
1/80

Signal Processing
from Fourier to Machine Learning

Part 2 : Digital Signal Processing

R. Flamary

November 21, 2024

2/80

Full course overview

1. Fourier analysis and analog filtering

1.1 Fourier Transform
1.2 Convolution and filtering
1.3 Applications of analog signal processing

2. Digital signal processing

2.1 Sampling and properties of discrete signals
2.2 z Transform and transfer function
2.3 Fast Fourier Transform

3. Random signals

3.1 Random signals, stochastic processes
3.2 Correlation and spectral representation
3.3 Filtering and linear prediction of stationary random signals

4. Signal representation and dictionary learning

4.1 Non stationary signals and short time FT
4.2 Common signal representations (Fourier, wavelets)
4.3 Source separation and dictionary learning
4.4 Signal processing with machine learning

3/80

Course overview

Fourier Analysis and analog filtering 4

Digital signal processing 4
Sampling Analog/Digital conversion 5

Sampling
Reconstruction of analog signals
Aliasing

Digital filtering 13
Discrete Convolution
Discrete Time Fourier Transform (DTFT)
Z-transform and transfer function

Finite signals 31
Circular convolution
Discrete Fourier Transform (DFT)
Fast Fourier Transform and fast convolution

Applications of DSP 54
Digital filter design
Sinc interpolation
Digital Image Processing

Random signals 77

Signal representation and dictionary learning 77

4/80

Digital Signal Processing

Digital Signal Processing

▶ Microprocessors widely available and cheap since the 70s.

▶ Analog-to-digital converter (ADC) and digital-to-analog converter (DAC).

▶ Standard signal processing : ADC→DSP→DAC.

▶ DSP more robust/stationary.

▶ Analog SP is faster but sensitive to physics (temperature).

▶ Digital Signal Processing can be done on dedicated hardware or processors.

5/80

Sampling

Principle

▶ Sampling is the reduction of a continuous-time signal to a discrete-time signal.

▶ A discrete signal sampled for period T can be expressed as

xT (t) =
∞∑

n=−∞
x(nT)δ(t− nT) (1)

▶ T is the sampling period (or interval), fs = 1
T

is the sampling frequency.

▶ Due to the properties of the dirac δ the sampled signal is equal to

xT (t) = x(t)
∞∑

n=−∞
δ(t− nT) = x(t)XT (t) (2)

where XT (t) is the dirac comb of period T .
6/80

Sampling in the Fourier domain

Fourier transform of sampled signal

▶ If x(nT) is bounded for n ∈ Z, xT (t) is a tempered distribution.

▶ The FT of xT (t) can be expressed as a function of X(f) = F [x(t)]:

F [xT (t)] = F [x(t)XT (t)] = X(f) ⋆
1

T
X 1

T
(f) =

1

T

∞∑

n=−∞
X
(
f − n

T

)
(3)

▶ The regular sampling leads to a periodization in the Fourier domain.

7/80

Nyquist/Shannon sampling Theorem

Theorem [Shannon, 1949][Nyquist, 1928]

Let x(t) be a signal of Fourier transform X(f) that has a support in [− 1
2T

, 1
2T

]. Then
the signal x(t) can be reconstructed from its sampling with

x(t) =
∞∑

n=−∞
hT (t− nT)x(nT) = xT (t) ⋆ hT (t) (4)

where

hT (t) = sinc

(
πt

T

)
=

sin(πt
T
)

πt
T

(5)

For a signal of frequency support [−B,B], B is often called the Nyquist frequency
(half the sampling rate necessary for reconstruction).

8/80

Nyquist/Shannon sampling Theorem
Proof
Let xT (t) = x(t)

∑∞
n=−∞ δ(t− nT) be the sampled signal. Its Fourier Transform is

XT (t) =
1

T

∞∑

n=−∞
X

(
f − 1

T

)

Since we know that X is of support [− 1
2T

, 1
2T

] it means that ∀f ∈ [− 1
2T

, 1
2T

] we have
XT (f) =

1
T
X(f).

Now if we want to reconstruct the signal we can multiply in the Fourier domain by the
ideal filter:

H(f) =

{
T if |f | < 1

2T

0 else

Using the bounded support of X we have now ∀f

XT (f)H(f) = X(f)

Which in the temporal domain means

x(t) = xT (t) ⋆ h(t) = h(t) ⋆
∞∑

n=−∞
x(nT)δ(t− nT) =

∞∑

n=−∞
x(nT)h(t− nT)

where h(t) = sinc
(
πt
T

)
is the inverse TF of H.

9/80

Aliasing

Aliasing

▶ The FT of xT (t) is a weighted sum of X(f) = F [x(t)]:

F [xT (t)] = F [x(t)XT (t)] = X(f) ⋆
1

T
X 1

T
(f) =

1

T

∞∑

n=−∞
X
(
f − n

T

)
(6)

▶ When the support of X(f) is not in [− 1
2T

, 1
2T

] the repeated shapes will overlap
in frequency.

▶ In this case the signal cannot be reconstructed and some information is lost.

10/80

Example of aliasing

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0
Aliasing in the time domain

x(t)
xT(t) * hT(t)
xT(t)

6 4 2 0 2 4 6

0.0

0.5

1.0

Aliasing in the time domain

x(t)
xT(t) * hT(t)
xT(t)

▶ Let x(t) = cos(2πf0t) be a signal that we want to sample.

▶ We suppose that fs
2

< f0 < fs = fs .

▶ We have

XT (f) =
1

T

∑

k

1

2
(δ(f − f0 − kfs) + δ(f + f0 − kfs))

▶ The only components of the spectrum in [− fs
2
, fs

2
] are:

XT (f)H(f) =
1

2
(δ(f − f0 + fs) + δ(f + f0 − fs)

▶ Reconstructed signal:
x(t) = cos(2π(fs − f0)t)

11/80

Aliasing in real life

Aliasing

▶ When sampling high frequency real life signals.

▶ Always needs a low-pass filter (analog) before sampling.

▶ Can be solved by oversampling (followed by filtering then subsampling).

▶ Anti-aliasing filters in graphic cards (and digital cameras).

12/80

Analog to Digital Conversion

ADC circuits
▶ Sampling frequency has to be twice the maximum frequency in the signal.

▶ Low pass filtering before sampling (analog).

▶ Several sources of noise : jitter (non perfect clock), non-linearity,

▶ For images CCD or CMOS (smartphones) sensors count photons.

Quantization

▶ Computers are discrete, digital signal are discrete both in time and value.

▶ Quantization is the conversion from continuous value to a finite bit format.

▶ Number of bits has an important impact on SNR after reconstruction.

13/80

Discrete signal (1)

Notations

▶ x(t) with t ∈ R is the analog signal.

▶ xT (t) with t ∈ R is the sampled signal of period (T) but still continuous time:

xT (t) =
∞∑

n=−∞
x(nT)δ(t− nT)

▶ x[n] with n ∈ Z is the discrete signal sampled with period T such that:

x[n] = x(nT)

▶ Obviously one can recover xT (t) from x[n] with

xT (t) =
∞∑

n=−∞
x[n]δ(t− nT)

▶ In order to simplify notations we will suppose T = 1 in the following.

