16 256 149± 32 256 249± 2
p-val 0.00009 0.007 0.00009 - 0.00009 0.00009 0.00009

to a feature vector of size256. The number of single trials
available for each subject is about3300. Note that the datasets
and the preprocessing algorithms are available on the EPFL
BCI group website (http://bci.epfl.ch/p300).

Instead of training a classifier separately on each subject as
in Hoffmann et al., we have trained linear classifiers, usingour
alternate optimization algorithm, for all subjects all-together
using our multi-task approach (one task = one subject). Three
types of penalty for the multi-task learning are considered:
an ℓ1− ℓ2, anℓp− ℓ2 and aℓ1− ℓq penalty. As a comparison,
we have also learned a sparse and a classical SVM trained
on a single subject, and a sparse and a classical SVM trained
on all subject data. Sparse SVM has been obtained using a
ℓ1 multiple kernel learning approach where each feature is
related to a kernel [38]. For selecting the hyperparameter of
all algorithms, we have considered a validation approach. For
all subjects, we have randomly split the available examplesin
3 sets :n examples for training and validation and the rest for
testing. For the experiment, we have set the training set size to
n = 300 andn = 400. C andp have been selected from the
same sets as the previous experiments whileq ∈ { 43 ,

5
3 ,

20
11}.

Note that using a small part of the examples for training is
motivated by the use of ensemble of SVM (that we do not
consider here) [39] at a later stage of the EEG classification
procedure. The performance is measured by AUC, due to
the post-processing that is done throughout repetitions inthe
P300 : as the final decision regarding letters is taken after
several trials, the correct row and column should receive high
scores to correctly identify the letter.

Results averaged over10 trials are presented in Table II.
The baseline performance is the one provided by a classical
SVM trained on a single subject (SepSVM). When comparing
performance of a given approach to that baseline, a Wilcoxon
sign-rank test has been evaluated and the p-value being re-
ported. We remark that training with all examples lead to
significantly worse performances compared to the baseline.
However, when learning through a multi-task approach, we
achieve a slight but significant increase of performance. Inter-
estingly, the three multitask approaches yield a significant di-
mensionality reduction while slightly improving performances.
When comparing performances of the three different multitask
penalties, we see that AUC scores are equivalent but theℓp−ℓ2
penalty need far fewer variables.

C. Protein subcellular localization

This last real-world experiment further highlights the utility
of our approach in a kernel selection context. Indeed, we
consider here two datasets for bacterial protein localization :
the PSORT+ dataset contains four classes and541 examples
and the other, called PSORT-, has five classes with1444
examples. For each datasets,69 kernels have been computed
and they are publicly available on http://www.fml.tuebingen.
mpg.de/raetsch/suppl/protsubloc. This website also provides
some information about the post-processing for performance
evaluations. This classification problem is actually a multiclass
problem that we address through pairwise binary classification.
In order to reduce the number of kernels to compute, we are
interested in joint kernel selection for all pairwise problems.
Hence, we have considered a one-against-all framework where
each one-against-all problem is a task. Note that we could
have also considered that each task is related to a one-against-
one pairwise problem, but in order to be compliant with
the experimental setting of Zien and Ong and the way they
evaluate performances, we have considered the one-against-all
framework.

In our experiments, we have compared sparse MTL with
ℓ1− ℓ2 and sparse MTL withℓp − ℓ2 andℓ1 − ℓq. Due to the
multiclass nature of the problem, comparisons with pooled
and independent models are not possible. Data permutations
as well as the80% − 20% splitting into training and testing
sets are also provided by Zien and Ong [54]. Hyperparameters
C, p anqq have been selected through a validation method by
randomly splitting the training set then training and validating
on the resulting splits.C has been selected from10 values
logarithmically sampled from the interval[0.01, 100] while
p and q are respectively chosen from{0.5, 0.75, 0.9} and
{ 43 ,

