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Graphs are everywhere
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e Classical approach: spectral and Fourier based analysis and processing (GNN)

e What we will talk about: modeling graph as probability distributions (and use OT)
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Optimal Transport and divergences
between graphs



Gromov-Wasserstein and Fused Gromov-Wasserstein

BES

|dx (z,2") — dy(y,y')
Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]
GWh (s, jie) = min Z |Di e — Dy |PTs,5 Try

TE (ps,pmt
(s spt) Py

with s = 37, aidx; and py = 35, b50,¢ and Dy = |[x7 — x; |, D)y = ||Ixt — x|
e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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Gromov-Wasserstein and Fused Gromov-Wasserstein

FGW for discrete distributions [Vayer et al., 2018]
FOWh (s, ) = min > (1~ a)Cf 5+ o] D — D5l ) T s Tr

i.J
TEM (s, pt) <
gk

with s = 37, aidx; and gy = 35, b50,¢ and Dix = |[x7 — x; |, D)y = ||Ixt — x|
e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.
e Entropy regularized GW proposed in [Peyré et al., 2016].
e Fused GW interpolates between Wass. and GW [Vayer et al., 2018].
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Unbalanced and semi-relaxed GW

Unbalanced Gromov-Wasserstein [Séjourné et al., 2020]
min > D — DjlPTi; Tii + A Dy(T1pm,a) + XDy (T ' 1,,b)

TeMuspe) 0
e The marginal constraints are relaxed by penalizing with divergence D.,.
e Partial GW proposed in [Chapel et al., 2020]
e Unbalanced FGW [Thual et al., 2022] and Low rank [Scetbon et al., 2023].

Semi-relaxed (F)GW [Vincent-Cuaz et al., 2022a]
min Z |D77k — D;-’l|pT¢,j Tkyl

T7>0,T1,,=a
oo 0,5,k

e Second marginal constraint relaxed: optimal weights b w.r.t. GW.
e Very fast solver (Frank-Wolfe) because constraints are separable

GW(C, h,C,h)=0.219 srGW(C, h, C) = 0.05 srGW(C, h,C) =0.113
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Gromov-Wasserstein between graphs
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Graph as a distribution (D, F, h)
e The positions x; are implicit and represented as the pairwise matrix D.

e Possible choices for D : Adjacency matrix Laplacian, Shortest path, ...

Adjacency
mau

Shortest path
matrix

e The node features can be compared between graphs and stored in F.

e h; are the masses on the nodes of the graphs (uniform by default).
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OT plan for graph alignment

Shape matching between surfaces with GW [Solomon et al., 2016]

Source
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GW alignment of word embedding spaces [Alvarez-Melis and Jaakkola, 2018]

Intra-Lang. Similarities (EN)

most
york
station
media

Z never
went

means

vet

@ &
& EF ¢

=

’Intra-Lang. Similarities (IT)

alle
oltre
allenatore
scrittore
presenza
contea

lato

dallo

difesa

Optimal GW Coupling

most
york
station
media

Z never
went

means

vet

© P
S
& &
& g

7/33



OT plan for brain alignment between individual geometries

Source subject s

Target subject t.

Fused Unbalanced Gromov-Wasserstein [Thual et al., 2022]

Training (cross-validated grid-search)
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Learning graph representation with
optimal transport



GW and FGW : the swiss army knife of OT on graphs

ey =i

|dx (2, 2") = dy(y.y)

GW and extensions

e GW [Memoli, 2011] and FGW [Vayer et al., 2018] are versatile distances for graph
and structured data seen as distribution.

e Unbalanced [Séjourné et al., 2020] and semi-relaxed [Vincent-Cuaz et al., 2022a].

GW tools
e OT plan gives interpretable alignment between graphs.
e GW geometry allows barycenter and interpolation between graphs.

e GW provides similarity between graphs (data fitting).
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(F)GW barycenter

Euclidean barycenter FGW barycenter
A (Da, i2)
&y T3 (D1, 1) (stﬂs)
min Y, Aillx — zx||? DQ%BnHEiAi]:gW(Di’D’W’“)
X )

FGW barycenter
e Estimate FGW barycenter using Fréchet means ([Peyré et al., 2016] for GW).
e Barycenter optimization solved via block coordinate descent (on T, D, u).
e Extention of K-means clustering to FGW [Vayer et al., 2019a].
e Use for data augmentation /mixup in [Ma et al., 2023].
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(F)GW barycenter

Noisy graphs samples
FGW barycenter
e Estimate FGW barycenter using Fréchet means ([Peyré et al., 2016] for GW).
e Barycenter optimization solved via block coordinate descent (on T, D, u1).

e Extention of K-means clustering to FGW [Vayer et al., 2019a].
e Use for data augmentation /mixup in [Ma et al., 2023].