▶ In this course we suppose that |x[n]| is bounded.

14/80

Discrete signal (2)

15 10 5 0 5 10 15
0.00

0.25

0.50

0.75

1.00
Dirac discrete [n]

Discrete dirac
We note the discrete dirac δ[n] defined as

δ[n] =

{
1 for n = 0

0 else
(7)

Discrete signal

Any discrete signal x[n] can be decomposed as a sum of translated discrete diracs:

x[n] =
∞∑

k=−∞
x[k]δ[n− k] (8)

The discrete diracs are an orthogonal basis of L2(Z) of scalar product and
corresponding norm

< x[n], h[n] >=
∞∑

k=−∞
x[k]h∗[k], ∥x[n]∥2 =< x[n], x[n] >=

∞∑

k=−∞
|x[k]|2.

15/80

Discrete Convolution

Convolution between discrete signals

Let x[n] and h[n] two discrete signals. The convolution between them is expressed as:

x[n] ⋆ h[n] =
∞∑

k=−∞
x[k]h[n− k] (9)

Digital filter properties

Let the discrete system/operator/filter L described by its impulse response h[n].

▶ Causality L is causal if h[n] = 0, ∀n < 0. L is causal if

h[n] = h[n]Γ[n], where Γ[n] =

{
1 for n ≥ 0

0 else
(10)

▶ Stability A system is stable if the output of a bonded input is bounded. A
necessary and sufficient condition is that

∞∑

n=−∞
|h[n]| <∞ (11)

16/80

Transfer function

8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20
Filter h[n] in the time domain

h[n]

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

Transfer function magnitude H(e2i f)
Real(H(e2i f))
Imag(H(e2i f))

Transfer function of a discrete filter

▶ Let L be a digital filter of impulse response h[n].

▶ For an input ef [k] = ei2πfk the output of the filter is

Lef [n] =
∞∑

k=−∞
ei2πf(n−k)h[k] = ei2πfn

∞∑

k=−∞
e−i2πfkh[k] (12)

▶ ef [k] = ei2πfk are then the eigenvectors of the discrete convolution operator.

▶ The Transfer function of the filter is defined as the following Fourier series:

H(ei2πf) =
∞∑

k=−∞
e−i2πfkh[k] (13)

This actually corresponds to the Fourier transform of the signal.

17/80

Discrete Time Fourier Transform (DTFT)
Fourier transform
The Discrete Time Fourier Transform of the discrete signal x[n] is defined as

X(ei2πf) =
∞∑

k=−∞
e−i2πfkx[k] (14)

▶ It is periodic and equivalent to the Fourier transform of xT (t).

▶ For a tempered distribution (x[n] bounded) all the FT properties are preserved.

Orthonormal basis of L2([0, 1]))

▶ The FT of a discrete signal is periodic (of period T = 1) and can be expressed as
a Fourier series.

▶ ei2πfn defines an orthogonal basis of L2([0, 1])) with scalar product
< a(f), b(f) >=

∫ 1

0
a(f)b ∗ (f)df .

▶ The coefficients can be recovered using the scalar product:

x[n] =< X(ei2πf), e−i2πfn >=

∫ 1

0

X(ei2πf)ei2πfndf (15)

▶ Conservation of energy implies that
∑∞

k=−∞ |x[n]|2 =
∫ 1

0
|X(ei2πf)|2df

18/80

Fourier Transform and discrete convolution

8 6 4 2 0 2 4 6 8
0.00

0.05

0.10

0.15

0.20
Discrete time domain

x[n]
h[n]
y[n]

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Fourier domain

Theorem
Let x[n] ∈ L2(Z) and h[n] ∈ L2(Z) two discrete signals. The Fourier Transform of
y[n] = x[n] ⋆ h[n] is

Y (ei2πf) = X(ei2πf)H(ei2πf) (16)

▶ Similarly to continuous signal, the FT of the convolution is a pointwise
multiplication.

▶ This shows similarly that the filter will have an effect (amplification and
attenuation) on the individul frequency components.

▶ The FT of a temporal multiplication y[n] = x[n]h[n] can also be expressed as

Y (ei2πf) =

∫ 1

0

X(ei2πu)H(ei2π(f−u))du = X(ei2πf) ∗H(ei2πf)

19/80

Ideal filter

Ideal low pass filter

▶ The Fourier transform of the ideal low pass filter with fc < 1
2
is

H0(e
i2πf) =

{
1 for |f | < fc

0 else
(17)

▶ Using Eq. 15 one can recover the impulse response

h[n] =

∫ 1
2

− 1
2

H0(e
i2πf)ei2πfndf =

sin(2πfcn)

πn
= 2fcsinc(2πfcn) (18)

That is a regular sampling of the continuous impulse response.

▶ This filter is non causal and cannot be implemented in practice (infinite sum).

▶ In practice one has to approximate this filter using Finite impulse response or
Infinite impulse response filters.

20/80

Digital filter

Recurent filter formulation

▶ We want to design an implementable filter (finite number fo computations).

▶ We define the relation between the input x[n] and the output y[n] as a difference
equation :

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k] (19)

where ak and bk are reals and a0 ̸= 0.

▶ The sample y[n] can be expressed as

y[n] =
1

a0

(
M∑

k=0

bkx[n− k]−
N∑

k=1

aky[n− k]

)
(20)

▶ Can be computed only from the past (causal) and with M +N
multiply/accumulate.

▶ Called Infinite Impulse response (IIR) filter when N > 1 because the recurrence
imply that y[n] depends on all the values of x[k] for k ≤ n.

21/80

Special cases

0 5 10 15 20 25 30

2

1

0

1

2
Effect of the Na of an average filter

x[n]
N_a=2
N_a=5
N_a=10
N_a=20

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00
Average filtering in the Fourier domain

N_a=2
N_a=5
N_a=10
N_a=20

Finite Impulse Filter (FIR) when N = 0

y[n] =
M∑

k=0

bk
a0

x[n− k] = x[n] ⋆ h[n] (21)

The impulse response is

h[n] =

{
bn
a0

for 0 ≤ n ≤M

0 else
(22)

Example: Average filter

h[n] =

{
1

Na
for 0 ≤ n ≤ Na

0 else
(23)

Autoregressive model (AR) when M = 1

y[n] =
N∑

k=1

bk
a0

y[n− k] (24)

The output depends only on initial (in time) condition of the output. It is not a filter.
22/80

Transfer function of an IIR filter

Transfer function

▶ We recall that the relations between input x[n] and output y[n] is defined as

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k]

▶ Taking the Fourier transform of both terms in the equality we find

N∑

k=0

ak e
−i2πfkY (ei2πf) =

M∑

k=0

bk e
−i2πfkX(ei2πf)

▶ The Transfer function of the filter is then

H(ei2πf) =
Y (ei2πf)

X(ei2πf)
=

∑M
k=0 bk e

−i2πfk

∑N
k=0 ak e−i2πfk

. (25)

▶ The transfer function is a rational function of polynomials of e−i2πf .

