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Digital Signal Processing

Digital Signal Processing

▶ Microprocessors widely available and cheap since the 70s.

▶ Analog-to-digital converter (ADC) and digital-to-analog converter (DAC).

▶ Standard signal processing : ADC→DSP→DAC.

▶ DSP more robust/stationary.

▶ Analog SP is faster but sensitive to physics (temperature).

▶ Digital Signal Processing can be done on dedicated hardware or processors.
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Sampling

Principle

▶ Sampling is the reduction of a continuous-time signal to a discrete-time signal.

▶ A discrete signal sampled for period T can be expressed as

xT (t) =
∞∑

n=−∞
x(nT )δ(t− nT ) (1)

▶ T is the sampling period (or interval), fs = 1
T

is the sampling frequency.

▶ Due to the properties of the dirac δ the sampled signal is equal to

xT (t) = x(t)
∞∑

n=−∞
δ(t− nT ) = x(t)XT (t) (2)

where XT (t) is the dirac comb of period T .
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Sampling in the Fourier domain

Fourier transform of sampled signal

▶ If x(nT ) is bounded for n ∈ Z, xT (t) is a tempered distribution.

▶ The FT of xT (t) can be expressed as a function of X(f) = F [x(t)]:

F [xT (t)] = F [x(t)XT (t)] = X(f) ⋆
1

T
X 1

T
(f) =

1

T

∞∑

n=−∞
X
(
f − n

T

)
(3)

▶ The regular sampling leads to a periodization in the Fourier domain.
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Nyquist/Shannon sampling Theorem

Theorem [Shannon, 1949][Nyquist, 1928]

Let x(t) be a signal of Fourier transform X(f) that has a support in [− 1
2T

, 1
2T

]. Then
the signal x(t) can be reconstructed from its sampling with

x(t) =
∞∑

n=−∞
hT (t− nT )x(nT ) = xT (t) ⋆ hT (t) (4)

where

hT (t) = sinc

(
πt

T

)
=

sin(πt
T
)

πt
T

(5)

For a signal of frequency support [−B,B], B is often called the Nyquist frequency
(half the sampling rate necessary for reconstruction).
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Nyquist/Shannon sampling Theorem
Proof
Let xT (t) = x(t)

∑∞
n=−∞ δ(t− nT ) be the sampled signal. Its Fourier Transform is

XT (t) =
1

T

∞∑

n=−∞
X

(
f − 1

T

)

Since we know that X is of support [− 1
2T

, 1
2T

] it means that ∀f ∈ [− 1
2T

, 1
2T

] we have
XT (f) =

1
T
X(f).

Now if we want to reconstruct the signal we can multiply in the Fourier domain by the
ideal filter:

H(f) =

{
T if |f | < 1

2T

0 else

Using the bounded support of X we have now ∀f

XT (f)H(f) = X(f)

Which in the temporal domain means

x(t) = xT (t) ⋆ h(t) = h(t) ⋆
∞∑

n=−∞
x(nT )δ(t− nT ) =

∞∑

n=−∞
x(nT )h(t− nT )

where h(t) = sinc
(
πt
T

)
is the inverse TF of H.
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Aliasing

Aliasing

▶ The FT of xT (t) is a weighted sum of X(f) = F [x(t)]:

F [xT (t)] = F [x(t)XT (t)] = X(f) ⋆
1

T
X 1

T
(f) =

1

T

∞∑

n=−∞
X
(
f − n

T

)
(6)

▶ When the support of X(f) is not in [− 1
2T

, 1
2T

] the repeated shapes will overlap
in frequency.

▶ In this case the signal cannot be reconstructed and some information is lost.
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Example of aliasing

2 1 0 1 2
1.0

0.5

0.0

0.5

1.0
Aliasing in the time domain

x(t)
xT(t) * hT(t)
xT(t)

6 4 2 0 2 4 6

0.0

0.5

1.0

Aliasing in the time domain

x(t)
xT(t) * hT(t)
xT(t)

▶ Let x(t) = cos(2πf0t) be a signal that we want to sample.

▶ We suppose that fs
2

< f0 < fs = fs .

▶ We have

XT (f) =
1

T

∑

k

1

2
(δ(f − f0 − kfs) + δ(f + f0 − kfs))

▶ The only components of the spectrum in [− fs
2
, fs

2
] are:

XT (f)H(f) =
1

2
(δ(f − f0 + fs) + δ(f + f0 − fs)

▶ Reconstructed signal:
x(t) = cos(2π(fs − f0)t)
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Aliasing in real life

Aliasing

▶ When sampling high frequency real life signals.

▶ Always needs a low-pass filter (analog) before sampling.

▶ Can be solved by oversampling (followed by filtering then subsampling).

▶ Anti-aliasing filters in graphic cards (and digital cameras).
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Analog to Digital Conversion

ADC circuits
▶ Sampling frequency has to be twice the maximum frequency in the signal.

▶ Low pass filtering before sampling (analog).

▶ Several sources of noise : jitter (non perfect clock), non-linearity,

▶ For images CCD or CMOS (smartphones) sensors count photons.

Quantization

▶ Computers are discrete, digital signal are discrete both in time and value.

▶ Quantization is the conversion from continuous value to a finite bit format.

▶ Number of bits has an important impact on SNR after reconstruction.
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Discrete signal (1)

Notations

▶ x(t) with t ∈ R is the analog signal.

▶ xT (t) with t ∈ R is the sampled signal of period (T) but still continuous time:

xT (t) =
∞∑

n=−∞
x(nT )δ(t− nT )

▶ x[n] with n ∈ Z is the discrete signal sampled with period T such that:

x[n] = x(nT )

▶ Obviously one can recover xT (t) from x[n] with

xT (t) =
∞∑

n=−∞
x[n]δ(t− nT )

▶ In order to simplify notations we will suppose T = 1 in the following.