5
3 ,

20
11}

Averaged over10 trials results are given in Figure 5. We
have also given the performance achieved by the multiclass
MKL algorithm of Zien and Ong [54]. This MKL algorithm
learns a linear combination of kernels that is jointly optimal
for all winner-takes-all decision functions. Hence, theirmethod
is very similar to our sparse MTL learning with aℓ1 − ℓ2
penalty. Results show that our algorithms and the different
penalties yield to similar accuracy performances (according to
a Wilcoxon sign-rank test) and they are competitive with the
multiclass MKL of Zien and Ong. However, once again using
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TABLE III
EXAMPLES OF AVERAGE TIME NEEDED FOR OUR ALTERNATE

OPTIMIZATION ALGORITHM , THE GRADIENT DESCENT APPROACH AND
PROXIMAL DESCENT FOR PRODUCING A SOLUTION OF Aℓ1 − ℓq MTL
PROBLEM. NOTE THAT FORPSORTPROBLEMS, LINEAR ALGORITHMS

ARE NOT CONSIDERED SINCE WE ARE DEALING WITH KERNELS ON

STRUCTURED DATA. FOR THE BCI PROBLEM, n = 300.

Altern. Opt
Data Linear Kernel Gradient Proximal
BCI, q = 2 18.8± 0.8 71.8± 4.2 309± 190 0.98± 0.17
BCI, q = 4

3 14.8± 0.7 46.8± 2.3 - 4.1± 0.5
PSORT +,q = 2 - 57.4± 6 110± 35 -
PSORT +,q = 4

3 - 62.2±4 127± 41 -
PSORT -,q = 2 - 350.5± 18 1450± 400 -
PSORT -,q = 4

3 - 364.5± 32 1480± 300 -

an adaptive value ofp or q compared to a pre-defined choice of
p = 1 andq = 2 leads to significantly fewer selected kernels
(up to a level of0.05). We can also point out that the validation
approach tends to select a value ofp and q respectively of
0.9 and 4

3 . By using a value ofp slightly smaller than1, we
thus achieve a substantial reduction of the number of selected
kernels (compared toℓ1− ℓ2). Right plot of Figure 5 gives an
example of the resulting weightsdt,k for different penalties
for the PSORT+ problem. We remark that some kernels (e.g
the third, seventh and eighth)have been selected by theℓ1−ℓ2
and ℓ1 − ℓq penalties but have been discarded by theℓp − ℓ2
one.

D. Computational efficiency on the real-world problems

In order to have an idea on the computational efficiency
of our algorithms forℓ1 − ℓq multi-task problems, we have
reported in Table III, the time they need for converging.
we also provide results for gradient descent approach (when
q = 2) and proximal gradient descent for linear problems
such as the BCI problem. Stopping criterion are the same
as those used for the toy dataset problem. Note that while
our alternate optimization and the gradient descent algorithms
solve the same problem, the proximal algorithm solves an
equivalent one. However, since it is hard to find the closed-
form relation between the hyperparameters producing the same
solution, for a relatively fair comparison, we have chosen these
hyperparameters so as to have a similar level of sparsity. The
results we obtain are on the same lines of those obtained for
the toy problem. Regardless of the situation, gradient descent
is the less efficient approach. When compared to the kernel
version of the alternate optimization algorithm, the loss in
computational effort is from 2 to 4. When comparing linear
methods, proximal descent is the most efficient method with
a gain in computation of the order of3 in the worst case.

V. CONCLUSION

In this paper, we investigated the use of mixed-norms for
multi-task SVM with joint sparsity constraint. We went beyond
convexity and proposed a large class of mixed-norm penalty
based onℓp − ℓq norm, (with p ≤ 1 and 1 ≤ q ≤ 2). For
solving the resulting optimization problem, we first derivea
general algorithm which addresses the convex casep = 1 and
the use of multiple kernels. For the linear case, a more efficient

proximal algorithm have been investigated. For the casep < 1,
we fitted the optimization problem into the Majorization-
Minimization framework, and proposed an iterative reweighted
version of theℓ1 − ℓq algorithm. Experimental results on
toy data set brought evidence thatℓp − ℓq penalties lead to
enhanced performance and better sparsity pattern compared
to a ℓ1 − ℓ2 penalty especially in situations where a large
number of variables are in play. Then, results on real-world
datasets from various domains have shown the potential ( in
terms of accuracy and variable selection) of our approach on
applications where variable or kernel selections are of primary
importance.