23/80

Factorization of the transfer function

Zero/poles factorization

▶ The transfer function of a recurrent filter is

H(ei2πf) =
Y (ei2πf)

X(ei2πf)
=

∑M
k=0 bk e

−i2πfk

∑N
k=0 ak e−i2πfk

. (26)

▶ It can be factorized as

H(ei2πf) =
b0
a0

∏M
k=1(1− cke

−i2πf)
∏N

k=1(1− dke−i2πf)
. (27)

▶ ck are the zeros and dk are the poles of the transfer function.

▶ Modulus and phase are easier to interpret in with the factorization.

▶ Easier to make a bode plot by treating each pole/zero independently.

24/80

Frequency response for discrete signals

Modulus and Gain
The modulus of the transfer function as a function of w = 2πf is:

|H(eiw)| = |b0||a0|

∏M
k=1 |1− cke

−iw|
∏N

k=1 |1− dke−iw|

The gain in dB can be expressed as G(w) = 20 log(|H(eiw)|)

G(w) = 10 log10
|b0|2
|a0|2

+
M∑

k=1

10 log10 |1− cke
−iw|2 −

N∑

k=1

10 log10 |1− dke
−iw|2.

where the difference between poles and zeros is only a sign.

Phase
The phase of the transfer function can be expressed similarly

Arg(H(eiw)) = Arg(
b0
a0

) +
M∑

k=1

Arg(1− cke
−iw)−

N∑

k=1

Arg(1− dke
−iw).

25/80

Example for one pole/zero

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3
Magnitude for one zero with f0 = 0.2

r=0.1
r=0.5
r=1
r=2

0.0 0.2 0.4 0.6 0.8 1.0
40

20

0

20
Magnitude in dB for one zero with f0 = 0.2

▶ We study a transfer function with a unique zero c1 = rei2πf0 :

H(e2iπf) = (1− rei2πf0e−i2πf)

▶ The gain in dB can be expressed as

GdB(f) = 10 log10 |1− rei2πf0e−i2πf |2

▶ The magnitude reaches a minimum for f = f0 and a maximum in f = f0 +
1
2
.

▶ The attenuation in f = f0 is perfect when r = 1.

▶ The Phase fo the transfer function is:

Arg(H(ei2πf)) = arctan

[
r sin(2π(f − f0))

1− r cos(2π(f − f0))

]
.

26/80

The Z-transform (1)
Definition
The Z-transform is a generalization of the Fourier transform for discrete signals. It can
be computed as the Laurent series:

H(z) = Z(h[n]) =
+∞∑

n=−∞
h[n]z−n. (28)

where z ∈ C is a complex.

Region of Convergence (ROC)

▶ The Z-transform is always associated to its region of convergence.

▶ The Laurent series is said to be convergent if

+∞∑

n=−∞
|h[n]| |z|−n < +∞.

▶ The Region of Convergence is defined as

ROC(H) =

{
z :

∣∣∣∣∣
∞∑

n=−∞
h[n]z−n

∣∣∣∣∣ <∞
}

▶ This region depends only on |z|.

27/80

The Z-transform (2)

Region of Convergence (2)

▶ There always exists ρ1 and ρ2 such that H(z) is convergent for ρ1 < |z| < ρ2 and
divergent for |z| < ρ1 or |z| > ρ2.

▶ When H(z) converges for |z| = 1 we recover the Discrete Time Fourier
Transform of the signal.

▶ For a causal filter, if H(z) converges with |z| = ρ, it converges with |z| > ρ and
ρ2 =∞.

▶ If a filter is stable (
∑

n |h[n]| <∞) the H(z) is convergent for |z| = 1, if it is
causal and stable it is convergent for |z| ≥ 1

Example

Let h[n] = Γ[n]ϕn with ϕ > 0 be a causal impulse response of a filter.

∞∑

n=−∞
h[n]z−n =

∞∑

n=0

ϕnz−n =

∞∑

n=0

(
ϕ

z

)n

=
1

1− ϕz−1
.

Note that the series converges for |ϕz−1| < 1 hence the region of convergence is
|z| > ϕ

28/80

Inverse Z-transform

Definition
The inverse Z-transform depends on the ROC and can be expressed as

x[n] = Z−1{X(z)} = 1

2πj

∮

C

X(z)zn−1dz (29)

where C is a counterclockwise closed path encircling the origin and entirely in the
ROC(H). Usually solved using Cauchy’s residue theorem.

▶ When |z| = 1 is in the ROC(H) one can compute the inverse Fourier transform
for discrete signals:

x[n] =

∫ 1

0

X(ei2πf)ei2πfndf

Example

Let H(z) = 1
1−ϕz−1 and ROC(H) = {z| |z| > ρ}.

This ROC means that h[n] is causal and we recover

H(z) =
1

1− ϕz−1
=

+∞∑

n=0

ϕnz−n =

+∞∑

n=−∞
ϕnΓ[n]z−n → h[n] = ϕnΓ[n]

29/80

Properties of Z-transform

Some properties

▶ Linearity : Z[a1x1[n] + a2x2[n]] = a1X1(z) + a2X2(z)

▶ Time reversal : Z[x[−n]] = X(z−1)

▶ Time delay : Z[x[n− n0]] = X(z)z−n0

▶ Differentiation : Z[nx[n]] = −z dX(z)
dz

▶ Convolution : Z[x[n] ⋆ h[n]] = X(z)H(z), and ROC = ROC(X) ∩ROC(H)

▶ Scaling in the z-domain : Z[anx[n]] = X(a−1z) (also scales the ROC)

▶ Accumulation : Z[∑n
k=−∞ x[k]] = X(z) 1

1−z−1

Examples of Z-transform

▶ Dirac δ: Z[δ[n− n0]] = z−n0 , and ROC = {z|0 < |z| <∞}
▶ Unitary step function : Z[Γ[n]] = 1

1−z−1 , and ROC = {z||z| > 1}
▶ Z[anΓ[n]] = 1

1−az−1 , and ROC = {z||z| > |a|}

▶ Z[cos(w0n)Γ[n]] =
1−z−1 cos(w0)

1−2z−1 cos(w0)+z−2 , and ROC = {z||z| > 1}

30/80

Z-transform of recurrent filters

▶ The Z-transform of a recurrent filter can be expressed as

H(z) =

∑M
k=0 bkz

−k

∑N
k=0 akz−k

.

▶ By using a polynomial identification when dk are the simple poles of H(z) one
can reformulate this transform as

ĥ(z) =

M−N∑

r=0

Brz
−r +

N∑

k=0

Ak

1− dkz−1
.

▶ The causal filter corresponding to this Z-transform has then the following impulse
response

h[n] =

M−N∑

r=0

Brδ[n− r] +
N∑

k=0

Ak(dk)
nΓ[n].

If H(z) has multiple poles then the decomposition is done with the exponent.

▶ Note that a filter is causal and stable if and only if all its poles |dk| < 1.

31/80

Finite discret signals

Finite discrete signals

▶ Most of the theoretical results seen up to now correspond to signals x[n] where
n ∈ Z.

▶ In practice recordings are only done for a finite amount of time resulting to only
N samples.

▶ We defined x̃[n] a finite signal of N samples with n ∈ {0, . . . , N − 1}.
▶ We use in the following the periodization of x̄[n]

x[n] = x̃[n mod N]

where mod is the modulo operator.

