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Domain Adaptation problem

Traditional machine learning hypothesis

I We have access to training data.

I Probability distribution of the training set and the testing are the same.

I We want to learn a classifier that generalizes to new data.

Our context

I Classification problem with data coming from different sources (domains).

I Distributions are different but related.

3 / 31



Domain Adaptation problem

Traditional machine learning hypothesis

I We have access to training data.

I Probability distribution of the training set and the testing are the same.

I We want to learn a classifier that generalizes to new data.

Our context

I Classification problem with data coming from different sources (domains).

I Distributions are different but related.

3 / 31



Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

I Labels only available in the source domain, and classification is conducted in the
target domain.

I Classifier trained on the source domain data performs badly in the target domain
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Domain adaptation short state of the art

Reweighting schemes [Sugiyama et al., 2008]

I Distribution change between domains.

I Reweigh samples to compensate this change.

Subspace methods

I Data is invariant in a common latent subspace.

I Minimization of a divergence between the
projected domains [Si et al., 2010].

I Use additional label information
[Long et al., 2014].

Gradual alignment

I Alignment along the geodesic between source
and target subspace
[R. Gopalan and Chellappa, 2014].

I Geodesic flow kernel [Gong et al., 2012].
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Generalization error in domain adaptation

Theoretical bounds [Ben-David et al., 2010]

The error performed by a given classifier in the target domain is upper-bounded by the
sum of three terms :

I Error of the classifier in the source domain;

I Divergence measure between the two pdfs in the two domains;

I A third term measuring how much the classification tasks are related to each
other.

Our proposal

I Model the discrepancy between the distribution through a general transformation.

I Use optimal transport to estimate the transportation map between the two
distributions.

I Use regularization terms for the optimal transport problem that exploits labels
from the source domain.
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

I There exist a transport T between the source and target domain.

I The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy

1. Estimate optimal transport between distributions.

2. Transport the training samples onto the target distribution.

3. Learn a classifier on the transported training samples.
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Optimal transport
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I Given two probability measures µs and µt on Ωs × Ωt and a cost function
c : Ωs × Ωt → R+.

I The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = arg minγ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy,

s.t.
∫

Ωt
γ(x,y)dy = µs,∫

Ωs
γ(x,y)dx = µt,

(1)

I γ can be understood as a joint probability measure with marginals µs and µt.
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Optimal transport, discrete case

I When µs ad µt are discrete histograms with
ns and nt bins.

I The optimization problem becomes

γ0 = arg min
γ∈P

〈γ,C〉F

where C is a transportation cost matrix and

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt
}

I Classical LP problem (Linear cost, linear
constraints).

I On the right optimal matrix γ0 for two
examples (black is exactly zero).

I In machine learning we often have access only
to samples !
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Optimal transport for empirical distributions

Transportation cost matric C Optimal matrix γ (LP)

Empirical distributions

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(2)

I δxi is the Dirac at location xi ∈ Rd and psi and pti are probability masses.

I
∑ns
i=1 p

s
i =

∑nt
i=1 p

t
i = 1, in this work psi = 1

ns
and pti = 1

nt
.

I Samples stored in matrices: Xs = [xs1, . . . ,x
s
ns]
> and Xt = [xt1, . . . ,x

t
nt]
>

I The cost is set to the square euclidean distance between sample positions.
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Efficient regularized optimal transport

Transportation cost matric C Optimal matrix γ (Sinkhorn)

Entropic regularization [Cuturi, 2013]

γλ0 = arg min
γ∈P

〈γ,C〉F − λh(γ), (3)

where h(γ) = −
∑
i,j γ(i, j) log γ(i, j) computes the entropy of γ.

I Entropy introduces smoothness in γλ0 .

I Sinkhorn-Knopp algorithm (efficient implementation in GPU).

I General framework using Bregman projections [Benamou et al., 2015].

12 / 31



Transporting the discrete samples
Interpolation s→t for LP Interpolation s→t for Sinkhorn

Barycentric mapping [Ferradans et al., 2014]

I The mass of each source sample is spread onto the target samples (line of γ0).

I The source samples becomes a weighted sum of dirac (impractical for ML).