▶ In this course we suppose that |x[n]| is bounded.
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Discrete signal (2)
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We note the discrete dirac δ[n] defined as

δ[n] =

{
1 for n = 0

0 else
(7)

Discrete signal

Any discrete signal x[n] can be decomposed as a sum of translated discrete diracs:

x[n] =
∞∑

k=−∞
x[k]δ[n− k] (8)

The discrete diracs are an orthogonal basis of L2(Z) of scalar product and
corresponding norm

< x[n], h[n] >=
∞∑

k=−∞
x[k]h∗[k], ∥x[n]∥2 =< x[n], x[n] >=

∞∑

k=−∞
|x[k]|2.
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Discrete Convolution

Convolution between discrete signals

Let x[n] and h[n] two discrete signals. The convolution between them is expressed as:

x[n] ⋆ h[n] =
∞∑

k=−∞
x[k]h[n− k] (9)

Digital filter properties

Let the discrete system/operator/filter L described by its impulse response h[n].

▶ Causality L is causal if h[n] = 0, ∀n < 0. L is causal if

h[n] = h[n]Γ[n], where Γ[n] =

{
1 for n ≥ 0

0 else
(10)

▶ Stability A system is stable if the output of a bonded input is bounded. A
necessary and sufficient condition is that

∞∑

n=−∞
|h[n]| <∞ (11)
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Transfer function
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Transfer function of a discrete filter

▶ Let L be a digital filter of impulse response h[n].

▶ For an input ef [k] = ei2πfk the output of the filter is

Lef [n] =
∞∑

k=−∞
ei2πf(n−k)h[k] = ei2πfn

∞∑

k=−∞
e−i2πfkh[k] (12)

▶ ef [k] = ei2πfk are then the eigenvectors of the discrete convolution operator.

▶ The Transfer function of the filter is defined as the following Fourier series:

H(ei2πf ) =
∞∑

k=−∞
e−i2πfkh[k] (13)

This actually corresponds to the Fourier transform of the signal.
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Discrete Time Fourier Transform (DTFT)
Fourier transform
The Discrete Time Fourier Transform of the discrete signal x[n] is defined as

X(ei2πf ) =
∞∑

k=−∞
e−i2πfkx[k] (14)

▶ It is periodic and equivalent to the Fourier transform of xT (t).

▶ For a tempered distribution (x[n] bounded) all the FT properties are preserved.

Orthonormal basis of L2([0, 1]))

▶ The FT of a discrete signal is periodic (of period T = 1) and can be expressed as
a Fourier series.

▶ ei2πfn defines an orthogonal basis of L2([0, 1])) with scalar product
< a(f), b(f) >=

∫ 1

0
a(f)b ∗ (f)df .

▶ The coefficients can be recovered using the scalar product:

x[n] =< X(ei2πf ), e−i2πfn >=

∫ 1

0

X(ei2πf )ei2πfndf (15)

▶ Conservation of energy implies that
∑∞

k=−∞ |x[n]|2 =
∫ 1

0
|X(ei2πf )|2df
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Fourier Transform and discrete convolution
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Theorem
Let x[n] ∈ L2(Z) and h[n] ∈ L2(Z) two discrete signals. The Fourier Transform of
y[n] = x[n] ⋆ h[n] is

Y (ei2πf ) = X(ei2πf )H(ei2πf ) (16)

▶ Similarly to continuous signal, the FT of the convolution is a pointwise
multiplication.

▶ This shows similarly that the filter will have an effect (amplification and
attenuation) on the individul frequency components.

▶ The FT of a temporal multiplication y[n] = x[n]h[n] can also be expressed as

Y (ei2πf ) =

∫ 1

0

X(ei2πu)H(ei2π(f−u))du = X(ei2πf ) ∗H(ei2πf )
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Ideal filter

Ideal low pass filter

▶ The Fourier transform of the ideal low pass filter with fc < 1
2
is

H0(e
i2πf ) =

{
1 for |f | < fc

0 else
(17)

▶ Using Eq. 15 one can recover the impulse response

h[n] =

∫ 1
2

− 1
2

H0(e
i2πf )ei2πfndf =

sin(2πfcn)

πn
= 2fcsinc(2πfcn) (18)

That is a regular sampling of the continuous impulse response.

▶ This filter is non causal and cannot be implemented in practice (infinite sum).

▶ In practice one has to approximate this filter using Finite impulse response or
Infinite impulse response filters.
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Digital filter

Recurent filter formulation

▶ We want to design an implementable filter (finite number fo computations).

▶ We define the relation between the input x[n] and the output y[n] as a difference
equation :

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k] (19)

where ak and bk are reals and a0 ̸= 0.

▶ The sample y[n] can be expressed as

y[n] =
1

a0

(
M∑

k=0

bkx[n− k]−
N∑

k=1

aky[n− k]

)
(20)

▶ Can be computed only from the past (causal) and with M +N
multiply/accumulate.

