
VARIATIONAL SEQUENCE LABELING

R. Flamary, S. Canu, A. Rakotomamonjy

LITIS EA 4108, Université de Rouen
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ABSTRACT
Sequence labeling is concerned with processing an input

data sequence and producing an output sequence of discrete
labels which characterize it. Common applications includes
speech recognition, language processing (tagging, chunk-
ing) and bioinformatics. Many solutions have been pro-
posed to partially cope with this problem. These include
probabilistic models (HMMs, CRFs) and machine learning
algorithm (SVM, Neural nets). In practice, the best results
have been obtained by combining several of these methods.
However, fusing different signal segmentation methods is
not straightforward, particularly when integrating prior in-
formation. In this paper the sequence labeling problem is
viewed as a multi objective optimization task. Each objec-
tive targets a different aspect of sequence labelling such as
good classification, temporal stability and change detection.
The resulting optimization problem turns out to be non con-
vex and plagued with numerous local minima. A region
growing algorithm is proposed as a method for finding a
solution to this multi functional optimization task. The pro-
posed algorithm is evaluated on both synthetic and real data
(BCI dataset). Results are encouraging and better than those
previously reported on these datasets.

1. INTRODUCTION

The problem we propose to deal with is the one of sequence
labeling. In a signal classification context, the aim of se-
quence labeling would consist in obtaining a label for each
sample of the signal while taking into account the sequen-
tiality of the samples by imposing some temporal constraints
on the labeling. For instance, such constraints can be posed
on the length of segments of similar label or on the time
neighborhood. Problems of sequence labeling typically arise
in speech signal segmentation or in Brain Computer Inter-
faces (BCI). Indeed, for BCI applications, classifying men-
tal tasks using EEG continuous signals are often needed.
This consists in assigning a label to each sample (or set of
samples) of the EEG signal and afterwards each label can be
interpreted as a specific command for the BCI application.

Many methods and algorithms have already been pro-
posed for sequence labeling. For instance, Hidden Markov

Models [1] is a statistical method that is able to learn a
joint probability distribution of the samples of a sequence
and their labels. In a sequence labeling problem, Condi-
tional Random Fields (CRF) [2] learn instead of a genera-
tive model, conditional probability of the labels given the
samples. In some cases, CRF have been shown to improve
the HMM approach as they do not need the observations to
be independent. Structural SVMs that learn a mapping from
structured input to structured output have also been consid-
ered for sequence labeling [3]. In the same flavor, Max-
imum Margin Markov Networks [4] learn a probabilistic
graphical model that, after training, is able to infer the la-
bels associated to a sequence samples.

All these methods have been compared by Nguyen and
Guo [5] who proposed a method for combining the labeled
sequence returned by the above-described approaches. Their
combination method consists in obtaining an optimal se-
quence y∗ given the results of several sequence labeling
methods (y1,y2, . . . ,yM ):

y∗ = arg min
y
L(y,y1,y2, . . . ,yM ) (1)

with L a loss function that takes into account the label pro-
vided by each method and all label transitions. They have
shown that such an optimally fused combination of sequence
labels is consistently better than a sequence label obtained
by a single method. This novel method makes possible the
combination of several sequence labeling obtained from dif-
ferent methods. However, most sequence labeling methods
provide a score of each class for a given sample and the
label is then obtained by :

y∗ = arg max
y

f(X,y) (2)

with f a score function depending on the current sequence
y and the observation X . For instance, structural SVM pro-
duces a score of the form f(X,y) = wtΦ(X,y). For com-
bining the outputs of several sequence labeling methods,
similarly to methods in soft-decision decoding ([6] Chap-
ter 7), we propose to directly use the scores instead of the
output labels. As detailed in the sequel, this would lead us
to minimize a loss function which depends on the scores



returned by different labeling methods. In our case, we
minimize a sum of functionals each one corresponding to
a specific method. Furthermore, through this formulation,
we can integrate prior knowledge by adding a functional re-
lated to such a knowledge to the sum, leading to a more
difficult problem. However it can be solved using a vari-
ational approach. This means that instead of considering
functional values, we consider their variation with respect
to a change of label for a given sequence. Recently, Rose et
al.[7] has cast the problem of labeled image segmentation as
the minimization of a sum of functionals. The minimization
problem was solved through a Region Growing algorithm.

Thus, our main contribution in this paper is to propose a
variational framework for combining different sequence la-
beling methods and prior knowledge. We propose to intro-
duce a region growing like algorithm denoted as variational
Sequence Labeling Algorithm for solving the resulting op-
timization problem.

The paper is organized as follows. First, we will express
our problem as a sum of functionals, each of them bringing
information about the problem and accuracy to the final so-
lution. We propose several functionals of which some cor-
responds to existing methods cited above. Then, we will
present our algorithm to solve our minimization problem.
Finally, we will test our method on a toy dataset and on a
BCI Mental Task segmentation.