10/33



(F)GW barycenter
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(F)GW barycenter
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FGW barycenter
e Estimate FGW barycenter using Fréchet means ([Peyré et al., 2016] for GW).
e Barycenter optimization solved via block coordinate descent (on T, D, u1).
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(F)GW barycenter

Noisy graphs samples Barycenter

3OS B P
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e Estimate FGW barycenter using Fréchet means ([Peyré et al., 2016] for GW).

FGW barycenter

e Barycenter optimization solved via block coordinate descent (on T, D, u1).
e Extention of K-means clustering to FGW [Vayer et al., 2019a].
e Use for data augmentation /mixup in [Ma et al., 2023].
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FGW for graphs based clustering

Centroids
Training dataset examples »iter

cluster 1

ster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the F'GW barycenter

11/33



Graph representation learning: Dictionary Learning

Examples GDL unmixing w® with A =0.001
\? o Class1

Class 2 mind?,,(B({1 Nl ),C) %
7

Class 3

Representation learning for graphs

1 ~
{Crlr{wi}i Z

e Learn a dictionary {Cy}x of graph templates to describe a continuous manifold.

The representation is learned by minimizing the (F)GW distance between the

graph reconstruction from the embedding in the dictionary.

Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].
C(w) =Y, wiCy

e GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].
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Graph representation learning: Dictionary Learning

Examples GDL unmixing w® with A = 0.001
Class 1

. Class 2 mind?,,(B({1 Nl ),C) %
7

Class 3

2

Representation learning for graphs

1 ~
~ min  — GW(C;, C(w;))
{CrklrAwilts 21:

e Learn a dictionary {Cy}x of graph templates to describe a continuous manifold.

The representation is learned by minimizing the (F)GW distance between the

graph reconstruction from the embedding in the dictionary.
Online Graph Dictionary learning : Linear model [Vincent-Cuaz et al., 2021].
e GW Factorization : Nonlinear (GW barycenter) model [Xu, 2020].

~

C(w) = argming >, wxGW(C, Ci)
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Supervised learning with OT on graphs




Graph Classification

Graph kernels and FGW
e Graph kernels still SOTA on many datasets : WWL [Togninalli et al., 2019].
e FGW can be used in a non-positive "kernel” [Vayer et al., 2019b].

e Graph dictionary learning methods provide euclidean embeddings for kernels
[Vincent-Cuaz et al., 2021, Vincent-Cuaz et al., 2022a].

Graph Neural Networks [Bronstein et al., 2017]
¢'u,l(./}|f25f5ﬂ;) ¢u, (I 15 551)

1 ¢.,,,(4;)Tf\ \gb,,”(f,)
’(/z) LN ] / ¢u,,(lz)

@, (%)
o) R0, 0
Dy, (1)

e Each layer of the GNN compute features on graph node using the values from the
connected neighbors : message passing principle.

e The final pooling step must remain invariant to permutations (min, max, mean).

e Can we encode graphs as distributions in GNN?
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Template based Graph Neural Network with OT Distances

TFGW layer
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Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022b]
e Principle: represent a graph through its distances to learned templates.
e Novel pooling layer derived from OT distances.
e New end-to-end GNN models for graph-level tasks.
e Learnable parameters are illustrated in red above.
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TFGW benchmark