32/80

Circular convolution

Discrete convolution of finite signals

The convolution between x̃[n] and h̃[n] both finite signals of N samples can be
expressed as:

ỹ[n] = x̃[n] ⋆ h̃[n] =

+∞∑

p=−∞
x̃[p]h̃[n− p] (30)

▶ It requires values for the signals outside of the sampling widow.

▶ One common approach consists in having x̃[n] and h̃[n] equal to 0 outside the
sampling interval. Other choices can be done (see next slides)

Circular convolution
When using the periodic version of the signals the circular convolution can be
computed on a unique period of size N :

x⃝⋆ h[n] =

N−1∑

p=0

x[p]h[n− p].

The circular convolution is rarely appropriate in real life images due to border effects.

33/80

Discrete convolution as matrix multiplication

Vector representation and convolution matrix
▶ Finite signal x of N samples can be represented as a vector x ∈ CN .

▶ The convolution operator is linear and can be expressed as:

y = x ⋆ h = Chx

Where Ch ∈MC(N,N) is a convolution matrix parametrized by vector h.

Discrete convolution
The convolution operator when the
values outside the support are 0 can be
expressed as

Ch=




h[0] 0 · · · 0
h[1] h[0] · · · 0
...

...
. . .

...
h[N−1] h[N−2] . . . h[0]

...
...

. . .
...

0 0 · · · h[N−1]




where Ch ∈MC(2 ∗N − 1, N) is a
Toeplitz matrix.

Circular convolution
The circular convolution operator can be
expressed as

Ch =




h[0] h[N − 1] · · · h[1]
h[1] h[0] · · · h[2]
...

...
. . .

...
h[N − 1] h[N − 2] . . . h[0]




where Ch ∈MC(N,N) is a circulant
Toeplitz matrix.

34/80

Border effects example

0.00

0.25

0.50

0.75

1.00
Signals

x[n]
h[n]

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3
Convolution

y[n] discrete convolution
y[n] circular convolution

▶ Convolution between diracs x̃[n] and a shape h[n] will repeat the shape at the
diracs position.

▶ A dirac at the end of the signal will cut the shape for discrete convolution where
the outside of the sampling is 0.

▶ With circular convolution the shape is repeated t the beginning of the signal.

▶ One can remove border effects by creating virtual periodic signal with zeros (zero
padding, see fast convolution).

35/80

Discrete convolution in practice

0 5 10 15 20 25 30 35 40
0.00

0.25

0.50

0.75

1.00
Finite signals

x[n], N=32
h[n], M=8

0 5 10 15 20 25 30 35 40
0

1

2

3

4

Convolution x * h[n] with scipy.signal.convolve
mode='full'
mode='valid'
mode='same'

The Scipy scipy.signal.convolve function:
▶ Convolution between two signals of support respectively N and M samples

supposing that their values are 0 outside of the support.

▶ The third parameter is mode that change the size of the output :
▶ mode='full' returns a signal of support N +M − 1 (default).
▶ mode='valid' returns a signal of support |N −M |+ 1 with only the samples

that do not rely on zeros padding of the larger signal.
▶ mode='same' returns a signal of the same size as the first input.

▶ Parameter method allows to choose between 'direct' computation and 'fft' and
selects the most efficient by default.

36/80

Discrete convolution in practice (2)

0 5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00
Finite signals

x[n], N=32
h[n], M=8

0 5 10 15 20 25 30
0

2

4

6

8
Convolution x * h[n] with scipy.ndimage.convolve

mode='reflect'
mode='nearest'
mode='mirror'
mode='wrap'

The Scipy scipy.ndimage.convolve function:
▶ Always return the same size as the first parameter by default.

▶ The mode parameter allows selecting the borders of a signal x = (abcd):

▶ mode='reflect' : (dcba|abcd|dcba) (default)
▶ mode='constant' : (kkkk|abcd|kkkk)
▶ mode='nearest' : (aaaa|abcd|dddd)
▶ mode='mirror' : (dcb|abcd|cba)
▶ mode='wrap' : (abcd|abcd|abcd) (circular convolution)

▶ Parameter origin allows to select the origin of the filter h.

37/80

Discrete Fourier Transform (DFT)

Definition
The discrete Fourier Transform of a periodic signal x[n] can be expressed as

X[k] =

N−1∑

p=0

x[p]e
−i2πk

N
p. (31)

▶ The DFT of periodic discrete signal is also periodic and discrete.

▶ This means that both the signal and its Fourier Transform can be stored in
memory in a size N vector.

▶ The frequency domain is sampled regularly between 0 and N−1
N

.

▶ The Inverse Discrete Fourier Transform (IDFT) can be computed as

x[n] =
1

N

N−1∑

k=0

X[k]e
i2πn
N

k. (32)

▶ The complexity for computing naively the DFT is O(N2).

38/80

Finite signal and vector space

Vector space of finite signals
▶ The space of finite signals is a finite space of scalar product and norm

< x,h >=

N−1∑

k=0

x[k]h∗[k], ∥x∥2 =< x,x >=

N−1∑

k=0

|x[k]|2

▶ The family of discrete exponentials (ek[n])0≤k≤N−1 such that ek[n] = e
i2πk
N

n, is
an orthogonal basis of the space of finite discrete signals of period N .

DFT as a change of basis
▶ A signal x[n] can be decomposed on the basis of complex exponentials:

x[n] =

N−1∑

k=0

< x, ek >

∥ek∥2
ek[n]. (33)

▶ The DFT can be computed as : X[k] =< x, ek >

▶ Since ∥ek∥2 = N we can recover the IDFT as

x[n] =
1

N

N−1∑

k=0

X[k]e
i2πk
N

n. (34)

39/80

Properties of DFT

Parseval-Plancherel identity for finite discrete signals

Since the family (ek[n])0≤k≤N−1 is orthogonal, we can recover the Plancherel identify
for discrete signals as

N−1∑

n=0

|x[n]|2 =
1

N

N−1∑

k=0

|X[k]|2. (35)

Circular convolution
The circular convolution y[n] = x[n]⃝⋆ h[n] is a signal of period N and its Discrete
Fourier Transform can be expressed as:

Y [k] = X[k]H[k] (36)

This will be used for fast convolution with FFT.

Border effect

▶ The DFT supposes that the signal is periodic.

▶ When the signal is recorded, there is no reason for it to be periodic, x[N − 1] and
x[0] can be very different.

▶ This can introduce some high frequencies in practice.

40/80

Examples of DFT (1)
x[n] = δ[n] with period N

0 5 10 15 20 25 30
n

0.00

0.25

0.50

0.75

1.00
Signal x[n], N=32

0 5 10 15 20 25 30
k

0.00

0.25

0.50

0.75

1.00
DFT X[k], N=32

Real(X[k])
Imag(X[k])

▶ The discrete dirac leads to a DFT constant at value 1.

▶ It does not depends o N .

x[n] = δ[n− n0] with period N

0 5 10 15 20 25 30
n

0.00

0.25

0.50

0.75

1.00
Signal x[n], N=32

0 5 10 15 20 25 30
k

1.0

0.5

0.0

0.5

1.0
DFT X[k], N=32

Real(X[k])
Imag(X[k])

▶ The delayed discrete dirac is a complex exponential.