▶ Called Infinite Impulse response (IIR) filter when N > 1 because the recurrence
imply that y[n] depends on all the values of x[k] for k ≤ n.
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Special cases
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Finite Impulse Filter (FIR) when N = 0

y[n] =
M∑

k=0

bk
a0

x[n− k] = x[n] ⋆ h[n] (21)

The impulse response is

h[n] =

{
bn
a0

for 0 ≤ n ≤M

0 else
(22)

Example: Average filter

h[n] =

{
1

Na
for 0 ≤ n ≤ Na

0 else
(23)

Autoregressive model (AR) when M = 1

y[n] =
N∑

k=1

bk
a0

y[n− k] (24)

The output depends only on initial (in time) condition of the output. It is not a filter.
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Transfer function of an IIR filter

Transfer function

▶ We recall that the relations between input x[n] and output y[n] is defined as

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k]

▶ Taking the Fourier transform of both terms in the equality we find

N∑

k=0

ak e
−i2πfkY (ei2πf ) =

M∑

k=0

bk e
−i2πfkX(ei2πf )

▶ The Transfer function of the filter is then

H(ei2πf ) =
Y (ei2πf )

X(ei2πf )
=

∑M
k=0 bk e

−i2πfk

∑N
k=0 ak e−i2πfk

. (25)

▶ The transfer function is a rational function of polynomials of e−i2πf .
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Factorization of the transfer function

Zero/poles factorization

▶ The transfer function of a recurrent filter is

H(ei2πf ) =
Y (ei2πf )

X(ei2πf )
=

∑M
k=0 bk e

−i2πfk

∑N
k=0 ak e−i2πfk

. (26)

▶ It can be factorized as

H(ei2πf ) =
b0
a0

∏M
k=1(1− cke

−i2πf )
∏N

k=1(1− dke−i2πf )
. (27)

▶ ck are the zeros and dk are the poles of the transfer function.

▶ Modulus and phase are easier to interpret in with the factorization.

▶ Easier to make a bode plot by treating each pole/zero independently.
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Frequency response for discrete signals

Modulus and Gain
The modulus of the transfer function as a function of w = 2πf is:

|H(eiw)| = |b0||a0|

∏M
k=1 |1− cke

−iw|
∏N

k=1 |1− dke−iw|

The gain in dB can be expressed as G(w) = 20 log(|H(eiw)|)

G(w) = 10 log10
|b0|2
|a0|2

+
M∑

k=1

10 log10 |1− cke
−iw|2 −

N∑

k=1

10 log10 |1− dke
−iw|2.

where the difference between poles and zeros is only a sign.

Phase
The phase of the transfer function can be expressed similarly

Arg(H(eiw)) = Arg(
b0
a0

) +
M∑

k=1

Arg(1− cke
−iw)−

N∑

k=1

Arg(1− dke
−iw).
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Example for one pole/zero
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▶ We study a transfer function with a unique zero c1 = rei2πf0 :

H(e2iπf ) = (1− rei2πf0e−i2πf )

▶ The gain in dB can be expressed as

GdB(f) = 10 log10 |1− rei2πf0e−i2πf |2

▶ The magnitude reaches a minimum for f = f0 and a maximum in f = f0 +
1
2
.

▶ The attenuation in f = f0 is perfect when r = 1.

▶ The Phase fo the transfer function is:

Arg(H(ei2πf )) = arctan

[
r sin(2π(f − f0))

1− r cos(2π(f − f0))

]
.
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The Z-transform (1)
Definition
The Z-transform is a generalization of the Fourier transform for discrete signals. It can
be computed as the Laurent series:

H(z) = Z(h[n]) =
+∞∑

n=−∞
h[n]z−n. (28)

where z ∈ C is a complex.

Region of Convergence (ROC)

▶ The Z-transform is always associated to its region of convergence.

▶ The Laurent series is said to be convergent if

+∞∑

n=−∞
|h[n]| |z|−n < +∞.

▶ The Region of Convergence is defined as

ROC(H) =

{
z :

∣∣∣∣∣
∞∑

n=−∞
h[n]z−n

∣∣∣∣∣ <∞
}

▶ This region depends only on |z|.
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The Z-transform (2)

Region of Convergence (2)

▶ There always exists ρ1 and ρ2 such that H(z) is convergent for ρ1 < |z| < ρ2 and
divergent for |z| < ρ1 or |z| > ρ2.

▶ When H(z) converges for |z| = 1 we recover the Discrete Time Fourier
Transform of the signal.

▶ For a causal filter, if H(z) converges with |z| = ρ, it converges with |z| > ρ and
ρ2 =∞.

▶ If a filter is stable (
∑

n |h[n]| <∞) the H(z) is convergent for |z| = 1, if it is
causal and stable it is convergent for |z| ≥ 1

Example

Let h[n] = Γ[n]ϕn with ϕ > 0 be a causal impulse response of a filter.

∞∑

n=−∞
h[n]z−n =

∞∑

n=0

ϕnz−n =

∞∑

n=0

(
ϕ

z

)n

=
1

1− ϕz−1
.

Note that the series converges for |ϕz−1| < 1 hence the region of convergence is
|z| > ϕ
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Inverse Z-transform

Definition
The inverse Z-transform depends on the ROC and can be expressed as

x[n] = Z−1{X(z)} = 1

2πj

∮

C

X(z)zn−1dz (29)

where C is a counterclockwise closed path encircling the origin and entirely in the
ROC(H). Usually solved using Cauchy’s residue theorem.

▶ When |z| = 1 is in the ROC(H) one can compute the inverse Fourier transform
for discrete signals:

x[n] =

∫ 1

0

X(ei2πf )ei2πfndf

Example

Let H(z) = 1
1−ϕz−1 and ROC(H) = {z| |z| > ρ}.