Now we plan to extend our efforts in the following direc-
tions. While this paper is essentially a proof of concept that
adapting the penalty to the problem at hand is an interesting
approach, up to now we have dealt with this adaptivity only
through validation methods and grid search onp andq. Now,
for addressing efficiently such an adaptivity, we will focuson
algorithmic methods that would allow us to jointly selectp
and q. Notably, we project to investigate regularization path
and continuation methods. Furthermore, we will also consider
faster algorithms that can handle large-scale problems. Then,
future works will also aim at theoretically analyzing the
consistency of ourℓp − ℓq approach for variable selection.

VI. A PPENDIX

A. Equivalence between problems (2) and (6)

The equivalence between these two problems comes from
two properties : i) the equivalence between constrained and
regularized convex optimization problem and ii) the equiv-
alence of optimization problems when objective functions
or constraints are transformed through the composition of a
monotonically increasing function.

Here we give the proof for a simple case without loss of
generality. Let us consider the following optimization prob-
lems withF (·) andG(·) being two strictly convex functions
of Rd,

(R) : min
x∈Rd

F (x) + λG(x) and (C) : min
x∈Rd,G(x)≤τ

F (x)

with λ and τ some parameters. These two problems are
equivalent in the sense that for anyλ, there exists aτ such
that the minimizers of(R) and (C) are the same [48]. Now,
according to the same notion of equivalence, problem(C) is
also equivalent to

(C2) : min
x∈Rd,G(x)2≤τ2

F (x)

owing to the monotonically increasing transformation of the
constraints [7]. Since(C2) is equivalent to

(R2) : min
x∈Rd

F (x) + λ2G(x)2

where λ2 is another parameter. We thus have equivalence
between(R) and (R2).
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Data MTL1,2 MTLp,2 MTL1,q MCMKL
PSORT + 93.87± 2.82 93.62± 3.04 93.88± 2.73 93.8
# Kernels 15.4± 1.17 7.4± 1.42 15.9± 1.05 18
PSORT - 95.92± 1.35 95.90± 1.12 96.02± 1.33 96.1
# Kernels 12.9± 0.31 7.5± 0.85 12.8± 0.42 14
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0

0.5

1

1.5

2

2.5

Kernels

W
ei

gh
ts

 d
t,k

 

 

L
1
−L

2

L
p
−L

2

L
1
−L

q

Fig. 5. (left) Average F1 score and number of selected kernels using our algorithms with different penalties on protein subcellular localization problems.
Scores of the multiclass MKL of Zien and Ong. [54] have also been reported. (right) Example of kernel weights resulting from the different penalties for the
PSORT+ problem. For a sake of clarity, we have restricted theplot to the20 first kernels. We note that different penalties lead to different sets of selected
variables and for some variables that have been selected by all three models, the weighting can largely differ. The number of kernels selected by Zien and
Ong’s method has not been explicitly reported and we have extrapolated them from one of their figure in [34].

B. Descent property of theℓ1 − ℓq algorithm

For the right strict inequality, positive definiteness ofGt

implies strict convexity and the solution’s uniqueness of the
minimization problem inft related to all tasks. Besides,
f
(v)
t = f

(v−1)
t would imply according to Equation (11) that

d
(v) = d

(v−1). Hence, since by hypothesisd(v) 6= d
(v−1), we

havef (v)
t 6= f

(v−1)
t . These points lead to the strict inequality :

min
f

R(d(v−1), f) < R(d(v−1), f (v−1))

Before showing the left strict inequality, the properties relating
d
(v) andd(v−1) are proved. We can first note that ifd(v−1)

t,k =

0 thend(v)t,k = 0. But if d(v−1)
t,k > 0 then strict positivity ofd(v)t,k

stems from the positive definiteness of matricesKk,t. Indeed,
since we have

‖f
(v)
t,k ‖

2 = [d
(v−1)
t,k ]2α

(v)T
t Kk,tα

(v)
t > 0

which, according to Equation (11) yields tod(v)t,k > 0.

