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Multi-task Learning

•Assume T classification tasks with T datasets Dt = {(xt
i, y

t
i)}i=1,··· ,nt

where t = 1, · · · , nt, xi ∈ X , yi ∈ {−1, 1}

•Tasks are considered similar enough or related in a certain sense

•Aim: learn the decision functions ft(x), t = 1, · · · , T in a joint manner

•How to do it? Tasks share a common subset of relevant features

•Way to ensure this constraint? Use adequate regularization that favors joint features
sparsity pattern across tasks

•Our contributions

–Application of multi-task learning principle to SVM framework by the selection of joint
relevant kernels (multiple kernel learning coupled with multi-task learning)

–Extension to handle non-convex regularisation

SVM multi-task learning: convex problem formulation

•minf1,··· ,fT
C ·

∑T
t=1

∑

i∈Dt
L(ft(x

t
i), y

t
i) + Ω(f1, · · · , fT ) (1)

L(y, f (x)) = max(0, 1 − yf (x)): hinge loss function and Ω(f1, · · · , fT ): joint sparsity
regularizer

•Multiple kernel framework

Each decision function is expressed as ft(x) =
∑M

k=1 ft,k(x) + bt

f.,k: function belonging to the Hilbert space Hk induced by kernel Kk

•Joint sparsity regularization

Ω(f1, · · · , fT ) =
∑M

k=1

(

∑T
t=1 ‖ft,k‖

2
Hk

)1/2

Equivalent to ℓ1 − ℓ2 penalization (group lasso type regularization)

Convex regularization =⇒ optimization problem (1) convex

SVM multi-task, multiple kernel learning

•Let ‖f·,k‖ =
(

∑T
t=1 ‖ft,k‖

2
Hk

)1/2
. The variational formulation is

min
f1,··· ,fT ,d

C
∑T

t=1

∑

i∈D L(ft(x
t
i), y

t
i) +

∑M
k=1

‖f·,k‖
dk

s.t
∑

k dk = 1, dk ≥ 0 ∀k

Variables dk: extra-parameters introduced to cope with the block-norm regularization.
The values of dk stress the importance of the corresponding kernels Kk in the SVM
solution. dk = 0 means kernel Kk discarded from the solution.

•Optimization problem

min
d

J(d) =
∑

t Jt(d)

s.t
∑

k dk = 1, dk ≥ 0 ∀k (2)

with Jt(d) = minft
C

∑

i∈Dt
L(ft(x

t
i), y

t
i) +

∑

k
‖ft,k‖

2

dk

•The parameters dk are optimized by a projected gradient algorithm

•Knowing d, each decision function ft is retrieved from the solution of the SVM

max
αt

i

−1
2

∑

i,j αt
iα

t
jy

t
iy

t
j

∑

k dkKk(x
t
i, x

t
j) +

∑

i α
t
i

s.t
∑

i α
t
iy

t
i = 0, and 0 ≤ αt

i ≤ C ∀i

Algorithm: ℓ1 − ℓ2 sparse Multi-task learning solver

Set d1 = 1
M1I

for n = 1, 2, · · · do

Solve each SVM task with kernel K =
∑M

k=1 dkKk.

Compute the gradient ∂J
∂dk

for k = 1, · · · ,M as

∇dk
J(d) = −

1

2

T
∑

t=1

∑

i,j

αt
iα

t
jy

t
iy

t
jKk(x

t
i, x

t
j)

Compute descent direction Dn and optimal step γn such that dn+1 ← dn + γnDn and
constraints (2) satisfied

if stopping criterion then

break

end if

end for

Handling non-convex joint sparsity regularizer

Non-convex regularization

• Instead of the ℓ1−ℓ2 penalty, consider a non-convex “pseudo-norm” ℓp−ℓ2 penalty
with p < 1

•Aim: emphasize the sparse behavior of the solution

•Proposed regularization closely related to the spirit of non-convex group lasso
algorithms that was issued from consistency results of the convex group lasso

•Non-convex regularizer: Ω(f1, · · · , fT ) =
∑M

k=1 g(‖f·,k‖)
with g(u) = up, p < 1, and u ≥ 0

Remark: any other penalty function g(u) could be used as well

Proposed solution

•DC programming Principles

–Assume the optimization problem minθ J(θ) = minθ J1(θ)− J2(θ)

– Solve iteratively θ(i+1) = argminθ J1(θ)− 〈∇θJ2(θ
(i)), θ− θ(i)〉 until convergence

•Application: use of the decompostion g(u) = u− (u− up)

• It leads to J1 = C
∑

t,i L(ft(x
t
i), y

t
i) +

∑

k ‖f·,k‖ and J2 =
∑

k(−‖f·,k‖ + ‖f·,k‖
p)

•Applying the DC algorithm, the non-convex joint sparsity optimization problem
boils down to solve iteratively a reweigthed ℓ1− ℓ2 multi-task problem

min
f1,··· ,fT ,d

C
∑

t
∑

i∈DL(ft(x
t
i), y

t
i) +

∑

k βk
‖f·,k‖

dk

s.t
∑

k dk = 1, dk ≥ 0 ∀k

•At each iteratation, the weights are given by βk = p

‖f
(i)
·,k ‖

1−p

Experimental results

Example 1: Toy problem

•T binary classification tasks with n samples x ∈ R
d for each task

•The classes follow gaussian distributions with means µ, −µ and random covariance matrix
in R

r where r is the number of relevant variables. The remaining d − r variables are
generated randomly and are considered as spurious variables

•Kernels: each dimension defined a kernel Kk, k = 1, · · · , d
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Ground truth

Example 2: BCI dataset

•P300 Speller dataset acquired from 11 sessions

•Each session characterized by 400 to 950 EEG signals issued from 64 channels

•After preprocessing, 896 variables are generated

•Tasks: 4 acquisitions sessions (with the goal to handle inter-session variability)

Algorithms AUC # variables

MTL1 85.72 ± 1.8 192 ± 11

MTL0.5 86.37 ± 1.3 43 ± 6

FullMKL 86.17 ± 1.8 214 ± 12

SepMKL 84.15 ± 1.8 272 ± 13

Higher AUC is, better is the algorithm

MTL1 and MTL0.5: multi-task learning with p = 1
and p = 0.5

FullMKL: multiple kernel SVM trained on the en-
tire available training set

SepMKL: tasks are trained separately