This ROC means that h[n] is causal and we recover

H(z) =
1

1− ϕz−1
=

+∞∑

n=0

ϕnz−n =

+∞∑

n=−∞
ϕnΓ[n]z−n → h[n] = ϕnΓ[n]
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Properties of Z-transform

Some properties

▶ Linearity : Z[a1x1[n] + a2x2[n]] = a1X1(z) + a2X2(z)

▶ Time reversal : Z[x[−n]] = X(z−1)

▶ Time delay : Z[x[n− n0]] = X(z)z−n0

▶ Differentiation : Z[nx[n]] = −z dX(z)
dz

▶ Convolution : Z[x[n] ⋆ h[n]] = X(z)H(z), and ROC = ROC(X) ∩ROC(H)

▶ Scaling in the z-domain : Z[anx[n]] = X(a−1z) (also scales the ROC)

▶ Accumulation : Z[∑n
k=−∞ x[k]] = X(z) 1

1−z−1

Examples of Z-transform

▶ Dirac δ: Z[δ[n− n0]] = z−n0 , and ROC = {z|0 < |z| <∞}
▶ Unitary step function : Z[Γ[n]] = 1

1−z−1 , and ROC = {z||z| > 1}
▶ Z[anΓ[n]] = 1

1−az−1 , and ROC = {z||z| > |a|}

▶ Z[cos(w0n)Γ[n]] =
1−z−1 cos(w0)

1−2z−1 cos(w0)+z−2 , and ROC = {z||z| > 1}
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Z-transform of recurrent filters

▶ The Z-transform of a recurrent filter can be expressed as

H(z) =

∑M
k=0 bkz

−k

∑N
k=0 akz−k

.

▶ By using a polynomial identification when dk are the simple poles of H(z) one
can reformulate this transform as

ĥ(z) =

M−N∑

r=0

Brz
−r +

N∑

k=0

Ak

1− dkz−1
.

▶ The causal filter corresponding to this Z-transform has then the following impulse
response

h[n] =

M−N∑

r=0

Brδ[n− r] +
N∑

k=0

Ak(dk)
nΓ[n].

If H(z) has multiple poles then the decomposition is done with the exponent.

▶ Note that a filter is causal and stable if and only if all its poles |dk| < 1.
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Finite discret signals

Finite discrete signals

▶ Most of the theoretical results seen up to now correspond to signals x[n] where
n ∈ Z.

▶ In practice recordings are only done for a finite amount of time resulting to only
N samples.

▶ We defined x̃[n] a finite signal of N samples with n ∈ {0, . . . , N − 1}.
▶ We use in the following the periodization of x̄[n]

x[n] = x̃[n mod N ]

where mod is the modulo operator.
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Circular convolution

Discrete convolution of finite signals

The convolution between x̃[n] and h̃[n] both finite signals of N samples can be
expressed as:

ỹ[n] = x̃[n] ⋆ h̃[n] =

+∞∑

p=−∞
x̃[p]h̃[n− p] (30)

▶ It requires values for the signals outside of the sampling widow.

▶ One common approach consists in having x̃[n] and h̃[n] equal to 0 outside the
sampling interval. Other choices can be done (see next slides)

Circular convolution
When using the periodic version of the signals the circular convolution can be
computed on a unique period of size N :

x⃝⋆ h[n] =

N−1∑

p=0

x[p]h[n− p].

The circular convolution is rarely appropriate in real life images due to border effects.
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Discrete convolution as matrix multiplication

Vector representation and convolution matrix
▶ Finite signal x of N samples can be represented as a vector x ∈ CN .

▶ The convolution operator is linear and can be expressed as:

y = x ⋆ h = Chx

Where Ch ∈MC(N,N) is a convolution matrix parametrized by vector h.

Discrete convolution
The convolution operator when the
values outside the support are 0 can be
expressed as

Ch=




h[0] 0 · · · 0
h[1] h[0] · · · 0
...

...
. . .

...
h[N−1] h[N−2] . . . h[0]

...
...

. . .
...

0 0 · · · h[N−1]




where Ch ∈MC(2 ∗N − 1, N) is a
Toeplitz matrix.

Circular convolution
The circular convolution operator can be
expressed as

Ch =




h[0] h[N − 1] · · · h[1]
h[1] h[0] · · · h[2]
...

...
. . .

...
h[N − 1] h[N − 2] . . . h[0]




where Ch ∈MC(N,N) is a circulant
Toeplitz matrix.
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Border effects example
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x[n]
h[n]
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0.1

0.2

0.3
Convolution

y[n] discrete convolution
y[n] circular convolution

▶ Convolution between diracs x̃[n] and a shape h[n] will repeat the shape at the
diracs position.

▶ A dirac at the end of the signal will cut the shape for discrete convolution where
the outside of the sampling is 0.

▶ With circular convolution the shape is repeated t the beginning of the signal.

▶ One can remove border effects by creating virtual periodic signal with zeros (zero
padding, see fast convolution).
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Discrete convolution in practice
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Convolution x * h[n] with scipy.signal.convolve
mode='full'
mode='valid'
mode='same'

The Scipy scipy.signal.convolve function:
▶ Convolution between two signals of support respectively N and M samples

supposing that their values are 0 outside of the support.

▶ The third parameter is mode that change the size of the output :
▶ mode='full' returns a signal of support N +M − 1 (default).
▶ mode='valid' returns a signal of support |N −M |+ 1 with only the samples

that do not rely on zeros padding of the larger signal.
▶ mode='same' returns a signal of the same size as the first input.

▶ Parameter method allows to choose between 'direct' computation and 'fft' and
selects the most efficient by default.
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Discrete convolution in practice (2)
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Finite signals

x[n], N=32
h[n], M=8
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0
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8
Convolution x * h[n] with scipy.ndimage.convolve

mode='reflect'
mode='nearest'
mode='mirror'
mode='wrap'

The Scipy scipy.ndimage.convolve function:
▶ Always return the same size as the first parameter by default.

▶ The mode parameter allows selecting the borders of a signal x = (abcd):

▶ mode='reflect' : (dcba|abcd|dcba) (default)
▶ mode='constant' : (kkkk|abcd|kkkk)
▶ mode='nearest' : (aaaa|abcd|dddd)
▶ mode='mirror' : (dcb|abcd|cba)
▶ mode='wrap' : (abcd|abcd|abcd) (circular convolution)

▶ Parameter origin allows to select the origin of the filter h.
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Discrete Fourier Transform (DFT)

Definition
The discrete Fourier Transform of a periodic signal x[n] can be expressed as

X[k] =

N−1∑

p=0

x[p]e
−i2πk

N
p. (31)

▶ The DFT of periodic discrete signal is also periodic and discrete.