Now, sinced(v−1)
t,k > 0, the left strict inequality of equa-

tion (12) naturally comes from the strict convexity and the
solution’s uniqueness of problem (4).

C. Convergence of theℓ1 − ℓq algorithm

Here we present the proof of convergence of our algorithm
which follows the lines of the one of Argyriou et al. [2].

Let us define

S(f) := R(d(f), f)

= C
∑

t,i

H(ft(xi,t), yi,t) +





∑

t

(

∑

k

‖ft,k‖
q
Hk

)1/q




2

The second equality in the definition ofS(f) naturally stems
from Proposition 1 sinced(1) 6= 0. Forq so that1 ≤ q ≤ 2, the
mixed-norm regularizer term

∑

t

(
∑

k ‖ft,k‖
q
Hk

)1/q
is convex

as a sum of convex functions. The composition with a strictly
increasing and strictly convex function (the square term) on
R+ makes the overall regularizer strictly convex. Thus, even
though the loss functionH(·, ·) is just convex,S(f) is still
strictly convex and admits an unique minimizer.

Now let us introduce

g(f) := min
u
{R(d(f),u)} (19)

we show in the sequel that the functiong(f) is continuous.
This comes from the fact that the function :

G(d) := min
u

R(d,u)

is continuous and differentiable. Indeed, for a givend, the
optimization problem definingG(d) is just T independent
SVM problems; each task being related to each SVM problem
with a kernel

∑

k dt,kKt,k. Results from multiple kernel
learning have shown that each SVM objective value, for a task
t, is a continuous and differentiable function [38] with respects
to {dt,k}. From this point, we can conclude thatG(d) is also
continuous and differentiable. Thusg(f) is continuous as a
composition of continuous functions.

Now let us show that the sequence{S(f (v)) : v ∈ N}
converges. We can observe that sinceS(f) = R(d(f), f) and
d(f) minimizesR(·, f), we have the following inequalities :

S(f (v+1)) ≤ g(f (v)) ≤ S(f (v)).

Hence, the sequence{S(f (v)) : v ∈ N} is not increasing
and since the loss functionH is bounded from below, it
is bounded. Thus asv goes to∞, the sequenceS(f (v))
converges to a valueS⋆. From the continuity and boundedness
of S(f (v)), we can also deduce that the mixed-norm regularizer
and the sequence{f (v)} are bounded where boundedness of
{f (v)} is understood according to some norm (e.g the norm
induced by the inner product〈f , f〉 =

∑

t,k〈ft,k, ft,k〉Hk
). As

a consequence, there exists a subsequence{f (vi) : i ∈ N} that
converges towardsf⋆.

Now, we show thatf⋆ is a minimizer ofR(·, ·). Consider
any convergent subsequence{f (vi) : i ∈ N} of {f (v) : v ∈ N}.
SinceS(f (vi+1)) ≤ g(f (vi)) ≤ S(f (vi)), g(f (vi)) converges
towardsS⋆. By the continuity of functionsS(f) andg(f), we
thus haveg(f⋆) = S(f⋆). This implies thatf⋆ is a minimizer
of R(d(f⋆), ·) becauseR(d(f⋆), f⋆) = S(f⋆). Furthermore,
d(f⋆) is the minimizer ofR(·, f⋆) subject to constraints ond.
Thus, since the objective functionR(·, ·) is smooth and strictly
convex, the pair(d(f⋆), f⋆) is a stationary point ofR(·, ·) and
thus its unique minimizer.

At this point, we have shown that any convergent subsequent
of {f (v) : v ∈ N} converges to the minimizer ofR(·, ·). Then
since S(f) is continuous and{f (v) : v ∈ N} is bounded,
it follows that the whole sequence converges towards the
minimizer ofR(·, ·).
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