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Domain Adaptation problem

Traditional machine learning hypothesis

I We have access to training data.

I Probability distribution of the training set and the testing are the same.

I We want to learn a classifier that generalizes to new data.

Our context

I Classification problem with data coming from different sources (domains).

I Distributions are different but related.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

I Labels only available in the source domain, and classification is conducted in the
target domain.

I Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes [Sugiyama et al., 2008]

I Distribution change between domains.

I Reweigh samples to compensate this change.

Subspace methods

I Data is invariant in a common latent subspace.

I Minimization of a divergence between the
projected domains [Si et al., 2010].

I Use additional label information
[Long et al., 2014].

Gradual alignment

I Alignment along the geodesic between source
and target subspace
[R. Gopalan and Chellappa, 2014].

I Geodesic flow kernel [Gong et al., 2012].
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Generalization error in domain adaptation

Theoretical bounds [Ben-David et al., 2010]

The error performed by a given classifier in the target domain is upper-bounded by the
sum of three terms :

I Error of the classifier in the source domain;

I Divergence measure between the two pdfs in the two domains;

I A third term measuring how much the classification tasks are related to each
other.

Our proposal

I Model the discrepancy between the distribution through a general transformation.

I Use optimal transport to estimate the transportation map between the two
distributions.

I Use regularization terms for the optimal transport problem that exploits labels
from the source domain.
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

I There exist a transport T between the source and target domain.

I The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy

1. Estimate optimal transport between distributions.

2. Transport the training samples onto the target distribution.

3. Learn a classifier on the transported training samples.
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Optimal transport
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I Given two probability measures µs and µt on Ωs × Ωt and a cost function
c : Ωs × Ωt → R+.

I The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = arg minγ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy,

s.t.
∫

Ωt
γ(x,y)dy = µs,∫

Ωs
γ(x,y)dx = µt,

(1)

I γ can be understood as a joint probability measure with marginals µs and µt.
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Optimal transport, discrete case

I When µs ad µt are discrete histograms with
ns and nt bins.

I The optimization problem becomes

γ0 = arg min
γ∈P

〈γ,C〉F

where C is a transportation cost matrix and

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt
}

I Classical LP problem (Linear cost, linear
constraints).

I On the right optimal matrix γ0 for two
examples (black is exactly zero).

I In machine learning we often have access only
to samples !
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Optimal transport for empirical distributions

Transportation cost matric C Optimal matrix γ (LP)

Empirical distributions

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(2)

I δxi is the Dirac at location xi ∈ Rd and psi and pti are probability masses.

I
∑ns
i=1 p

s
i =

∑nt
i=1 p

t
i = 1, in this work psi = 1

ns
and pti = 1

nt
.

I Samples stored in matrices: Xs = [xs1, . . . ,x
s
ns]
> and Xt = [xt1, . . . ,x

t
nt]
>

I The cost is set to the square euclidean distance between sample positions.
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Efficient regularized optimal transport

Transportation cost matric C Optimal matrix γ (Sinkhorn)

Entropic regularization [Cuturi, 2013]

γλ0 = arg min
γ∈P

〈γ,C〉F − λh(γ), (3)

where h(γ) = −
∑
i,j γ(i, j) log γ(i, j) computes the entropy of γ.

I Entropy introduces smoothness in γλ0 .

I Sinkhorn-Knopp algorithm (efficient implementation in GPU).

I General framework using Bregman projections [Benamou et al., 2015].
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Transporting the discrete samples
Interpolation s→t for LP Interpolation s→t for Sinkhorn

Barycentric mapping [Ferradans et al., 2014]

I The mass of each source sample is spread onto the target samples (line of γ0).

I The source samples becomes a weighted sum of dirac (impractical for ML).

I We estimate the transported position for each source with:

x̂si = arg min
x

∑
j

γ0(i, j)c(x,xtj). (4)

I Position of the transported samples for :

X̂s = diag(γ01nt)
−1γ0Xt and X̂t = diag(γ>0 1ns)−1γ>0 Xs. (5)
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Regularization for domain adaptation

Optimization problem

min
γ∈P

〈γ,C〉F + λΩs(γ) + ηΩ(γ), (6)

where

I Ωs(γ) Entropic regularization [Cuturi, 2013].

I η ≥ 0 and Ωc(·) is a DA regularization term.

I Regularization to avoid overfitting in high dimension and encode additional
information.

Regularization terms for domain adaptation Ω(γ)

I Class based regularization [Courty et al., 2014] to encode the source label
information.

I Graph regularization [Ferradans et al., 2014] to promote local sample similarity
conservation.