▶ DFT magnitude |X[k]| constant at value 1.

41/80

Examples of DFT (2)
x[n] = n with period N

0 5 10 15 20 25 30
n

0

10

20

30
Signal x[n], N=32

0 5 10 15 20 25 30
k

0

200

400

DFT X[k], N=32
Real(X[k])
Imag(X[k])
|X[k]|

▶ Small variation of the signal : mostly low frequencies.

▶ The large change due to the periodicity requires high frequencies.

Average filtering

0 5 10 15 20 25 30
n

0.00

0.05

0.10

Signal x[n], N=32

0 5 10 15 20 25 30
k

0.5

0.0

0.5

1.0
DFT X[k], N=32

Real(X[k])
Imag(X[k])
|X[k]|

▶ x[n] = 1/m for n < m else x[n] = 0.

▶ Recognize the periodic sinc corresponding to rectangular function.
42/80

Examples of DFT (3)

x[n] = cos(2πf0n) with period N

▶ When f0 = 6
N

= k
N

(one of the sampled frequencies):

0 5 10 15 20 25 30
n

1.0

0.5

0.0

0.5

1.0
Signal x[n], N=32

0 5 10 15 20 25 30
k

0

5

10

15
DFT X[k], N=32

Real(X[k])
Imag(X[k])
|X[k]|

▶ When f0 = 6.2
N
̸= k

N
:

0 5 10 15 20 25 30
n

1.0

0.5

0.0

0.5

1.0
Signal x[n], N=32

0 5 10 15 20 25 30
k

0

10

DFT X[k], N=32
Real(X[k])
Imag(X[k])
|X[k]|

43/80

Examples of DFT (4)

Stairway to Heaven

▶ First 10 seconds of ”Stairway to Heaven” from Led Zeppelin sampled at 44100Hz.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
n 1e5

1.0

0.5

0.0

0.5

x[n]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k 1e5

0

1000

2000

3000

4000
X[k]

▶ Zoom to [1, 1000] Hz and real life frequency:

0.0 0.2 0.4 0.6 0.8 1.0
f (Hz) 1e3

0

1000

2000

3000

4000
X(e2 f)

44/80

Plotting the DFT and fftshift
▶ DFT is defined on a finite number of frequencies fsk

N
and periodic.

▶ When sampling at frequency fs we suppose that the signal has filtered to avoid
aliasing.

▶ All relevant frequencies can be expressed between fsk
N

with
k = −N/2, . . . , N/2− 1.

▶ One often use what is called fftshift to center the 0 frequency.

DFT of cosine

0 5 10 15 20 25 30
n

1.0

0.5

0.0

0.5

1.0
Signal x[n], N=32

0 5 10 15 20 25 30
k

0

10

DFT X[k], N=32
Real(X[k])
Imag(X[k])
|X[k]|

When doing fftshift:

15 10 5 0 5 10 15
k

5

0

5

10

15
DFT X[k], N=32

Real(X[k])
Imag(X[k])
|X[k]|

0.4 0.2 0.0 0.2 0.4
f

5

0

5

10

15
DFT X(e2i f)

Real(X(e2i f))
Imag(X(e2i f))
|X(e2i f)|

45/80

Fourier Transform as matrix multiplication

x =




x[0]
x[1]
x[2]
...

x[N − 1]



, FN =




1 1 1 . . . 1

1 e−
i2π
N e−

i4π
N . . . e

−i2π(N−1)
N

1 e−
i4π
N

. . . e−
i4π(N−1)

N

...
...

. . .
...

1 e−
i2π(N−1)

N e−
i4π(N−1)

N . . . e−
i2π(N−1)(N−1)

N




Vector representation
▶ Periodic signal x can be represented as a vector x ∈ CN .

▶ The DFT is a Linear operator that can be represented as a matrix
FN = [e0, e1, . . . , eN−1]

T ∈MC(N,N) of components

Fk,p = e−
i2π(p−1)

N
(k−1)

DFT and IDFT

▶ The DFT of x can be computed as

xDFT = Fx

▶ The IDTF can be computed with

x = F−1xDFT =
1

N
FHxDFT

where FH is the conjugate transpose of F. 46/80

Fourier Transform matrix

F1 =
[
1
]
, F2 =

[
1 1
1 −1

]
, F4 =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i




0 5 10 15 20 25 30

0

5

10

15

20

25

30

Real(F32)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Imag(F32)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

▶ Each line in the matrix is a basis function ek[n] ordered by increasing frequency.

▶ The lines of the matrix contain the eigenvectors of all circular convolution
matrices (hence the point-wise multiplication in Fourier domain).

47/80

Fast Fourier Transform (1)

▶ DFT for a finite signal of size N can be computed with

X[k] =

N−1∑

p=0

x[p]e
−i2πk

N
p. (37)

▶ It is of complexity O(N2) since it requires for each element X[k] the
computation of O(N) operations.

▶ Reorganizing the computation, one can decrease greatly the computational
complexity.

History of FFT

▶ Traced back to Carl Friedrich Gauss in 1805 who used it to interpolate
trajectories of asteroids Pallas and Juno

▶ Rediscovered several time until publication by [Cooley and Tukey, 1965].

▶ Considered one of the most important algorithm in history.

48/80

Fast Fourier Transform (2)

Principle of radix-2 decimation-in-time (DIT)

First one can decompose the DFT between even and odd part of the sum:

X[k] =

N−1∑

p=0

x[p]e
−i2πk

N
p

=

N/2−1∑

p=0

x[2p]e
−i2πk

N
2p +

N/2−1∑

p=0

x[2p+ 1]e
−i2πk

N
(2p+1)

=

N/2−1∑

p=0

x[2p]e
−i2πk
N/2

p
+ e

−i2πk
N

N/2−1∑

p=0

x[2p+ 1]e
−i2πk
N/2

p

= E[k] + e
−i2πk

N O[k]

where E[k] is the DFT of e[n] = x[2n] on even samples of x and O[k] the DFT of
o[n] = x[2n+ 1] on odd samples of x.
Note that using the periodicity of the complex exponential on can also recover:

X[k +N/2] = E[k] + e
−i2π(k+N/2)

N O[k] = E[k]− e
−i2πk

N O[k]

49/80

Fast Fourier Transform (3)

Cooley–Tukey FFT algorithm [Cooley and Tukey, 1965]

Algorithm : FFT (N, x[n])
if N = 1 then

return x[0]
else

E[k] = FFT (N/2, x[2n])
O[k] = FFT (N/2, x[2n+ 1])
for k = 0 to N/2 do

X[k] = E[k] + e
−2iπk

N O[k]

X[k +N/2] = E[k]− e
−2iπk

N O[k]
end for
return X[k]

end if
▶ Classical divide and conquer approach.

▶ Recurrent algorithm often called butterfly due to the crossing of even/odds.

▶ Can be implemented with limited memory use only O(N)

▶ Has been extended to general N through factorization.