▶ This means that both the signal and its Fourier Transform can be stored in
memory in a size N vector.

▶ The frequency domain is sampled regularly between 0 and N−1
N

.

▶ The Inverse Discrete Fourier Transform (IDFT) can be computed as

x[n] =
1

N

N−1∑

k=0

X[k]e
i2πn
N

k. (32)

▶ The complexity for computing naively the DFT is O(N2).
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Finite signal and vector space

Vector space of finite signals
▶ The space of finite signals is a finite space of scalar product and norm

< x,h >=

N−1∑

k=0

x[k]h∗[k], ∥x∥2 =< x,x >=

N−1∑

k=0

|x[k]|2

▶ The family of discrete exponentials (ek[n])0≤k≤N−1 such that ek[n] = e
i2πk
N

n, is
an orthogonal basis of the space of finite discrete signals of period N .

DFT as a change of basis
▶ A signal x[n] can be decomposed on the basis of complex exponentials:

x[n] =

N−1∑

k=0

< x, ek >

∥ek∥2
ek[n]. (33)

▶ The DFT can be computed as : X[k] =< x, ek >

▶ Since ∥ek∥2 = N we can recover the IDFT as

x[n] =
1

N

N−1∑

k=0

X[k]e
i2πk
N

n. (34)
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Properties of DFT

Parseval-Plancherel identity for finite discrete signals

Since the family (ek[n])0≤k≤N−1 is orthogonal, we can recover the Plancherel identify
for discrete signals as

N−1∑

n=0

|x[n]|2 =
1

N

N−1∑

k=0

|X[k]|2. (35)

Circular convolution
The circular convolution y[n] = x[n]⃝⋆ h[n] is a signal of period N and its Discrete
Fourier Transform can be expressed as:

Y [k] = X[k]H[k] (36)

This will be used for fast convolution with FFT.

Border effect

▶ The DFT supposes that the signal is periodic.

▶ When the signal is recorded, there is no reason for it to be periodic, x[N − 1] and
x[0] can be very different.

▶ This can introduce some high frequencies in practice.
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Examples of DFT (1)
x[n] = δ[n] with period N

0 5 10 15 20 25 30
n

0.00
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Signal x[n], N=32

0 5 10 15 20 25 30
k

0.00
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0.50

0.75

1.00
DFT X[k], N=32

Real(X[k])
Imag(X[k])

▶ The discrete dirac leads to a DFT constant at value 1.

▶ It does not depends o N .

x[n] = δ[n− n0] with period N
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Signal x[n], N=32
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DFT X[k], N=32

Real(X[k])
Imag(X[k])

▶ The delayed discrete dirac is a complex exponential.

▶ DFT magnitude |X[k]| constant at value 1.
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Examples of DFT (2)
x[n] = n with period N
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n

0
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Signal x[n], N=32
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k

0

200

400

DFT X[k], N=32
Real(X[k])
Imag(X[k])
|X[k]|

▶ Small variation of the signal : mostly low frequencies.

▶ The large change due to the periodicity requires high frequencies.

Average filtering
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DFT X[k], N=32

Real(X[k])
Imag(X[k])
|X[k]|

▶ x[n] = 1/m for n < m else x[n] = 0.

▶ Recognize the periodic sinc corresponding to rectangular function.
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Examples of DFT (3)

x[n] = cos(2πf0n) with period N

▶ When f0 = 6
N

= k
N

(one of the sampled frequencies):
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|X[k]|

▶ When f0 = 6.2
N
̸= k

N
:
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DFT X[k], N=32
Real(X[k])
Imag(X[k])
|X[k]|
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Examples of DFT (4)

Stairway to Heaven

▶ First 10 seconds of ”Stairway to Heaven” from Led Zeppelin sampled at 44100Hz.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
n 1e5

1.0

0.5

0.0

0.5

x[n]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
k 1e5

0

1000

2000

3000

4000
X[k]

▶ Zoom to [1, 1000] Hz and real life frequency:

0.0 0.2 0.4 0.6 0.8 1.0
f (Hz) 1e3

0

1000

2000

3000

4000
X(e2 f)
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Plotting the DFT and fftshift
▶ DFT is defined on a finite number of frequencies fsk

N
and periodic.

▶ When sampling at frequency fs we suppose that the signal has filtered to avoid
aliasing.

▶ All relevant frequencies can be expressed between fsk
N

with
k = −N/2, . . . , N/2− 1.

▶ One often use what is called fftshift to center the 0 frequency.

DFT of cosine
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When doing fftshift:
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Imag(X(e2i f))
|X(e2i f)|
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Fourier Transform as matrix multiplication

x =




x[0]
x[1]
x[2]
...

x[N − 1]



, FN =




1 1 1 . . . 1

1 e−
i2π
N e−

i4π
N . . . e

−i2π(N−1)
N

1 e−
i4π
N

. . . e−
i4π(N−1)

N

...
...

. . .
...

1 e−
i2π(N−1)

N e−
i4π(N−1)

N . . . e−
i2π(N−1)(N−1)

N




Vector representation
▶ Periodic signal x can be represented as a vector x ∈ CN .

▶ The DFT is a Linear operator that can be represented as a matrix
FN = [e0, e1, . . . , eN−1]

T ∈MC(N,N) of components

Fk,p = e−
i2π(p−1)

N
(k−1)

DFT and IDFT

▶ The DFT of x can be computed as

xDFT = Fx

▶ The IDTF can be computed with

x = F−1xDFT =
1

N
FHxDFT

where FH is the conjugate transpose of F. 46/80

Fourier Transform matrix

F1 =
[
1
]
, F2 =

[
1 1
1 −1

]
, F4 =




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



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▶ Each line in the matrix is a basis function ek[n] ordered by increasing frequency.