category model MUTAG PTC | ENZYMES | PROTEIN | NCIL IMDB-B | IMDB-M | COLLAB
Ours TFGW ADJ (L=2) || 96.4(3.3) | 72.4(5.7) | 73.8(4.6) | 82.9(2.7) | 88.1(2.5) || 78.3(3.7) | 56.8(3.1) | 84.3(2.6)
(éu=GIN) | TFGW SP (L=2) || 94.8(3.5) | 70.8(6.3) | 75.1(5.0) | 82.0(3.0) | 86.1(2.7) | 74.1(5.4) | 54.9(3.9) | 80.9(3.1)
OT emb. OT-GNN (L=2) | 91.6(4.6) | 68.0(7.5) | 66.9(3.8) | 76.6(4.0) | 82.9(2.1) | 67.5(3.5) | 52.1(3.0) | 80.7(2.9)
OT-GNN (L=4) || 92.1(3.7) | 65.4(9.6) | 67.3(4.3) | 78.0(5.1) | 83.6(2.5) || 69.1(4.4) | 51.9(2.8) | 81.1(2.5)
WEGL 01.0(3.4) | 66.0(2.4) | 60.0(2.8) | 73.7(1.9) | 75.5(1.4) | 66.4(2.1) | 50.3(1.0) | 79.6(0.5)
GNN PATCHYSAN 01.6(4.6) | 58.9(3.7) | 55.9(4.5) | 75.1(3.3) | 76.9(2.3) || 62.9(3.9) | 45.9(2.5) | 73.1(2.7)
GIN 90.1(4.4) | 63.1(3.9) | 622(3.6) | 76.2(2.8) | 82.2(0.8) | 64.3(3.1) | 50.9(1.7) | 79.3(1.7)
DropGIN 80.8(6.2) | 62.3(6.8) | 65.8(2.7) | 76.9(4.3) | 81.9(2.5) | 66.3(4.5) | 51.6(3.2) | 80.1(2.8)
PPGN 00.4(5.6) | 65.6(6.0) | 66.9(4.3) | 77.1(4.0) | 82.7(1.8) || 67.2(4.1) | 51.3(2.8) | 81.0(2.1)
DIFFPOOL 86.1(2.0) | 45.0(5.2) | 61.0(3.1) | 71.7(1.4) | 80.9(0.7) | 61.1(2.0) | 45.8(1.4) | 80.8(1.6)
Kernels FGW - ADJ 82.6(7.2) | 55.3(8.0) | 722(4.0) | 72.4(4.7) | 74.4(2.1) | 70.8(3.6) | 48.9(3.9) | 80.6(1.5)
FGW - SP 84.4(73) | 55.5(7.0) | 70.5(6.2) | 74.3(3.3) | 72.8(1.5) || 65.0(4.7) | 47.8(3.8) | 77.8(2.4)
wL 87.4(5.4) | 56.0(3.9) | 69.5(3.2) | 74.4(2.6) | 85.6(1.2) | 67.5(4.0) | 48.5(4.2) | 78.5(1.7)
WWL 86.3(7.9) | 52.6(6.8) | 71.4(5.1) | 73.1(1.4) | 85.7(0.8) || 71.6(3.8) | 52.6(3.0) | 8L4(2.1)

Gain with TFGW +4.3 +4.4 +2.9 +4.9 +2.4 +6.7 +4.2 +2.9

e Comparison with state of the art approach from GNN and graph kernel methods.

Systematic and significant gain of performance with GIN+TFGW.
Gain independent of GNN architecture (GIN or GAT).

3 year after publication, rankings of TFGW on " papers with code”:
#1 NCI1, #2 COLLAB, IMDB-M, #3 MUTAG, PROTEIN.

e Experiments suggests that TFGW has expressivity beyond Weisfeiler-Lehman

Isomorphism tests.
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Supervised Graph prediction

Image Input

or
Text Input
>
or

Graph Input

Supervised graph prediction (a.k.a graph regression)

Graph Ouput

e Objective : learn a function f predicting a graph g from an input z.

e Applications of SGP:
e knowledge graph extraction [Melnyk et al., 2022]

e Natural language processing [Dozat and Manning, 2017]
e Molecule identification in chemistry [Brouard et al., 2016]

e Surrogate based methods [Brouard et al., 2016, El Ahmad et al., 2024]:

e Represent graph as a vector in a high dimensional space (RKHS).

e Learn a mapping from input to this space.

e Decode the vector to a graph (e.g. search among finite candidates).

e Linear regression of Adjacency matrix [Calissano et al., 2022].
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Structured prediction with conditional FGW barycenters

M %
w argmin ) @FGW(EZ) %

J=1

~
o
-

Structured prediction with GW barycenter [Brogat-Motte et al., 2022]

F(x) = C(w(x)) = argming ¥, wi (x)GW(C, Cy)

Prediction of the graph with a GW barycenter with weights conditioned by x.