I Semi-supervised regularization when some target samples have known labels.
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Entropic regularization
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Optimal matrix γ

Entropic regularization [Cuturi, 2013]

Ωs(γ) =
∑
i,j

γ(i, j) log γ(i, j)

I Extremely efficient optimization scheme (Sinkhorn Knopp).

I Solution is not sparse anymore due to the regularization.

I Strong regularization force the samples to concentrate on the center of mass of
the target samples.
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Class-based regularization
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Optimal matrix γ

Group lasso regularization

I We group components of γ using classes from the source domain:

Ωc(γ) =
∑
j

∑
c

||γ(Ic, j)||pq , (7)

I Ic contains the indices of the lines related to samples of the class c in the source
domain.

I || · ||pq denotes the `q norm to the power of p.

I For p ≤ 1, we encourage a target domain sample j to receive masses only from
“same class” source samples.
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Laplacian regularization for sample displacement
Sim. graph with S si,j>0 Small λ Large λ

Graph regularization for the sample displacement

I Proposed in [Ferradans et al., 2014] for color transfer in images.

I x̂si − xsi is the displacement of source sample xsi during transport.

I We want similar samples defined in Ss to have similar displacements:

Ω(γ) =
1

N2
s

∑
i,j

Ssi,j‖(x̂si − xsi )− (x̂sj − xsj)‖2

I Similarity graph Ss is pruned using the classes in the source domain.

I Quadratic regularization term with possible regularization of the transported
target samples (St).
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Semi-supervised domain adaptation

Principle

I A few target samples have a known label.

I How to include this information in the OT problem?

Semi-supervised learning [Rousselle and Canu, 2015]

I Learn a regularized OT matrix.

I Prune the matrix components according to the known classes.

Our proposal: Semi supervised transport

I Regularize (again?) the OT matrix during its estimation.

I Forbid inter-class mass transfer.

I Regularization term: Ωss(γ) = 〈γ,M〉F
I Mij = +∞ whenever ysi 6= ytj and Mij = 0 otherwise (same or unknown label).

I Boils down to modifying the cost matrix C.
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Optimization problem

min
γ∈P

〈γ,C〉F + λΩs(γ) + ηΩ(γ),

Special cases

I η = 0: Sinkhorn Knopp [Cuturi, 2013].

I λ = 0 and Laplacian regularization: Large quadratic program solved with
conditionnal gradient [Ferradans et al., 2014].

I Non convex group lasso `p − `1: Majoration Minimization with Sinkhorn Knopp
[Courty et al., 2014].

General framework with convex regularization Ω(γ)

I Can we use efficient Sinkhorn Knopp scaling to solve the global problem?

I Yes using generalized conditional gradient [Bredies et al., 2009].

I Linearization of the second regularization term but not the entropic regularization.
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Generalized conditionnal gradient

I Proposed in [Bredies et al., 2009].

I Composite minimization:

min
γ∈P

f(γ) + g(γ),

where f(·) is differentiable, possibly
non-convex, g(·) convex, possibly
non-differentiable.

I Application to optimal transport:

f(γ) = 〈γ,C〉F + ηΩc(γ)

g(γ) = λΩs(γ)

I Step 3 in Algorithm becomes

γ? = arg min
γ∈P

〈
γ,C + η∇Ωc(γ

k)
〉
F

+λΩs(γ)

Entropic regularized OT with efficient
solver.

Algorithm

1: Initialize k = 0 and γ0 ∈ P
2: repeat
3: With G ∈ ∇f(γk), solve

γ? = arg min
γ∈P

〈γ,G〉F + g(γ)

4: Find the optimal step αk

αk = arg min
0≤α≤1

f(γk+α∆γ)+g(γk+α∆γ)

with ∆γ = γ∗ − γk

5: γk+1 ← γk + αk∆γ, set k ← k + 1
6: until Convergence
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Computationnal performance
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Comparison between CG and Generalized CG

I Experiments with Group Lasso regularization (200 samples in source and target).

I CG used Mosek for solving Linear Program.

I Objective value as a function of iterations and computational time.
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Simulated problem with controllable complexity

Two moons problem [Germain et al., 2013]

I Two entangled moons with a rotation
between domains.

I The rotation angle allow a control of
the adaptation difficulty.

I Comparison with Domain Adaptation
SVM[Bruzzone and Marconcini, 2010]
and [Germain et al., 2013].

OT domain adaptation:

I OT-exact non-regularized OT.

I OT-IT Entropic reg.

I OT-GL Group-lasso + entropic reg.