▶ The inverse FFT can be computed with IFFT (X[k]) = 1
N
FFT (X∗[k])∗

50/80

Fast Fourier Transform (4)

Complexity of FFT

The complexity C(N) of FFT (N, x[n]) car be obtained from the recurrence:

C(N) = 2C(
N

2
) + 4N

Let us suppose that L = log2(N) is an integer, then we have:

C(N)

N
=

C(N
2
)

N
2

+K

where K = 4. With T (L) = C(N)
N

we can see that

T (L) = T (L− 1) +K = T (0) +

L−1∑

l=1

K = O(KL+ T (0))

Since T (0) = 0 we recover the final complexity:

C(N) = O(KN log2(N))

51/80

Fast convolution

Convolution for finite signals

When two signals x[n] and h[n] have a support on [0, N − 1] their convolution is

y[n] = x[n] ⋆ h[n] =

N−1∑

k=0

x[k]h[n− k]

and the support of the convolution is in [0, 2N − 1]. Computing the values on the
support is O(N2).

Fast convolution with zero-padding

▶ In order to avoid border effect we define two signals a[n] and b[n] of periodicity
2N such that:

a[n] =

{
x[n] for 0 ≤ n < N
0 for N ≤ n < 2N

, b[n] =

{
h[n] for 0 ≤ n < N
0 for N ≤ n < 2N

▶ This procedure is called zero-padding and ensures that the circular convolution
c[n] = a⃝⋆ b[n] can recover the regular convolution:

c[n] = y[n] for 0 ≤ n < 2N. (38)

▶ The complexity of Fast convolution with zero-padding is O(N log2(N)).

52/80

Finding the most efficient convolution

Convolution between two signals of different support

▶ In applications we often have two signal x[n] and h[n] that have different lengths
N and M .

▶ Complexity for the different convolution approaches is:

▶ Direct computation: O(NM)
▶ FFT computation : O(max(M,N) log2(max(M,N)))

▶ Some applications such as convolutional neural networks have a very small M
and direct implementation is more efficient.

choose_conv_method Scipy function

▶ Scipy convolution scipy.signal.convolve automatically selects the more efficient
(and precise enough) approach.

▶ Function choose_conv_method in module scipy.signal.signaltools.

▶ Compare the number of operations for FFT and direct implementation.

▶ Can also do a quick benchmark to find which is the fastest in practice.

53/80

FFT implementations

FFT in the real world

▶ FFT is a standard algorithm implemented in numerous numerical libraries.

▶ Implementations for all types of input (float, double, complex).

▶ Implementation for all devices (X86, ARM, GPU, DSP).

▶ Implemented in Numpy and Scipy.

Common implementations

▶ FFTPACK FORTRAN [Swarztrauber, 1982] (public domain).

▶ GNU scientific library [Galassi et al., 1996] (GPL).

▶ Intel Math Kernel Library (proprietary).

▶ FFTW Fastest Fourier Transform in The West [Frigo and Johnson, 1998] (GPL).

▶ pyFFTW a python wrapper for FFTW (GPL).

▶ CuFFT Runs on GPU [NVIDIA, 2013], C and Python (proprietary).

54/80

Applications of Digital Signal Processing

Digital Signal Processing

▶ Processing of signals after Analog to Digital Conversion.

▶ Can be implemented on any general purpose computer or on dedicated
devices/chips for more efficiency.

▶ Objectives of DSP include denoising, signal reconstruction and source separation.

Applications discussed in the following

▶ Digital filter design.

▶ Interpolation.

▶ Digital Image Processing.

▶ Convolutional neural networks.

55/80

Digital filter design

▶ Digital Filter design follows the same objective as Analog filter designs.

▶ For finite signal already in memory ideal filtering is possible with FFT.

▶ When filter has to be applied in real time one needs to find the parameters of a
recursive IIR filter or FIR filter.

▶ Scipy provides several digital filter design functions.

Approaches for digital filter design

▶ Window design method (FIR): Sample and truncate the impulse response of an
analog filter.

▶ Least Mean Square Error method (FIR): Find the coefficients of the FIR that
approximates the best in the square error sens the objective filter in frequency.

▶ Bilinear transform (IIR): non-linear approximation of the transfer function on an
analog filter.

56/80

Window design method

20 10 0 10 20

0.0

0.1

0.2
Impulse responses

h(t)
h[n]

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

Frequency response
|H(f)|
|H(e2if)|

Principle

h[n] =

{
h(nT) for −M ≤ n ≤ N

0 else

▶ The sampling can lead to aliasing, the truncation leads to ripples in frequencies.

▶ Works better for low frequencies and large M,N .

▶ Can be used to approximate the ideal filter:

h(t) = 2fc
sin(2πfct)

2πfct
= 2fcsinc(2πfct)

▶ Example above with fc = 0.1, M = 19, N = 20.

57/80

Bilinear transform

Principle

▶ For a continuous time transfer function that can be expressed as

H(f) = H0(2iπf)

▶ The bilinear transformation use the change of variable:

2iπf → F (e2iπf) =
2

T

1− e−2iπf

1 + e−2iπf
=

2

T

1− z−1

1 + z−1
=

2

T
i tan(πf)

T is a parameter that can be used to change the cutoff frequency.

▶ The digital Filer z-transform can be expressed as:

Hd(z) = H0

(
2

T

1− z−1

1 + z−1

)

▶ Null frequency in continuous maps to null frequency in discrete.

▶ Infinite frequency in continuous maps to 1/2 in discrete.

▶ Bilinear transform preserves stability properties.

58/80

Examples of bilinear transform

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
Frequency response low-pass 1st order system

|H(f)|
|Hd(e2if)|

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

Frequency response band-pass 2nd order system
|H(f)|
|Hd(e2if)|

First order system

▶ The transfer function for a first order low-pass filter is of the form:

H(f) =
1

1 + i2πf
2πf0

▶ The discrete transfer function can be recovered from

Hd(z) =
1

1 + 2
2πf0T

1−z−1

1+z−1

=
1− z−1

1 + 2
2πf0T

+
(
1− 2

2πf0T

)
z−1

▶ Comparison above for first order low-pass and second order Butterworth
band-pass filter.

59/80

Application : motor imagery BCI

Motor imagery on ElectroEncephaloGraphy

▶ Motor Imagery is a paradigm of Brain Computer Interfaces (BCI).

▶ Uses the µ rhythms in the motor cortex (Band [8-40]Hz).

▶ The subject concentrates on a movement (right or left hand).

▶ The contralateral area of the motor cortex sees a desynchronization (lower energy
in the band) similar to a real movement [Roth et al., 1996].

▶ Butterworth filter of order 5 used to perform filtering [Lotte and Guan, 2010].

▶ Used to control a cursor or a movement of a machine.

60/80

Application : motor control BCI

Prediction of arm movement from (EcoG) [Pistohl et al., 2008]

▶ ElectroCorticoGram implanted on patient suffering from pharmaco-resistant
epilepsy.

▶ Recording of simultaneous arm movement and EcoG signals from patients.

▶ Use a model to predict arm movement from EcoG signals.

▶ Potential applications in prosthetics and robotics.

▶ Signals filtered using a discrete a Savitzky-Golay filter (order 3,win 0.75 sec).