▶ The lines of the matrix contain the eigenvectors of all circular convolution
matrices (hence the point-wise multiplication in Fourier domain).
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Fast Fourier Transform (1)

▶ DFT for a finite signal of size N can be computed with

X[k] =

N−1∑

p=0

x[p]e
−i2πk

N
p. (37)

▶ It is of complexity O(N2) since it requires for each element X[k] the
computation of O(N) operations.

▶ Reorganizing the computation, one can decrease greatly the computational
complexity.

History of FFT

▶ Traced back to Carl Friedrich Gauss in 1805 who used it to interpolate
trajectories of asteroids Pallas and Juno

▶ Rediscovered several time until publication by [Cooley and Tukey, 1965].

▶ Considered one of the most important algorithm in history.
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Fast Fourier Transform (2)

Principle of radix-2 decimation-in-time (DIT)

First one can decompose the DFT between even and odd part of the sum:

X[k] =

N−1∑

p=0

x[p]e
−i2πk

N
p

=

N/2−1∑

p=0

x[2p]e
−i2πk

N
2p +

N/2−1∑

p=0

x[2p+ 1]e
−i2πk

N
(2p+1)

=

N/2−1∑

p=0

x[2p]e
−i2πk
N/2

p
+ e

−i2πk
N

N/2−1∑

p=0

x[2p+ 1]e
−i2πk
N/2

p

= E[k] + e
−i2πk

N O[k]

where E[k] is the DFT of e[n] = x[2n] on even samples of x and O[k] the DFT of
o[n] = x[2n+ 1] on odd samples of x.
Note that using the periodicity of the complex exponential on can also recover:

X[k +N/2] = E[k] + e
−i2π(k+N/2)

N O[k] = E[k]− e
−i2πk

N O[k]
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Fast Fourier Transform (3)

Cooley–Tukey FFT algorithm [Cooley and Tukey, 1965]

Algorithm : FFT (N, x[n])
if N = 1 then

return x[0]
else

E[k] = FFT (N/2, x[2n])
O[k] = FFT (N/2, x[2n+ 1])
for k = 0 to N/2 do

X[k] = E[k] + e
−2iπk

N O[k]

X[k +N/2] = E[k]− e
−2iπk

N O[k]
end for
return X[k]

end if
▶ Classical divide and conquer approach.

▶ Recurrent algorithm often called butterfly due to the crossing of even/odds.

▶ Can be implemented with limited memory use only O(N)

▶ Has been extended to general N through factorization.

▶ The inverse FFT can be computed with IFFT (X[k]) = 1
N
FFT (X∗[k])∗
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Fast Fourier Transform (4)

Complexity of FFT

The complexity C(N) of FFT (N, x[n]) car be obtained from the recurrence:

C(N) = 2C(
N

2
) + 4N

Let us suppose that L = log2(N) is an integer, then we have:

C(N)

N
=

C(N
2
)

N
2

+K

where K = 4. With T (L) = C(N)
N

we can see that

T (L) = T (L− 1) +K = T (0) +

L−1∑

l=1

K = O(KL+ T (0))

Since T (0) = 0 we recover the final complexity:

C(N) = O(KN log2(N))
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Fast convolution

Convolution for finite signals

When two signals x[n] and h[n] have a support on [0, N − 1] their convolution is

y[n] = x[n] ⋆ h[n] =

N−1∑

k=0

x[k]h[n− k]

and the support of the convolution is in [0, 2N − 1]. Computing the values on the
support is O(N2).

Fast convolution with zero-padding

▶ In order to avoid border effect we define two signals a[n] and b[n] of periodicity
2N such that:

a[n] =

{
x[n] for 0 ≤ n < N
0 for N ≤ n < 2N

, b[n] =

{
h[n] for 0 ≤ n < N
0 for N ≤ n < 2N

▶ This procedure is called zero-padding and ensures that the circular convolution
c[n] = a⃝⋆ b[n] can recover the regular convolution:

c[n] = y[n] for 0 ≤ n < 2N. (38)

▶ The complexity of Fast convolution with zero-padding is O(N log2(N)).
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Finding the most efficient convolution

Convolution between two signals of different support

▶ In applications we often have two signal x[n] and h[n] that have different lengths
N and M .

▶ Complexity for the different convolution approaches is:

▶ Direct computation: O(NM)
▶ FFT computation : O(max(M,N) log2(max(M,N)))

▶ Some applications such as convolutional neural networks have a very small M
and direct implementation is more efficient.

choose_conv_method Scipy function

▶ Scipy convolution scipy.signal.convolve automatically selects the more efficient
(and precise enough) approach.

▶ Function choose_conv_method in module scipy.signal.signaltools.

▶ Compare the number of operations for FFT and direct implementation.

▶ Can also do a quick benchmark to find which is the fastest in practice.
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FFT implementations

FFT in the real world

▶ FFT is a standard algorithm implemented in numerous numerical libraries.

▶ Implementations for all types of input (float, double, complex).

▶ Implementation for all devices (X86, ARM, GPU, DSP).

▶ Implemented in Numpy and Scipy.

Common implementations

▶ FFTPACK FORTRAN [Swarztrauber, 1982] ( public domain).

▶ GNU scientific library [Galassi et al., 1996] (GPL).

▶ Intel Math Kernel Library (proprietary).

▶ FFTW Fastest Fourier Transform in The West [Frigo and Johnson, 1998] (GPL).

▶ pyFFTW a python wrapper for FFTW (GPL).

▶ CuFFT Runs on GPU [NVIDIA, 2013], C and Python (proprietary).
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Applications of Digital Signal Processing

Digital Signal Processing

▶ Processing of signals after Analog to Digital Conversion.