I We estimate the transported position for each source with:

x̂si = arg min
x

∑
j

γ0(i, j)c(x,xtj). (4)

I Position of the transported samples for :

X̂s = diag(γ01nt)
−1γ0Xt and X̂t = diag(γ>0 1ns)−1γ>0 Xs. (5)
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Regularization for domain adaptation

Optimization problem

min
γ∈P

〈γ,C〉F + λΩs(γ) + ηΩ(γ), (6)

where

I Ωs(γ) Entropic regularization [Cuturi, 2013].

I η ≥ 0 and Ωc(·) is a DA regularization term.

I Regularization to avoid overfitting in high dimension and encode additional
information.

Regularization terms for domain adaptation Ω(γ)

I Class based regularization [Courty et al., 2014] to encode the source label
information.

I Graph regularization [Ferradans et al., 2014] to promote local sample similarity
conservation.

I Semi-supervised regularization when some target samples have known labels.
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Entropic regularization
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Optimal matrix γ

Entropic regularization [Cuturi, 2013]

Ωs(γ) =
∑
i,j

γ(i, j) log γ(i, j)

I Extremely efficient optimization scheme (Sinkhorn Knopp).

I Solution is not sparse anymore due to the regularization.

I Strong regularization force the samples to concentrate on the center of mass of
the target samples.
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Class-based regularization
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Optimal matrix γ

Group lasso regularization

I We group components of γ using classes from the source domain:

Ωc(γ) =
∑
j

∑
c

||γ(Ic, j)||pq , (7)

I Ic contains the indices of the lines related to samples of the class c in the source
domain.

I || · ||pq denotes the `q norm to the power of p.

I For p ≤ 1, we encourage a target domain sample j to receive masses only from
“same class” source samples.
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Laplacian regularization for sample displacement
Sim. graph with S si,j>0 Small λ Large λ

Graph regularization for the sample displacement

I Proposed in [Ferradans et al., 2014] for color transfer in images.

I x̂si − xsi is the displacement of source sample xsi during transport.

I We want similar samples defined in Ss to have similar displacements:

Ω(γ) =
1

N2
s

∑
i,j

Ssi,j‖(x̂si − xsi )− (x̂sj − xsj)‖2

I Similarity graph Ss is pruned using the classes in the source domain.

I Quadratic regularization term with possible regularization of the transported
target samples (St).
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Semi-supervised domain adaptation

Principle

I A few target samples have a known label.

I How to include this information in the OT problem?

Semi-supervised learning [Rousselle and Canu, 2015]

I Learn a regularized OT matrix.

I Prune the matrix components according to the known classes.

Our proposal: Semi supervised transport

I Regularize (again?) the OT matrix during its estimation.

I Forbid inter-class mass transfer.

I Regularization term: Ωss(γ) = 〈γ,M〉F
I Mij = +∞ whenever ysi 6= ytj and Mij = 0 otherwise (same or unknown label).

I Boils down to modifying the cost matrix C.
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Optimization problem

min
γ∈P

〈γ,C〉F + λΩs(γ) + ηΩ(γ),

Special cases

I η = 0: Sinkhorn Knopp [Cuturi, 2013].

I λ = 0 and Laplacian regularization: Large quadratic program solved with
conditionnal gradient [Ferradans et al., 2014].

I Non convex group lasso `p − `1: Majoration Minimization with Sinkhorn Knopp
[Courty et al., 2014].

General framework with convex regularization Ω(γ)

I Can we use efficient Sinkhorn Knopp scaling to solve the global problem?

I Yes using generalized conditional gradient [Bredies et al., 2009].

I Linearization of the second regularization term but not the entropic regularization.
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Generalized conditionnal gradient

I Proposed in [Bredies et al., 2009].

I Composite minimization:

min
γ∈P

f(γ) + g(γ),

where f(·) is differentiable, possibly
non-convex, g(·) convex, possibly
non-differentiable.

I Application to optimal transport:

f(γ) = 〈γ,C〉F + ηΩc(γ)

g(γ) = λΩs(γ)

I Step 3 in Algorithm becomes

γ? = arg min
γ∈P

〈
γ,C + η∇Ωc(γ

k)
〉
F

+λΩs(γ)

Entropic regularized OT with efficient
solver.