61/80

Limited band signal interpolation

Sinc interpolation

▶ Interpolation of a sampled signal with the Nyquist/Shannon sampling Theorem 4
can be very expensive since the sinus cardinal has an infinite support.

▶ Computing M samples from N will be O(MN).

Fast interpolation

▶ Fast interpolation from N to M can be done using FFT with the Following steps:

1. X[n]← Compute FFT of x[n] of size N .

2. Xi[k]←





X[k]M
N

for 0 ≤ k < N//2

X[k −M +N]M
N

for M −N/2 ≤ k < M

0 else

(zero padding)

3. xi[n
′]← Compute IFFT of Xi[k] of size M .

▶ The M
N

is because the FFT is not normalized.

▶ For a sampling frequency of T = 1 of x[n], sample xi[n
′] corresponds to t = n′ N

M
.

▶ For M > N complexity for the interpolation is O(M log2(M)).

62/80

Fast interpolation example

0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Time domain

x, N = 32
xi, M = 256

0 50 100 150 200 250

0

2

4

6

8

10
Frequency domain

X, N = 32
Xi, M = 256

Interpolation example

▶ Interpolation of rectangular function.

▶ N = 32,M = 256.

Python code

1 X=np.fft.fft(x) # FFT

2 Xi=np.zeros(M)+0*1j # Initalize complex vector at 0

3 Xi[:N//2]=X[:N//2] # Positive low frequencies

4 Xi[-N//2:]=X[N//2:]# Negative low frequencies

5 xi=np.fft.ifft(X2*M/N) # Scaling + IFFT

6 ti=np.arange(M)*N/M # position in time of the interpolated samples

63/80

Digital Image Processing
x[m,n] x*h[m,n], P=3 x*h[m,n], P=5 x*h[m,n], P=11 x*h[m,n], P=21

Digital images
▶ We now all have a digital camera in our pockets.

▶ Image capture has several limits:

▶ Noise (especially at low illumination).
▶ Motion blur on camera.
▶ Limited resolution (apperture and sensor).

▶ Images are stored in memory as a matrix of integers (or float).

Signal processing in 2D
▶ All results seen up to now can be extended to 2D.

▶ In images one does not need causality (whole image available).

▶ Filters in 2D are often FIR filter.

▶ Small filters of the building blocks of Convolutional Neural Networks (CNN).
64/80

Image convolution

0 20 40 60

0

10

20

30

40

50

60

x

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
h

0 20 40 60

0

10

20

30

40

50

60

x*h

2D convolution

x ⋆ h[m,n] =
∑

k,l

x[k, l]h[m− k, n− l]

▶ In practice x[m,n] is often a large image and the filter h[m,n] a small filter (also
called kernel).

▶ h[m,n] is often of odd size and its support centered around (0, 0).

▶ Similarly to finite discrete signal there exists a circular 2D convolution that can
be computed with FFT.

65/80

2D Fast Fourier Transform

0 50 100 150 200 250

0

50

100

150

200

250

x[m,n]

0 50 100 150 200 250

0

50

100

150

200

250

X[u,v]

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

X[u,v] with fftshift

2D FFT

▶ let x[m,n] be a finite image of size (M,N).

▶ The 2D DFT of the image is:

X[u, v] =

M,N∑

m=0,n=0

x[m,n]e−2iπ(um
M

+ vn
N) =

M∑

m=0

(
N∑

n=0

x[m,n]e−2iπ vn
N

)
e−2iπ um

M

▶ The DFT for each index/direction of the image are separable.

▶ Can be performed in O(MN log2(N) +NM log2(M)).
66/80

2D basis functions

20 0 20

30

20

10

0

10

20

30

X[u,v]= [u-0,v-0]

0 20 40 60

0

10

20

30

40

50

60

Real(e0, 0[m, n])

0 20 40 60

0

10

20

30

40

50

60

Imag(e0, 0[m, n])

20 0 20

30

20

10

0

10

20

30

X[u,v]= [u-5,v-0]

0 20 40 60

0

10

20

30

40

50

60

Real(e5, 0[m, n])

0 20 40 60

0

10

20

30

40

50

60

Imag(e5, 0[m, n])

20 0 20

30

20

10

0

10

20

30

X[u,v]= [u-10,v-10]

0 20 40 60

0

10

20

30

40

50

60

Real(e10, 10[m, n])

0 20 40 60

0

10

20

30

40

50

60

Imag(e10, 10[m, n])

20 0 20

30

20

10

0

10

20

30

X[u,v]= [u-20,v-20]

0 20 40 60

0

10

20

30

40

50

60

Real(e20, 20[m, n])

0 20 40 60

0

10

20

30

40

50

60

Imag(e20, 20[m, n])

20 0 20

30

20

10

0

10

20

30

X[u,v]= [u-5,v--10]

0 20 40 60

0

10

20

30

40

50

60

Real(e5, 10[m, n])

0 20 40 60

0

10

20

30

40

50

60

Imag(e5, 10[m, n])

The basis functions
eu,v[m,n] = e−2iπ(um

M
+ vn

N)

correspond to a dirac in the frequency domain.

67/80

Border effects on FFT

0 50 100

0

25

50

75

100

125

x1[m, n]

0 50 100

0

25

50

75

100

125

x2[m, n]

0 200 400

0

100

200

300

400

500

x3[m, n]

0 200 400

0

100

200

300

400

500

x4[m, n]

0 50 100

0

25

50

75

100

125

log(|X1[u, v]|)

0 50 100

0

25

50

75

100

125

log(|X2[u, v]|)

0 200 400

0

100

200

300

400

500

log(|X3[u, v]|

0 200 400

0

100

200

300

400

500

log(|X4[u, v]|

▶ DFT/FFT supposes that an image is periodic in space.

▶ Large differences between values at opposite borders can lead to high frequencies
not existing in the original image.

▶ This can be attenuated using ”windowing” or apodization that consists in
attenuation the borders of the images.

▶ This spatial multiplication corresponds to a convolution (filtering) in the
frequency domain (see next course).

68/80

Classical 2D filters (1)
x[m,n] x*h[m,n], P=3 x*h[m,n], P=5 x*h[m,n], P=11 x*h[m,n], P=21

Average filtering

ha,P [m,n] =

{
1
P2 for |m| < P/2 and |n| < P/2

0 else
, ha,3 =




1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9




▶ Classical low pass filter (with P odd).

▶ Parameter P defines its width and cutoff frequency

▶ Its FT is a multiplication of sinc in both directions (non isotropic):
H[u,v], P=1 H[u,v], P=3 H[u,v], P=5 H[u,v], P=11 H[u,v], P=21

69/80

Classical 2D filters (2)

x1[m, n] |x1 * h[m, n]| x2[m, n] |x2 * h[m, n]|

Spatial high pass

h =




0 −1 0
−1 4 −1
0 −1 0




0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

|H[u,v]|

▶ Compute de difference between the center pixel and its neighbors.

▶ Non isotropic filter.

▶ Use absolute value of the output to detect area with large changes.

70/80

Classical 2D filters (3)

x[m,n] Prewitt horiz. Prewitt vert. Sobel horiz. Sobel vert.