2. VARIATIONAL SIGNAL SEGMENTATION

For learning, we assume to have a sequence Xtr of length
T tr where each sample belongs to IRD and a sequence of
labels ytr ∈ {1, .., N}T tr

. We suppose thatXtr is gathered
as matrix of dimension T tr × D. For testing, we have a
sequence X of length T . We denoted as Xi ∈ IRD the ith
sample of sequence X .

2.1. Variational Approach

We propose to cast our problem in the context of variational
framework:

min
y

Nf∑
i=1

λiJi(y, X,ytr, Xtr) (3)

with each functional Ji is balanced by λi ∈ IR+.
Typically in clustering, a criterion that maximizes the

similarity of the samples in each class is generally used. A
valid functional, in this case, is the sum for every sample of
the distance intra-classes. But if we want to integrate a prior
knowledge, a second functional corresponding to this infor-
mation should be added. The arguments given to a func-
tional depends on the criterion. For example, a supervised
learning would imply a functional using (X,Xtr,ytr), the

training and test set. Whereas a functional for a prior infor-
mation like the number of regions would use only y.

Variational methods have been used in the context of
supervised learning [8] and in image segmentation [7]. For
instance in the latter work, Rose et al. have integrated a
shape prior information with a region-based criterion. In
this work, we propose to adapt this variational approach to
sequence labeling. In the next section, we define functionals
derived from existing methods.

2.2. Labeling functional

This functional is the one corresponding to a supervised
learning criterion. For that, we need to obtain N decision
functions returning a score for a sample to be a member of
class n.

fn = arg min
f
Ln(ytr, f(Xtr)) + λΩ(f) (4)

with Ln a loss function for class n and Ω a regularization
term. In this work, we propose to use the following general
form for the labeling functional:

Jclass(y, X) = −
T∑

i=1

fyi
(Xi) (5)

By minimizing this functional, we choose for each sample
the class with the maximum score:

min
y
Jclass(y, X) ≡ max

y

T∑
i=1

fyi(Xi)

≡
T∑

i=1

max
yi

fyi(Xi)

(6)

That corresponds to a Winner-Takes-All strategy: we
would choose for y classes having the maximum score for
each sample (Fig. 1). We can see that any machine learning
algorithm returning a score may be used. But it seems sen-
sible to adapt this functional to specific cases, for instance
when the value returned by fn is a membership probability
to class n (fn(Xi) = P (yi = n|Xi)). If we suppose that
the samples are independent, then :

max
y

P (y|X) = max
y

T∏
i=1

P (yi|Xi)

≡ max
y

T∑
i=1

log(P (yi|Xi))

(7)

So the functional corresponding to the maximization of like-
lihood can be formulated as:

Jclassp(y, X) = −
T∑

i=1

logP (yi|(Xi)) (8)
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Fig. 1. Score returned by fn functions over time. The bot-
tom plot shows the estimated class obtained by WTA strat-
egy (black is label 2 and white is label 1)

We defined two functionals corresponding to a super-
vised classification criterion. If used alone, these function-
als boils down to usual supervised machine learning ap-
proach. But as we can see in Figure 1, if the score is noisy
over time there are misclassified samples. Next, we propose
new functionals that can be seen as regularizing terms that
may smooth the sequence.

2.3. Change detection functional

In machine learning community, several methods to detect
class changes along time have been proposed. For instance
Desobry et al [9] introduced the kernel change detection
(KCD) method. If we have information concerning label
changes along time, we should use it in the sequence la-
beling process. So we propose a functional that takes into
account this kind of information.

First we define fc a function returning a change detec-
tion score over time. An example of a returned change score
over time is showed in Figure 2. We consider only the class
changes in the segmentation. So we define a function, edge
that returns a list of the indexes of the changes for a given
y:

Lc = edge(y) = {i : |yi+1 − yi| 6= 0} ∈ INNc (9)

whereLc is the list of changes andNc the number of changes.
We propose a functional that maximizes the changes posi-
tion precision:

Jedge(y, X) = − 1
Nc

∑
i∈Lc

fc(Xi),

with Lc = edge(y) ∈ INNc .

(10)

Minimizing this functional move the borders of the regions
to positions with the highest change score. Note that the
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Fig. 2. Example of score returned by a change detection
algorithm over the time. The bottom plot show how the
label of the signal samples are structured. White and black
regions respectively correspond to samples of class 1 and
2. The upper plot depicts the evolution of the score. We
can note that the score becomes larger around regions where
sample labels change.

functional is divided by the number of changes because oth-
erwise a trivial solution would be to have a change for each
samples if fc > 0.