Algorithm

1: Initialize k = 0 and γ0 ∈ P
2: repeat
3: With G ∈ ∇f(γk), solve

γ? = arg min
γ∈P

〈γ,G〉F + g(γ)

4: Find the optimal step αk

αk = arg min
0≤α≤1

f(γk+α∆γ)+g(γk+α∆γ)

with ∆γ = γ∗ − γk

5: γk+1 ← γk + αk∆γ, set k ← k + 1
6: until Convergence
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Computationnal performance
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Comparison between CG and Generalized CG

I Experiments with Group Lasso regularization (200 samples in source and target).

I CG used Mosek for solving Linear Program.

I Objective value as a function of iterations and computational time.
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Simulated problem with controllable complexity

Two moons problem [Germain et al., 2013]

I Two entangled moons with a rotation
between domains.

I The rotation angle allow a control of
the adaptation difficulty.

I Comparison with Domain Adaptation
SVM[Bruzzone and Marconcini, 2010]
and [Germain et al., 2013].

OT domain adaptation:

I OT-exact non-regularized OT.

I OT-IT Entropic reg.

I OT-GL Group-lasso + entropic reg.

I OT-Lap Laplacian + entropic reg.
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Results on the two moons dataset

10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM 0 0 0.259 0.284 0.334 0.747 0.820
PBDA 0 0.094 0.103 0.225 0.412 0.626 0.687

OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507
OT-IT 0 0.007 0.054 0.102 0.221 0.398 0.508
OT-GL 0 0 0 0.013 0.196 0.378 0.508
OT-Lap 0 0 0.004 0.062 0.201 0.402 0.524

Discussion

I Average prediction error for adaptation from 10◦ to 90◦.

I Clear advantage of the optimal transport techniques.

I Regularization helps (a lot) up to 40◦.

I 90◦ is the theoretical limit (positive definite Jacobian of the transformation).
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Visual adaptation datasets

Datasets
I Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

I Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

I Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

I Comparison with state of the art on the 3 datasets.

I Comparison on object recognition with deep invariant features.

I Semi supervised extension.
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Experimental setup

Compared methods

I 1NN, original classifier without adaptation

I PCA, projection on the first principal components of the joint source/target
distribution (estimated from a concatenation of source and target samples);

I GFK, Geodesic Flow Kernel [Gong et al., 2012];

I TSL, Transfer Subspace Learning [Si et al., 2010], minimizing the Bregman
divergence between the domains embedded in lower dimensional spaces;

I JDA, Joint Distribution Adaptation [Long et al., 2013].

Parameter validation

I In unsupervised DA, no target labels are available.

I For fair comparison, parameters validated on a validation target set.

I Performance estimated with the validated parameters on an independent test set
in the target domain.

I Average recognition accuracy on 10 validation/test splits.
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Comparison on vision datasets

Datasets Digits Faces Objects
Methods ACC Nb best ACC Nb best ACC Nb best

1NN 48.66 0 26.22 0 28.47 0
PCA 42.94 0 34.55 0 37.98 0
GFK 52.56 0 26.15 0 39.21 0
TSL 47.22 0 36.10 0 42.97 1
JDA 57.30 0 56.69 7 44.34 1

OT-exact 49.96 0 50.47 0 36.69 0
OT-IT 59.20 0 54.89 0 42.30 0

OT-Lap 61.07 0 56.10 3 43.20 0
OT-LpLq 64.11 1 55.45 0 46.42 1
OT-GL 63.90 1 55.88 2 47.70 9

Discussion

I We report mean accuracy (ACC) and the number of time the method have been
the best among all possible adaptation pairs.

I OT works very well on digits and object recognition (+7% and +3% wrt JDA).