Dictionary {Cy}% and conditional weights w(z) learned simultaneously with

. 1
min N;GW(f(xi),Ci)

{Crlew(")

e Both parametric and non parametric estimators [Brogat-Motte et al., 2022].

e Very powerful but slow at training and prediction due to barycenter computation.
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Structured prediction with conditional FGW barycenters
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Structured prediction with GW barycenter [Brogat-Motte et al., 2022]

F(x) = C(w(x)) = argming ¥, wi (x)GW(C, Cy)

Prediction of the graph with a GW barycenter with weights conditioned by x.

Dictionary {Cy}% and conditional weights w(z) learned simultaneously with

. 1
min NZGW(]”(XZ)CZ)

{Crlew(")

e Both parametric and non parametric estimators [Brogat-Motte et al., 2022].

e Very powerful but slow at training and prediction due to barycenter computation.
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Graph prediction with deep learning

Predicted
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Transformer Relation Prediction

Relationformer [Shit et al., 2022]
e Predict a graph of max size M and activation scores for nodes to keep.
e Encoder-Decoder Transformer to predict node embeddings.

e Loss solves linear assignment problem (Hungarian) and uses assignment in
quadratic loss between graphs of same size (padding the target).

e Fast prediction (thresholding) of graphs but focused on Image2Graph.
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Any2Graph framework

ENCODER TRANSFORMER GRAPH DECODER PM-FGW Loss
©)
Input data TRANSFORMER ©) TRANSFORMER
dependent ENCODER O DECODER
o
Input Set Of Features Nodes queries Nodes Embeddings Predi‘ctign Paddeci Target

Principle [Krzakala et al., 2024]
e End-to-end supervised graph prediction with a deep learning framework.

e Learning optimization problem:

min %Zlﬁ(fe(mvz)ﬂ’(gi)) (1)

{i, g:} are the input/output training data and P is a padding operator.
e fy is a transformer neural network with fixed max number of nodes M.

fo also predicts is a padding vector h (selection of subset of nodes).

e L is an optimal transport based loss for permutation invariant prediction. 103



End-to-end SGP pipeline

:

Target Graph
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End-to-end SGP pipeline

01
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1 0 Adjacency

Matrix
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End-to-end SGP pipeline

1 0o 1 - 01

1 1 0 —-| «<— ( ) <~
o] \- - - Padding 10

h A

e Pad target graphs to have same size M.

20/33



End-to-end SGP pipeline

Input

(e )e—()

h A

e Pad target graphs to have same size M.
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End-to-end SGP pipeline

h A
fo 0.8 0 09 01
x — > (09] fo9o 0o o1
01/ \02 01 0

(2)

h A

(2’3‘)<_ 0 —

e Pad target graphs to have same size M.

e Predict with fy (continuous) size M graph with padding vector h.
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End-to-end SGP pipeline

h A
f9 0.8 0 09 0.1
x — 3y 09| o9 o m)
0.1 02 01 0

L(fo(=), P(9))

() (e )e— (0 —

h A

e Pad target graphs to have same size M.

e Predict with fy (continuous) size M graph with padding vector h.
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End-to-end SGP pipeline

f0 0.8 0 09 0.1 Tresholding (0 1)
X — 3y {09) (09 0 01| — >
0.1 02 01 0 10
Our loss

R R R

e Pad target graphs to have same size M.
e Predict with fy (continuous) size M graph with padding vector h.
e Minimize OT loss L between predicted and padded target graphs.
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End-to-end SGP pipeline

Prediction
fg 0.8 0 09 0.1 Tresholding 0 1
x — > 09| |09 0 01| — > ( ) _ >
0.1 02 01 0 10
Our loss Discrete Loss

e )e— 10—

e Pad target graphs to have same size M.

Predict with fp (continuous) size M graph with padding vector h.

e Minimize OT loss L between predicted and padded target graphs.

At test time, thresholding recovers discrete graph.
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Partially-Masked Fused Gromov-Wasserstein (PM-FGW)

Definition of PM-FGW
PM-FGW(g,y) = min Lt (4,y)

Telly
with L1 (9,y ZT,J&L hi, hy) Padding loss
+ % ZTi’-fgf(fi»fj)hj Feature loss
47
C% Z T Trgla(A; i, Aji)hjha. Structure loss
gkl

e /1, {s and {4 are loss functions for node, feature and adjacency matrix
discrepancies (Kullback-Leibler when target discrete, Squared loss when
continuous feature).

e ap, af and aa are hyperparameters on the simplex.

e Loss is highly asymmetric due to the right masking by h.