▶ Can be implemented on any general purpose computer or on dedicated
devices/chips for more efficiency.

▶ Objectives of DSP include denoising, signal reconstruction and source separation.

Applications discussed in the following

▶ Digital filter design.

▶ Interpolation.

▶ Digital Image Processing.

▶ Convolutional neural networks.
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Digital filter design

▶ Digital Filter design follows the same objective as Analog filter designs.

▶ For finite signal already in memory ideal filtering is possible with FFT.

▶ When filter has to be applied in real time one needs to find the parameters of a
recursive IIR filter or FIR filter.

▶ Scipy provides several digital filter design functions.

Approaches for digital filter design

▶ Window design method (FIR): Sample and truncate the impulse response of an
analog filter.

▶ Least Mean Square Error method (FIR): Find the coefficients of the FIR that
approximates the best in the square error sens the objective filter in frequency.

▶ Bilinear transform (IIR): non-linear approximation of the transfer function on an
analog filter.
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Window design method
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Principle

h[n] =

{
h(nT ) for −M ≤ n ≤ N

0 else

▶ The sampling can lead to aliasing, the truncation leads to ripples in frequencies.

▶ Works better for low frequencies and large M,N .

▶ Can be used to approximate the ideal filter:

h(t) = 2fc
sin(2πfct)

2πfct
= 2fcsinc(2πfct)

▶ Example above with fc = 0.1, M = 19, N = 20.
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Bilinear transform

Principle

▶ For a continuous time transfer function that can be expressed as

H(f) = H0(2iπf)

▶ The bilinear transformation use the change of variable:

2iπf → F (e2iπf ) =
2

T

1− e−2iπf

1 + e−2iπf
=

2

T

1− z−1

1 + z−1
=

2

T
i tan(πf)

T is a parameter that can be used to change the cutoff frequency.

▶ The digital Filer z-transform can be expressed as:

Hd(z) = H0

(
2

T

1− z−1

1 + z−1

)

▶ Null frequency in continuous maps to null frequency in discrete.

▶ Infinite frequency in continuous maps to 1/2 in discrete.

▶ Bilinear transform preserves stability properties.

58/80

Examples of bilinear transform
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First order system

▶ The transfer function for a first order low-pass filter is of the form:

H(f) =
1

1 + i2πf
2πf0

▶ The discrete transfer function can be recovered from

Hd(z) =
1

1 + 2
2πf0T

1−z−1

1+z−1

=
1− z−1

1 + 2
2πf0T

+
(
1− 2

2πf0T

)
z−1

▶ Comparison above for first order low-pass and second order Butterworth
band-pass filter.
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Application : motor imagery BCI

Motor imagery on ElectroEncephaloGraphy

▶ Motor Imagery is a paradigm of Brain Computer Interfaces (BCI).

▶ Uses the µ rhythms in the motor cortex (Band [8-40]Hz).

▶ The subject concentrates on a movement (right or left hand).

▶ The contralateral area of the motor cortex sees a desynchronization (lower energy
in the band) similar to a real movement [Roth et al., 1996].

▶ Butterworth filter of order 5 used to perform filtering [Lotte and Guan, 2010].

▶ Used to control a cursor or a movement of a machine.
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Application : motor control BCI

Prediction of arm movement from (EcoG) [Pistohl et al., 2008]

▶ ElectroCorticoGram implanted on patient suffering from pharmaco-resistant
epilepsy.

▶ Recording of simultaneous arm movement and EcoG signals from patients.

▶ Use a model to predict arm movement from EcoG signals.

▶ Potential applications in prosthetics and robotics.

▶ Signals filtered using a discrete a Savitzky-Golay filter (order 3,win 0.75 sec).
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Limited band signal interpolation

Sinc interpolation

▶ Interpolation of a sampled signal with the Nyquist/Shannon sampling Theorem 4
can be very expensive since the sinus cardinal has an infinite support.

▶ Computing M samples from N will be O(MN).

Fast interpolation

▶ Fast interpolation from N to M can be done using FFT with the Following steps:

1. X[n]← Compute FFT of x[n] of size N .

2. Xi[k]←





X[k]M
N

for 0 ≤ k < N//2

X[k −M +N ]M
N

for M −N/2 ≤ k < M

0 else

(zero padding)

3. xi[n
′]← Compute IFFT of Xi[k] of size M .

▶ The M
N

is because the FFT is not normalized.

▶ For a sampling frequency of T = 1 of x[n], sample xi[n
′] corresponds to t = n′ N

M
.

▶ For M > N complexity for the interpolation is O(M log2(M)).
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Fast interpolation example
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X, N = 32
Xi, M = 256

Interpolation example

▶ Interpolation of rectangular function.

▶ N = 32,M = 256.

Python code

1 X=np.fft.fft(x) # FFT

2 Xi=np.zeros(M)+0*1j # Initalize complex vector at 0

3 Xi[:N//2]=X[:N//2] # Positive low frequencies

4 Xi[-N//2:]=X[N//2:]# Negative low frequencies

5 xi=np.fft.ifft(X2*M/N) # Scaling + IFFT

6 ti=np.arange(M)*N/M # position in time of the interpolated samples
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Digital Image Processing
x[m,n] x*h[m,n], P=3 x*h[m,n], P=5 x*h[m,n], P=11 x*h[m,n], P=21

Digital images
▶ We now all have a digital camera in our pockets.

▶ Image capture has several limits:

▶ Noise (especially at low illumination).
▶ Motion blur on camera.
▶ Limited resolution (apperture and sensor).

▶ Images are stored in memory as a matrix of integers (or float).

Signal processing in 2D
▶ All results seen up to now can be extended to 2D.