Edge detectors
▶ Prewitt edge detector

ph =
1

3



−1 0 1
−1 0 1
−1 0 1


 , pv =

1

3



−1 −1 −1
0 0 0
1 1 1




0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

|Ph[u, v]|

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

|Pv[u, v]|

▶ Sobel edge detector

sh =
1

4



−1 0 1
−2 0 2
−1 0 1


 , sv =

1

4



−1 −2 −1
0 0 0
1 2 1




0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

|Sh[u, v]|

0.4 0.2 0.0 0.2 0.4

0.4

0.2

0.0

0.2

0.4

|Sv[u, v]|

▶ Combination of a low pass in one direction and high-pass in the other.

71/80

Classical 2D filters (4)
x[m,n] Average P=3

Median P=3

Average P=5

Median P=5

Average P=11

Median P=11

Average P=21

Median P=21

Median filtering

▶ Compute de median in a window of width P .

▶ Robust version of the average filter

▶ Non linear (no impulse response or FT representation).

▶ Bette able to preserve high frequencies and large objects details.

▶ There exists a whole family of more complex non-linear morphological filter.
72/80

Total Variation (TV)
TV(x)=5.552e+03 TV(x + n)=1.683e+04 TV(y)=5.212e+03 TV(y + n)=1.711e+04

▶ In images of man-made objects, we often have near constant parts in the image.

▶ One way to measure the presence of those constant parts is called the Total
Variation that can be expressed in its anisotropic version as:

TV (x) =
∑

m,n

|x[m+ 1, n]− x[m,n]|+ |x[m,n+ 1]− x[m,n]|

▶ It can be reformulated (forgetting border effects) as:

TV (x) = ∥x ∗ dv∥1 + ∥x ∗ dh∥1, with dh =
[
−1 1

]
, dv =

[
−1
1

]

where dv and dh are finite differences derivations and ∥y∥1 =
∑

m,n |y[m,n]|.
▶ The presence of noise tends to introduce high frequencies and to greatly increase

the TV of an image.

73/80

Total Variation denoising
x[m,n]

x[m,n] with noise

TV =0.01

TV =0.01

TV =0.1

TV =0.1

TV =0.2

TV =0.2

TV =0.5

TV =0.5

▶ Since TV increases with noise, one would want to use it for denoising.

▶ Total Variation denoising of image y can be expressed as

min
x

∥x− y∥2F + λTV (x)

where ∥ · ∥F is the Fobenius norm of a matrix.

▶ We want the denoised image x to be close to y but also have a small TV.

▶ It is a convex but non-smooth optimization problem.
74/80

Deep learning

Deep neural network [LeCun et al., 2015]

f(x) = fK(fK−1(...f1(x)...)) (39)

▶ f is a composition of basis functions fk of the form:

fk(x) = gk(Wkx+ bk) (40)

▶ Wk is a linear operator and bk is a bias for layer k.

▶ gk is a non-linear activation function for layer k.

▶ Function f parameters {Wk,bk}k are learned from the data.

75/80

Convolutional Neural Network (CNN)

▶ Replace the linear operator by a convolution [LeCun et al., 2010].

▶ Reduce image dimensionality with sub-sampling or max pooling.

▶ Number of parameters depends on the size fo the filter, not the image.

▶ Recent deep CNN use Relu activation [Glorot et al., 2011]: g(x) = max(0,x).

76/80

Bibliography

▶ Discrete-time signal processing [Oppenheim and Shafer, 1999].

▶ Signals and Systems [Haykin and Van Veen, 2007].

▶ Signals and Systems [Oppenheim et al., 1997].

▶ Signal Analysis [Papoulis, 1977].

▶ Fourier Analysis and its applications [Vretblad, 2003].

▶ Polycopiés from Stéphane Mallat and Éric Moulines [Mallat et al., 2015].

▶ Théorie du signal [Jutten, 2018].

▶ Distributions et Transformation de Fourier [Roddier, 1985]

77/80

References I

[Cooley and Tukey, 1965] Cooley, J. W. and Tukey, J. W. (1965).

An algorithm for the machine calculation of complex fourier series.

Mathematics of computation, 19(90):297–301.

[Frigo and Johnson, 1998] Frigo, M. and Johnson, S. G. (1998).

Fftw: An adaptive software architecture for the fft.

In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP’98 (Cat. No. 98CH36181), volume 3, pages 1381–1384. IEEE.

[Galassi et al., 1996] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P.,
Booth, M., and Rossi, F. (1996).

Gnu scientific library.

No. Release, 2.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011).

Deep sparse rectifier neural networks.

In Aistats, volume 15, page 275.

[Haykin and Van Veen, 2007] Haykin, S. and Van Veen, B. (2007).

Signals and systems.

John Wiley & Sons.

78/80

References II

[Jutten, 2018] Jutten, C. (2018).

Théorie di signal.

Univ. Grenoble Alpes - Polytech’ Grenoble.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015).

Deep learning.

Nature, 521(7553):436–444.

[LeCun et al., 2010] LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010).

Convolutional networks and applications in vision, pages 253–256.

[Lotte and Guan, 2010] Lotte, F. and Guan, C. (2010).

Regularizing common spatial patterns to improve bci designs: unified theory and new
algorithms.

IEEE Transactions on biomedical Engineering, 58(2):355–362.

[Mallat et al., 2015] Mallat, S., Moulines, E., and Roueff, F. (2015).

Traitement du signal.

Polycopié MAP 555, École Polytechnique.

[NVIDIA, 2013] NVIDIA, C. (2013).

Fast fourier transform library (cufft).

79/80

References III

[Nyquist, 1928] Nyquist, H. (1928).

Certain topics in telegraph transmission theory.

Transactions of the American Institute of Electrical Engineers, 47(2):617–644.

[Oppenheim and Shafer, 1999] Oppenheim, A. V. and Shafer, R. W. (1999).

Discrete-time signal processing.

Prentice Hall Inc.

[Oppenheim et al., 1997] Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1997).

Signals and systems prentice hall.

Inc., Upper Saddle River, New Jersey, 7458.

[Papoulis, 1977] Papoulis, A. (1977).

Signal analysis, volume 191.

McGraw-Hill New York.

[Pistohl et al., 2008] Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C.
(2008).

Prediction of arm movement trajectories from ecog-recordings in humans.

Journal of neuroscience methods, 167(1):105–114.

[Roddier, 1985] Roddier, F. (1985).

Distributions et transformée de fourier.
80/80

References IV

[Roth et al., 1996] Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C.,
Segebarth, C., Morand, S., Gemignani, A., Décorps, M., and Jeannerod, M. (1996).

Possible involvement of primary motor cortex in mentally simulated movement: a functional
magnetic resonance imaging study.

Neuroreport, 7(7):1280–1284.

[Shannon, 1949] Shannon, C. E. (1949).

Communication in the presence of noise.

Proceedings of the IRE, 37(1):10–21.

[Swarztrauber, 1982] Swarztrauber, P. N. (1982).

Vectorizing the ffts, parallel computations (new york)(g. rodrigue, ed.).

[Vretblad, 2003] Vretblad, A. (2003).

Fourier analysis and its applications, volume 223.

Springer Science & Business Media.