Can be solved by Conditional Gradient with O(M?®log M) iteration.
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Illustration of PM-FGW loss

é(a, h) = ﬁ(ga,hvp(g)) é(av h) = ED(p_l(fga,h)yg)

1.0 1

e The target graph is g = (F, A) with

P (i) ()

e The prediction §j,., = (h, F,A) is
1 f1 0 a 1—a
h= h ;f‘ =|f ;A = a 0 0
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Any2Graph Neural network architecture

ENCODER TRANSFORMER GRAPH DECODER PM-FGW Loss
O
Input data  TRANSFORMER O ' TRANSFORMER
dependent ENCODER O DECODER
O
Inp‘ut Set Of Features Nodes queries Nodes En;heddings Padded Target

e The encoder extract a set of features  — (V1,..., V) € RF*¢

The transformer translate them into M nodes embedding
(Z17 sy Z[y[) —c RA/IXd

e The decoder produce the graph following
hi = o(MLP,,(z:)) Vie{l,...,M}
F; = MLP(z;) Vie{l,...,M}
Ai; = o(MLP4(z; + 2;)) Vi,je{1,...,M}?

e Similar to Relationformer [Shit et al., 2022] but with symmetric adjacency matrix.
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Any2Graph Prediction performances

Input Target Relationformer

@y
S
3

Figure 1: Qualitative comparison of Any2Graph
(ours) and Relationformer.

Any2Graph

Colorin,

USCities

g e
o 12231256 1324

1882 1958

DATASETS MODEL EDIT DISTANCE |
FGWBARY-NN* 6.73
COLORING | RELATIONFORMER 5.47
ANY2GRAPH (OURS) 0.20
TOULOUSE FGWBARY-NN* 8.11
‘ RELATIONFORMER 0.13
ANY2GRAPH (OURS) 0.13
v | RELATIONFORMER 2.09
USCrries ANY2GRAPH (OURS) 1.86
FGWBARyY-ILE* 2.84
QM9 RELATIONFORMER 3.80
ANY2GRAPH (OURS) 2.13
. RELATIONFORMER 8.83
GDB13 ANY2GRAPH (OURS) 3.63

Table 1: Prediction performances
measured with (test) edit distance.
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Scaling graph OT solvers with neural
networks




Challenges of Graph OT for large scale applications

o} o}
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O™™\_0H ™ han W
Challenges

e OT solvers (GW/FGW) iter. scale cubically with the number of nodes.
e Large graphs (thousands of nodes) are too slow for many applications.

e Approximate entropic solvers exists [Peyré et al., 2016, Thual et al., 2022] but
still slow and dense OT plans are sub-optimal for graphs.

Scaling OT on graphs with Neural Networks
m_}nLOT(T,G,G) = In@inLOT(Tg,G,é)

e Learn to optimize with armortized optimization [Amos et al., 2022].
e Predicting the OT plan for large dataset of small graphs [Krzakala et al., 2025].

e Prediction the Unbalanced OT plan between large graphs [Mazelet et al., 2025].
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1 : i Al 1 i Ay i A
N ZII%HLOT(T,G G = min ZL()T(T@(G ,G"),G",GY)
e Learn to optimize with armortized optimization [Amos et al., 2022].

e Predicting the OT plan for large dataset of small graphs [Krzakala et al., 2025].

e Prediction the Unbalanced OT plan between large graphs [Mazelet et al., 2025].
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GRAph Level autoEncoder (GRALE)
Graph Reconstruction Loss
NP (Exact) orP 1apper ) O(N?®)
Graph Reconstruction Loss E
e plem)q

P <ﬂ
I gég» ol ol o B2 | Boe] e |83

Naive Graph Matching Free

NODE LEVEL AUTOENCODER GRAPH LEVEL AUTOENCODER

GRALE [Krzakala et al., 2025]
e Train a Graph Level AutoEncoder : Graph2Vec + Vec2Graph.
e Build on Any2Graph architecture for graph decoding [Krzakala et al., 2024].
e Use node embeddings to predict OT plans and optimize PM-FGW loss.
e Train simultaneously the Graphs encoder/decoder and the OT plan predictor.

e Use Evoformer [Jumper et al., 2021] for graph encoding and decoding (new).