I OT-Lap Laplacian + entropic reg.
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Results on the two moons dataset

10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM 0 0 0.259 0.284 0.334 0.747 0.820
PBDA 0 0.094 0.103 0.225 0.412 0.626 0.687

OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507
OT-IT 0 0.007 0.054 0.102 0.221 0.398 0.508
OT-GL 0 0 0 0.013 0.196 0.378 0.508
OT-Lap 0 0 0.004 0.062 0.201 0.402 0.524

Discussion

I Average prediction error for adaptation from 10◦ to 90◦.

I Clear advantage of the optimal transport techniques.

I Regularization helps (a lot) up to 40◦.

I 90◦ is the theoretical limit (positive definite Jacobian of the transformation).
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Visual adaptation datasets

Datasets
I Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

I Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

I Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

I Comparison with state of the art on the 3 datasets.

I Comparison on object recognition with deep invariant features.

I Semi supervised extension.
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Experimental setup

Compared methods

I 1NN, original classifier without adaptation

I PCA, projection on the first principal components of the joint source/target
distribution (estimated from a concatenation of source and target samples);

I GFK, Geodesic Flow Kernel [Gong et al., 2012];

I TSL, Transfer Subspace Learning [Si et al., 2010], minimizing the Bregman
divergence between the domains embedded in lower dimensional spaces;

I JDA, Joint Distribution Adaptation [Long et al., 2013].

Parameter validation

I In unsupervised DA, no target labels are available.

I For fair comparison, parameters validated on a validation target set.

I Performance estimated with the validated parameters on an independent test set
in the target domain.

I Average recognition accuracy on 10 validation/test splits.
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Comparison on vision datasets

Datasets Digits Faces Objects
Methods ACC Nb best ACC Nb best ACC Nb best

1NN 48.66 0 26.22 0 28.47 0
PCA 42.94 0 34.55 0 37.98 0
GFK 52.56 0 26.15 0 39.21 0
TSL 47.22 0 36.10 0 42.97 1
JDA 57.30 0 56.69 7 44.34 1

OT-exact 49.96 0 50.47 0 36.69 0
OT-IT 59.20 0 54.89 0 42.30 0

OT-Lap 61.07 0 56.10 3 43.20 0
OT-LpLq 64.11 1 55.45 0 46.42 1
OT-GL 63.90 1 55.88 2 47.70 9

Discussion

I We report mean accuracy (ACC) and the number of time the method have been
the best among all possible adaptation pairs.

I OT works very well on digits and object recognition (+7% and +3% wrt JDA).

I Good but not best on face recognition (-.5% wrt JDA).
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Deep achitecture features on Caltech-Office

Layer 6 Layer 7

Domains DeCAF JDA OT-IT OT-GL DeCAF JDA OT-IT OT-GL

C→A 79.25 88.04 88.69 92.08 85.27 89.63 91.56 92.15
C→W 48.61 79.60 75.17 84.17 65.23 79.80 82.19 83.84
C→D 62.75 84.12 83.38 87.25 75.38 85.00 85.00 85.38
A→C 64.66 81.28 81.65 85.51 72.80 82.59 84.22 87.16
A→W 51.39 80.33 78.94 83.05 63.64 83.05 81.52 84.50
A→D 60.38 86.25 85.88 85.00 75.25 85.50 86.62 85.25
W→C 58.17 81.97 74.80 81.45 69.17 79.84 81.74 83.71
W→A 61.15 90.19 80.96 90.62 72.96 90.94 88.31 91.98
W→D 97.50 98.88 95.62 96.25 98.50 98.88 98.38 91.38
D→C 52.13 81.13 77.71 84.11 65.23 81.21 82.02 84.93
D→A 60.71 91.31 87.15 92.31 75.46 91.92 92.15 92.92
D→W 85.70 97.48 93.77 96.29 92.25 97.02 96.62 94.17
mean 65.20 86.72 83.64 88.18 75.93 87.11 87.53 88.11

Discussion

I Invariant features provided by a deep learning architecture [Donahue et al., 2014].

I Comparison with features obtained on different layers.

I Important gain when using OT in addition to invariant features.
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Semi-supervised domain adaptation