2.4. Prior information functionals

Now, we propose to define new functionals corresponding
to a prior information criterion. These functionals are im-
portant as they force the solution to have some properties,
for instance in sequence labeling, we may suppose that sig-
nal segments of same label have a minimal length.

Total variation functional

When we know that the solution has large regions, it may
be useful to limit the number of change by minimizing this
functional:

JTV (y) =
T−1∑
i=1

‖yi+1 − yi‖0 (11)

where ||.||0 is the `0 norm.This functional has been widely
used in signal processing and image processing community
and is called Total Variation (TV).

Markov Model functional

The second prior information that we propose is one based
on transition probabilities between classes. If we use a Markov
Model to describe classes changes, the model is defined by
a transition matrix M :

M(c1, c2) = P (yi = c2|yi−1 = c1) (12)



ThisM matrix can be either estimated using the training
set or defined by a user having an prior knowledge about the
segmented process.

The functional corresponding to a Markov Model with
a transition matrix M is:

JMM (y,M) = −
T−1∑
k=1

logP (yk+1|yk)

= −
K−1∑
k=1

logM(yk,yk+1)

(13)

This functional enables to have an a priori concerning the
proportion of each class in the final segmentation and in the
sequence of classes.

2.5. Hidden Markov Models

In this section, we discuss the link between our framework
and the existing signal segmentation method known as Nor-
mal HMM. HMM are based on the maximization of the
probability of having a given sequence knowing an obser-
vation. So, if we want to put the HMM framework in our
variational one, we have to minimize the functional:

JHMM (y, X) = −P (y|X) (14)

which is equivalent to:

J ′HMM = − logP (y|X)

= − log

(
T∏

i=1

P (yi|Xi)
T∏

i=2

P (yi|yi−1)

)

= −
T∑

i=1

logP (yi|Xi)−
T−1∑
i=1

logM(yi,yi+1)

= Jclassp(y, X) + JMM (y,M)
(15)

where M is the transition matrix of the HMM.
The HMM is a special case of our framework as it cor-

responds to the minimization of the sum of two functionals
defined section 2. This method known for its efficiency in
sequence labeling uses two functionals: the first one is the
data term and the second one is the regularization term. But
using HMM implies λs coefficients to be equal and do not
permit the user to balance between data precision and model
precision.

For the HMM continuous case (Normal HMM[1]), the
observations X have been generated by a known mixture
of Gaussian depending on the hidden state. The algorithm
used to obtain the HMM model is the EM algorithm and
the Viterbi algorithm is used to obtain the most probable
sequence.

HMM does not provide easy integration of prior infor-
mation. In our variational framework, one can easily add
prior information to HMM functionals to improve the re-
sult. For instance Jedge may improve the result as it force
the transitions to be on the detected label change.

3. ALGORITHM

Current existing methods for sequence labeling are provided
with efficient ad hoc algorithms. But these algorithms can
not be used for any sum of functionals. In this context,
we propose to use an algorithm based on a commonly used
method in image processing: Region Growing. This algo-
rithm is iterative, first an initial sequence is set, then the
borders of the regions will be moved depending on a crite-
rion.

Algorithm 1 Variational Sequence Labeling Algorithm
(VSLA)

Initialization of y0

for i = 1, 2, · · · do
Lc = edge(yi−1){Edge moving loop}
for j ∈ Lc do

y+ = yi−1; y+
j = yi−1

j−1

y− = yi−1; y−j = yi−1
j+1

∆J+ = J(y+)− J(yi−1)
∆J− = J(y−)− J(yi−1)
c = arg min[∆J− 0 ∆J+]
V = [y− 0 y+]
yi = V (:, c)

end for
Lr = region(yi){Region changing loop}
for j = 1 . . . |Lr| do

I= indexes or region Lr(k)
for k = 1 . . . N do

y∗ = yi; y∗I = k
∆Jk = J(y∗)− J(yi)

end for
c = arg min ∆J
yi

I = c
end for
if stopping criterion then

break
end if

end for
with region a function returning the list of all regions for
a given segmentation.

Our algorithm (Algo. 1), is iterative and two steps will
be performed at each iteration. First, every edge in the cur-
rent y will be tested and moved depending on the varia-
tion of J(y). This step corresponds to the classical Region
Growing Algorithm. Then every region of the current y will



be called into question and their class will be changed de-
pending on the variation of J(y). This step was added in
order to speed up the sequence labeling process. Note that
the calculation of J(y) is in fact never done. For each bor-
der movement only the variation ∆J is processed. Simple
algebras show that ∆J may be found in a computationally
efficient way. For instance the variation of Jclass for chang-
ing the class of the ith sample from c1 to c2 is:

∆Jclass(X, i, c1, c2) = fc1(Xi)− fc2(Xi) (16)

In the same way, an efficient variation for a complete region
changing may be found.