▶ In images one does not need causality (whole image available).

▶ Filters in 2D are often FIR filter.

▶ Small filters of the building blocks of Convolutional Neural Networks (CNN).
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Image convolution
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2D convolution

x ⋆ h[m,n] =
∑

k,l

x[k, l]h[m− k, n− l]

▶ In practice x[m,n] is often a large image and the filter h[m,n] a small filter (also
called kernel).

▶ h[m,n] is often of odd size and its support centered around (0, 0).

▶ Similarly to finite discrete signal there exists a circular 2D convolution that can
be computed with FFT.
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2D Fast Fourier Transform
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2D FFT

▶ let x[m,n] be a finite image of size (M,N).

▶ The 2D DFT of the image is:

X[u, v] =

M,N∑

m=0,n=0

x[m,n]e−2iπ(um
M

+ vn
N ) =

M∑

m=0

(
N∑

n=0

x[m,n]e−2iπ vn
N

)
e−2iπ um

M

▶ The DFT for each index/direction of the image are separable.

▶ Can be performed in O(MN log2(N) +NM log2(M)).
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2D basis functions
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The basis functions
eu,v[m,n] = e−2iπ(um

M
+ vn

N )

correspond to a dirac in the frequency domain.
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Border effects on FFT
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▶ DFT/FFT supposes that an image is periodic in space.

▶ Large differences between values at opposite borders can lead to high frequencies
not existing in the original image.

▶ This can be attenuated using ”windowing” or apodization that consists in
attenuation the borders of the images.

▶ This spatial multiplication corresponds to a convolution (filtering) in the
frequency domain (see next course).
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Classical 2D filters (1)
x[m,n] x*h[m,n], P=3 x*h[m,n], P=5 x*h[m,n], P=11 x*h[m,n], P=21

Average filtering

ha,P [m,n] =

{
1
P2 for |m| < P/2 and |n| < P/2

0 else
, ha,3 =




1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9




▶ Classical low pass filter (with P odd).

▶ Parameter P defines its width and cutoff frequency

▶ Its FT is a multiplication of sinc in both directions (non isotropic):
H[u,v], P=1 H[u,v], P=3 H[u,v], P=5 H[u,v], P=11 H[u,v], P=21
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Classical 2D filters (2)

x1[m, n] |x1 * h[m, n]| x2[m, n] |x2 * h[m, n]|

Spatial high pass

h =




0 −1 0
−1 4 −1
0 −1 0



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▶ Compute de difference between the center pixel and its neighbors.

▶ Non isotropic filter.

▶ Use absolute value of the output to detect area with large changes.
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Classical 2D filters (3)

x[m,n] Prewitt horiz. Prewitt vert. Sobel horiz. Sobel vert.

Edge detectors
▶ Prewitt edge detector

ph =
1

3



−1 0 1
−1 0 1
−1 0 1


 , pv =

1

3



−1 −1 −1
0 0 0
1 1 1



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▶ Sobel edge detector

sh =
1

4



−1 0 1
−2 0 2
−1 0 1


 , sv =

1

4



−1 −2 −1
0 0 0
1 2 1



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▶ Combination of a low pass in one direction and high-pass in the other.
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Classical 2D filters (4)
x[m,n] Average P=3

Median P=3

Average P=5

Median P=5

Average P=11

Median P=11

Average P=21

Median P=21

Median filtering

▶ Compute de median in a window of width P .

▶ Robust version of the average filter

▶ Non linear (no impulse response or FT representation).

▶ Bette able to preserve high frequencies and large objects details.

▶ There exists a whole family of more complex non-linear morphological filter.
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Total Variation (TV)
TV(x)=5.552e+03 TV(x + n)=1.683e+04 TV(y)=5.212e+03 TV(y + n)=1.711e+04

▶ In images of man-made objects, we often have near constant parts in the image.

▶ One way to measure the presence of those constant parts is called the Total
Variation that can be expressed in its anisotropic version as:

TV (x) =
∑

m,n

|x[m+ 1, n]− x[m,n]|+ |x[m,n+ 1]− x[m,n]|

▶ It can be reformulated (forgetting border effects) as:

TV (x) = ∥x ∗ dv∥1 + ∥x ∗ dh∥1, with dh =
[
−1 1

]
, dv =

[
−1
1

]

where dv and dh are finite differences derivations and ∥y∥1 =
∑

m,n |y[m,n]|.
▶ The presence of noise tends to introduce high frequencies and to greatly increase

the TV of an image.
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Total Variation denoising
x[m,n]

x[m,n] with noise

TV =0.01

TV =0.01

TV =0.1

TV =0.1

TV =0.2

TV =0.2

TV =0.5

TV =0.5

▶ Since TV increases with noise, one would want to use it for denoising.

▶ Total Variation denoising of image y can be expressed as

min
x

∥x− y∥2F + λTV (x)

where ∥ · ∥F is the Fobenius norm of a matrix.

▶ We want the denoised image x to be close to y but also have a small TV.

▶ It is a convex but non-smooth optimization problem.
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Deep learning

Deep neural network [LeCun et al., 2015]

f(x) = fK(fK−1(...f1(x)...)) (39)

▶ f is a composition of basis functions fk of the form:

fk(x) = gk(Wkx+ bk) (40)

▶ Wk is a linear operator and bk is a bias for layer k.

▶ gk is a non-linear activation function for layer k.

▶ Function f parameters {Wk,bk}k are learned from the data.
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Convolutional Neural Network (CNN)

▶ Replace the linear operator by a convolution [LeCun et al., 2010].

▶ Reduce image dimensionality with sub-sampling or max pooling.

▶ Number of parameters depends on the size fo the filter, not the image.

▶ Recent deep CNN use Relu activation [Glorot et al., 2011]: g(x) = max(0,x).
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