Unsupervised + labels Semi-supervised

Domains OT-IT OT-GL OT-IT OT-GL MMDT

C→A 37.0 ± 0.5 41.4 ± 0.5 46.9 ± 3.4 47.9 ± 3.1 49.4 ± 0.8
C→W 28.5 ± 0.7 37.4 ± 1.1 64.8 ± 3.0 65.0 ± 3.1 63.8 ± 1.1
C→D 35.1 ± 1.7 44.0 ± 1.9 59.3 ± 2.5 61.0 ± 2.1 56.5 ± 0.9
A→C 32.3 ± 0.1 36.7 ± 0.2 36.0 ± 1.3 37.1 ± 1.1 36.4 ± 0.8
A→W 29.5 ± 0.8 37.8 ± 1.1 63.7 ± 2.4 64.6 ± 1.9 64.6 ± 1.2
A→D 36.9 ± 1.5 46.2 ± 2.0 57.6 ± 2.5 59.1 ± 2.3 56.7 ± 1.3
W→C 35.8 ± 0.2 36.5 ± 0.2 38.4 ± 1.5 38.8 ± 1.2 32.2 ± 0.8
W→A 39.6 ± 0.3 41.9 ± 0.4 47.2 ± 2.5 47.3 ± 2.5 47.7± 0.9
W→D 77.1 ± 1.8 80.2 ± 1.6 79.0 ± 2.8 79.4 ± 2.8 67.0 ± 1.1
D→C 32.7 ± 0.3 34.7 ± 0.3 35.5 ± 2.1 36.8 ± 1.5 34.1 ± 1.5
D→A 34.7 ± 0.3 37.7 ± 0.3 45.8 ± 2.6 46.3 ± 2.5 46.9 ± 1.0
D→W 81.9 ± 0.6 84.5 ± 0.4 83.9 ± 1.4 84.0 ± 1.5 74.1 ± 0.8
mean 41.8 46.6 54.8 55.6 52.5

Discussion

I Some target samples have a known label (3 labels per class).

I We compare with unsupervised adaptation where the known labels are used in the
classifier training.

I In semi-supervised case we use the modified metric matrix.

I Competitive when compared to state of the art [Hoffman et al., 2013].
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ConclusionDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Optimal transport for domain adaptation

I General framework for adapting between domains (transport the samples).

I Can handle very complex transformation between domains.

I Works very well but needs regularization (class based).

I Deep learning friendly + semi-supervised version.

Current and future works

I Extension to multi-domain/multi-task learning.

I What about domains with different class proportion ? [Tuia et al., 2015].

I What about the cost matrix C ? Can we do better than euclidean?

I Theoretical generalization bounds?
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Collaborators

Barycenters
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Collaborators

Barycenters
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Thank you

Code available on the following web site:
http://remi.flamary.com/soft/soft-transp.html

Paper available on ArXiv
http://arxiv.org/abs/1507.00504
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Regularized discrete optimal transport.

SIAM Journal on Imaging Sciences, 7(3).

Germain, P., Habrard, A., Laviolette, F., and Morvant, E. (2013).

A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear
Classifiers.

In ICML, pages 738–746, Atlanta, USA.

Gong, B., Shi, Y., Sha, F., and Grauman, K. (2012).

Geodesic flow kernel for unsupervised domain adaptation.

In CVPR, pages 2066–2073. IEEE.

33 / 31



References III

Hoffman, J., Rodner, E., Donahue, J., Saenko, K., and Darrell, T. (2013).

Efficient learning of domain-invariant image representations.

In International Conference on Learning Representations.

Kantorovich, L. (1942).

On the translocation of masses.

C.R. (Doklady) Acad. Sci. URSS (N.S.), 37:199–201.

Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. (2013).

Transfer feature learning with joint distribution adaptation.

In ICCV, pages 2200–2207.

Long, M., Wang, J., Ding, G., Sun, J., and Yu, P. (2014).

Transfer joint matching for unsupervised domain adaptation.

In CVPR, pages 1410–1417.

R. Gopalan, R. L. and Chellappa, R. (2014).

Unsupervised adaptation across domain shifts by generating intermediate data
representations.

IEEE Trans. Pattern Analysis and Machine Intelligence, page To be published.

34 / 31



References IV

Rousselle, D. and Canu, S. (2015).

Optimal transport for semi-supervised domain adaptation.

In ESANN.

Si, S., Tao, D., and Geng, B. (2010).

Bregman divergence-based regularization for transfer subspace learning.

IEEE Trans. Knowledge Data Eng., 22(7):929–942.

Sugiyama, M., Nakajima, S., Kashima, H., Buenau, P. V., and Kawanabe, M. (2008).

Direct importance estimation with model selection and its application to covariate shift
adaptation.

In Advances in neural information processing systems, pages 1433–1440.

Tuia, D., Flamary, R., Rakotomamonjy, A., and Courty, N. (2015).

Multitemporal classification without new labels: a solution with optimal transport.

In 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images.

35 / 31


	Domain adaptation
	Short state of the art
	Domain adaptation with optimal transport

	Optimal transport
	Introduction to OT
	Regularized optimal transport
	Transporting the discrete samples

	Optimal transport for domain adaptation
	Regularization for domain adaptation
	Optimization algorithm

	Numerical experiments
	Simulated dataset
	Visual adaptation dataset
	Visual adaptation with deep architectures
	Semi-supervised visual adaptation

	Conclusion