The number of iteration before convergence is strongly
dependent on the initialization. Then, we have to initialize
our sequence at a value near from the optimum. In order
to obtain an initialization y near the optimum, we solve a
simpler version of our sum of functionals. For instance the
initialization is the optimum y so that Jclass is minimized,
which is just an element-wise minimization.

4. RESULTS

4.1. Toy dataset

We built a toy problem based on a 1D nonlinear multi-class
switching mean. For each class two values are equally prob-
able possible and the classes are changing over time. A
Gaussian noise is then added to this generated signal. Fig-
ure 3 shows an example of a 3 classes toy dataset and his
estimated normal densities (p(x|l)).
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Fig. 3. Toy Dataset Example for 3 classes: each class can be
of 2 values and their estimated(EM) class-conditional densi-
ties are shown on the right. Below, the class corresponding
to the signal can be seen

A training set of 2000 points, a validation set of 2000
points and a test sets of 4000 points were generated. A val-

idation method was used to choose the values of the λi co-
efficients (brute force).

We used several classification methods to obtain scores:
SVM multi-class classifier, Mixture of Gaussian Classifier
(MG) and Kernel Ridge Regression (KRR). For each method,
we considered the Jclass functional alone and with other
functionals. We measured the accuracy of the segmentation
on the test set for 10 generated datasets and the averaged
results can be seen in Table 1.

Fusing scores obtained from different classification meth-
ods (SVM+MG+KRR) does not improve the result in this
case. The problem is one-dimensional and simple enough
to obtain robust classifiers from many methods. Hence, all
classifiers give similar scores and do not provide enough di-
versity.

SVM MG
Jclass +Jedge Jclassp +Jedge

∅ 0.7111 0.7174 0.7393 0.7400
+JTV 0.8677 0.8741 0.9311 0.9289
+JMM 0.8138 0.8104 0.9005 0.9002

KRR
Jclass +Jedge

∅ 0.7343 0.7480
+JTV 0.9155 0.9189
+JMM 0.8775 0.8844

Table 1. Results for the Toy Dataset

We can see that surprisingly, with our algorithm, the
Markov Model functional does not have results as good as
the Total Variation one. It comes from the fact that the toy
example does not have a strong prior concerning label tran-
sition. Moreover Jedge functional does not always bring a
better accuracy to the global solution.

4.2. BCI dataset

We used the Dataset from BCI Competition III provided by
J. del R Millãn[10] to test our method. The problem was to
determine the mental state of a subject along time. Three
mental state were possible: subject thinking about his left
hand, his right hand and his foot.

The features proposed in the competition are the Power
Spectral Density of the EEG electrodes. And the best re-
sult were obtained by Linear Discrimination. To test our
approach we used the given features without preprocessing
and the classification method was a linear regression with
canal selection[11].

We have 3 sessions for the training and 1 session for the
test. The third training session was used as validation set to
obtain the best values of the λi parameters.



Functionals Subject 1 Subject 2 Subject 3
Jclass 0.7392 0.6262 0.4931

. . . +JTV 0.9843 0.8531 0.5932
. . . +JMM 0.9783 0.7955 0.4455

BCI III Res. 0.9598 0.7949 0.6743

Table 2. Results for the BCI Dataset

Results obtained can be seen on Table 2. Depending on
the subject we obtain better accuracy than the best competi-
tion result. In fact, we see clearly in this application that the
final result strongly depends on efficiency of the classifica-
tion. The best example is the subject 3 because its accuracy
using only Jclass is only 49% which is not far from the clas-
sification made by chance (33%), we couldn’t improve the
results on this subject because the original classification was
not good enough.

Matlab code corresponding to these results will be pro-
vided on our website.

5. CONCLUSION

In this paper, we proposed a novel method for combining
several sequence labeling methods which allows us to inte-
grate to the sequence labeling problem some prior known
information. For this purpose, we expressed our problem as
a weighted multi-objective problem. Owing to this frame-
work, integrating prior information on the problem can sim-
ply be done by adding a functional to the optimization ob-
jective function. The resulting minimization problem being
difficult, we proposed an algorithm inspired from Region
Growing approach used in image segmentation.

We tested our method on several examples. The first
one is a toy dataset corresponding to the sequence label-
ing of a noisy signal. The second one is a BCI mental task
segmentation problem proposed in the BCI competition III.
Our results show that our method is promising and compet-
itive with respect to the state of the art in particular for the
BCI Dataset.

Similarly to what we have shown for the Normal HMM,
we believe that many of the currently known sequence la-
beling methods such as CRF or stuctural SVM can be ex-
pressed in a variational framework and thus can be used
within the method we proposed. Our future work will ad-
dress such a point in order to obtain new functionals bring-
ing others prior information or data information.

6. REFERENCES
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