I Good but not best on face recognition (-.5% wrt JDA).
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Deep achitecture features on Caltech-Office

Layer 6 Layer 7

Domains DeCAF JDA OT-IT OT-GL DeCAF JDA OT-IT OT-GL

C→A 79.25 88.04 88.69 92.08 85.27 89.63 91.56 92.15
C→W 48.61 79.60 75.17 84.17 65.23 79.80 82.19 83.84
C→D 62.75 84.12 83.38 87.25 75.38 85.00 85.00 85.38
A→C 64.66 81.28 81.65 85.51 72.80 82.59 84.22 87.16
A→W 51.39 80.33 78.94 83.05 63.64 83.05 81.52 84.50
A→D 60.38 86.25 85.88 85.00 75.25 85.50 86.62 85.25
W→C 58.17 81.97 74.80 81.45 69.17 79.84 81.74 83.71
W→A 61.15 90.19 80.96 90.62 72.96 90.94 88.31 91.98
W→D 97.50 98.88 95.62 96.25 98.50 98.88 98.38 91.38
D→C 52.13 81.13 77.71 84.11 65.23 81.21 82.02 84.93
D→A 60.71 91.31 87.15 92.31 75.46 91.92 92.15 92.92
D→W 85.70 97.48 93.77 96.29 92.25 97.02 96.62 94.17
mean 65.20 86.72 83.64 88.18 75.93 87.11 87.53 88.11

Discussion

I Invariant features provided by a deep learning architecture [Donahue et al., 2014].

I Comparison with features obtained on different layers.

I Important gain when using OT in addition to invariant features.
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Semi-supervised domain adaptation

Unsupervised + labels Semi-supervised

Domains OT-IT OT-GL OT-IT OT-GL MMDT

C→A 37.0 ± 0.5 41.4 ± 0.5 46.9 ± 3.4 47.9 ± 3.1 49.4 ± 0.8
C→W 28.5 ± 0.7 37.4 ± 1.1 64.8 ± 3.0 65.0 ± 3.1 63.8 ± 1.1
C→D 35.1 ± 1.7 44.0 ± 1.9 59.3 ± 2.5 61.0 ± 2.1 56.5 ± 0.9
A→C 32.3 ± 0.1 36.7 ± 0.2 36.0 ± 1.3 37.1 ± 1.1 36.4 ± 0.8
A→W 29.5 ± 0.8 37.8 ± 1.1 63.7 ± 2.4 64.6 ± 1.9 64.6 ± 1.2
A→D 36.9 ± 1.5 46.2 ± 2.0 57.6 ± 2.5 59.1 ± 2.3 56.7 ± 1.3
W→C 35.8 ± 0.2 36.5 ± 0.2 38.4 ± 1.5 38.8 ± 1.2 32.2 ± 0.8
W→A 39.6 ± 0.3 41.9 ± 0.4 47.2 ± 2.5 47.3 ± 2.5 47.7± 0.9
W→D 77.1 ± 1.8 80.2 ± 1.6 79.0 ± 2.8 79.4 ± 2.8 67.0 ± 1.1
D→C 32.7 ± 0.3 34.7 ± 0.3 35.5 ± 2.1 36.8 ± 1.5 34.1 ± 1.5
D→A 34.7 ± 0.3 37.7 ± 0.3 45.8 ± 2.6 46.3 ± 2.5 46.9 ± 1.0
D→W 81.9 ± 0.6 84.5 ± 0.4 83.9 ± 1.4 84.0 ± 1.5 74.1 ± 0.8
mean 41.8 46.6 54.8 55.6 52.5

Discussion

I Some target samples have a known label (3 labels per class).

I We compare with unsupervised adaptation where the known labels are used in the
classifier training.

I In semi-supervised case we use the modified metric matrix.

I Competitive when compared to state of the art [Hoffman et al., 2013].
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ConclusionDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Optimal transport for domain adaptation

I General framework for adapting between domains (transport the samples).

I Can handle very complex transformation between domains.

I Works very well but needs regularization (class based).

I Deep learning friendly + semi-supervised version.

Current and future works

I Extension to multi-domain/multi-task learning.

I What about domains with different class proportion ? [Tuia et al., 2015].

I What about the cost matrix C ? Can we do better than euclidean?

I Theoretical generalization bounds?
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Collaborators

Barycenters
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Collaborators

Barycenters
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Thank you

Code available on the following web site:
http://remi.flamary.com/soft/soft-transp.html

Paper available on ArXiv
http://arxiv.org/abs/1507.00504
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