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Multi-task Learning

e Assume T classification tasks with T datasets D; = {(z%, y!)},
wheret =1,--- ,ny, x;, € X, y; € {—171}

e Tasks are considered similar enough or related in a certain sense

:17... 7nt

e Aim: learn the decision functions fy(x),t =1,--- ,T in a joint manner
e How to do it? Tasks share a common subset of relevant teatures

e Way to ensure this constraint? Use adequate regularization that favors joint features
sparsity pattern across tasks

e Our contributions

— Application of multi-task learning principle to SVM framework by the selection of joint
relevant kernels (multiple kernel learning coupled with multi-task learning)

— Extension to handle non-convex regularisation

SVM multi-task, multiple kernel learning
1/2
o Let | fall = (S0 1feel3e,)

. The variational formulation is

ff-r-li(]% CZt 12@6DL(ft( )yl)+2]kw1||dk”
st Yudp=1, dp,=>0 Vk

Variables dj: extra-parameters introduced to cope with the block-norm regularization.
The values of dj. stress the importance of the corresponding kernels K in the SVM
solution. d; = 0 means kernel K. discarded from the solution.

e Optimization problem

m(}n J(d) =2 Ji(d)
st Ypdp=1, dy >0 Vk (2)
with  Ji(d) = ming, CYiep, L(fi(2), yl) + >0 ||ftk|\

e The parameters d; are optimized by a projected gradient algorithm

e Knowing d, each decision function f; is retrieved from the solution of the SVM
t ottt

max —j Zm ozzoz]yzy] Sy dp K (2, xé) + 3 o

st Soiakyl = and 0<al<C Vi

SVM multi-task learning: convex problem formulation

; fT) (1)
1 — yf(x)): hinge loss function and Q( fy, - - -

C - i1 Siep, L(fi(zh), yb) + Q(f1, - -
L(y, f(z)) = max(0,

regularizer

® LN ... f;

, fr): joint sparsity

e Multiple kernel framework
Each decision function is expressed as fi(x) = Y1, fin(z) + by
/& tunction belonging to the Hilbert space Hj induced by kernel K3,

e Joint sparsity regularization

Afrr--- o fr) = S (S0 feal)

Equivalent to ¢; — ¢5 penalization (group lasso type regularization)

Convex regularization = optimization problem (1) convex

Algorithm: /; — /> sparse Multi-task learning solver

1
Set dl = M]I
forn=1,2,--- do
Solve each SVM task with kernel K = 224:1 di. Ky,
Compute the gradient g {i]k for k=1,---, M as
Vi J(d) = —5 Z D> aayiy Ky, )

tlz,]

Compute descent direction D,, and optimal step v, such that d"*' «— d" + ~,,D,, and
constraints (2) satisfied

if stopping criterion then

break
end if

end for

Handling non-convex joint sparsity regularizer

Non-convex regularization

e Instead of the ¢; —¥¢; penalty, consider a non-convex “pseudo-norm” ¢, — ¥ penalty
with p < 1

e Aim: emphasize the sparse behavior of the solution

e Proposed regularization closely related to the spirit of non-convex group lasso
algorithms that was issued from consistency results of the convex group lasso

e Non-convex regularizer: Q(f1,---, fr) = Sy 9(IIf 21
with g(u) =u?, p<1, and u>0

Remark: any other penalty function g(u) could be used as well

Proposed solution

e DC programming Principles

— Jo(0)

(Vo Jo(01), 0 — 0 until convergence
e Application: use of the decompostion g(u) = u — (u — u?)

o It leads to J; = C' )y, L(fi(ab), ) + > | f x|l and Jo = >"p(—||f-xll + |

e Applying the DC algorithm, the non-convex joint sparsity optimization
boils down to solve iteratively a reweigthed /;

— Assume the optimization problem ming J(6) = ming J;(0)

1) — argmin, J,(0) —

— Solve iteratively 6
I l[P)

problem
— {5 multi-task problem

flmijgd C'>, 2€DL(ft< ) yz)"_Z Dk ’dA

e At each iteratation, the weights are given by /3. = H f“ilp

Experimental results

Example 1: Toy problem

e T’ binary classification tasks with n samples x € R? for each task

e The classes follow gaussian distributions with means @, —p and random covariance matrix
in R" where r is the number of relevant variables. The remaining d — r variables are
generated randomly and are considered as spurious variables

k=1, ,d

e Kernels: each dimension defined a kernel K},
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Example 2: BCI dataset

e P300 Speller dataset acquired from 11 sessions
e [Lach session characterized by 400 to 950 EEG signals issued from 64 channels
e After preprocessing, 896 variables are generated

e Tasks: 4 acquisitions sessions (with the goal to handle inter-session variability)

Higher AUC is, better is the algorithm

Algorithms AUC 7+ variables MTL; and MTLg5: multi-task learning with p = 1
MTL; 8.72 £ 1.8 | 192 £+ 11 and p — 0.5

MTL,; |86.37 £1.3] 43 +6 | , .

FalIMKT 617 L 18 | 214 £ 19 EullMK.%.br?uitlple. kernil SVM trained on the en-
SepMKL | 84.15 + 1.8 | 272 & 13 [r¢ @vanable tralilg 5¢

SepMKL: tasks are trained separately