Train on large datasets of small graphs (Coloring, Molecules).
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GRALE experiments

Vodel COLORING PUBCHEM 16 PUBCHEM 32
ode Edit. Dist. () | Gl Acc. (1) | Edit. Dist. (}) | Gl Acc. (1) | Edit. Dist. (1) | Gl Acc. (1)
GraphVAE 2.13 35.90 3.72 07.8 N.A. N.A.
PIGVAE* 0.09 85.30 1.69 41.0 2.53 24.91
GRALE 0.02 99.20 0.11 93.0 0.78 66.80

Numerical experiments

o GRALE outperforms state-of-the-art AE competitors on reconstruction and graph

isomorphism accuracy.

e GRALE scales to large datasets of small graphs (80M graphs).

e GRALE learns a latent space where interpolation/averaging is possible.

e Embedding allows for semantic operations/editing on graphs.

e Pre-trained GRALE encoder/decoder improves downstream graph tasks
(regression, classification, graph prediction).
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Numerical experiments

GRALE outperforms state-of-the-art AE competitors on reconstruction and graph
isomorphism accuracy.

GRALE scales to large datasets of small graphs (80M graphs).
GRALE learns a latent space where interpolation/averaging is possible.
Embedding allows for semantic operations/editing on graphs.

Pre-trained GRALE encoder/decoder improves downstream graph tasks
(regression, classification, graph prediction).
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GRALE experiments

Embedding Space

Numerical experiments

GRALE outperforms state-of-the-art AE competitors on reconstruction and graph
isomorphism accuracy.

GRALE scales to large datasets of small graphs (80M graphs).
GRALE learns a latent space where interpolation/averaging is possible.
Embedding allows for semantic operations/editing on graphs.

Pre-trained GRALE encoder/decoder improves downstream graph tasks

(regression, classification, graph prediction).
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Unsupervised learning of OT plan prediction (ULOT)

GCN and cross attention layers "D Ntimes Unbalanced OT
plan layer

Linear
ap @ p N
ad @ P>l Linear + ap
Linear J-(MLP ﬁ—‘ === Pg?(Gy,Ga)
Linear |+ MLP __|tinear + ﬁ%
@, p-»| sigmoid
2, p

@p

Linear

ULOT for solving FUGW [Mazelet et al., 2025]
min  « Z |Die—Dj 1> Tiy Teg+(1—a ZC7JT7]—|—/)(D(T1,,,,,a)+D(TT1n,,b))

T>0
0,3,k,1 0,3

e Learn to predict Unbalanced OT plan Ty* (G, G’) between large graphs.

e Use graph neural networks and Attention layers to parametrize OT plan.

e Optimize the FUGW loss over large dataset of graph pairs and parameters «, p:
mein ZL‘EWP’G’GI [L?‘.'UPGW (Tg’p(Gv Gl)’ G? G,)}

e Provides after training a differentiable fast approximation of Unbalanced FGW for

large graphs (thousands of nodes). 2833



ULOT in practice

OT plan with respect to p for (1,2)-(2, 3) Optim. (a, p) with respect Optim. (a, p) with respect
to KL for (1,2,3)-(1,2) to KL for (1,2,3)-(1,2,3)
uLoT 1.0 1.0
@ Initialization
ﬁ % % X +  Convergence
Solver . )

&= &I
=1 &=L 02 10t 100

£=0.001 0=0.002 £=0.007 ) P

024 ® Initialization
Convergence

0.0

ULOT numerical experiments
e Trained on datases of simulated (SBM) and fMRI brain graphs (1000 nodes).
e Eficient computation of continuous regularization path in p, a.

e Differentiable OT layer wrt both input graphs and FUGW parameters p, a.

Correlation of 0.99 with exact FUGW loss on test set (fMRI dataset).

e Much faster than entropic OT approximation (100x) with similar performance.

Application on fMRI graph registration and prediction tasks.
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ULOT in practice

FUGW loss for ULOT and solver 0 04FUGW loss error and plan prediction time for ULOT and solvers
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ULOT numerical experiments

e Trained on datases of simulated (SBM) and fMRI brain graphs (1000 nodes).

e Eficient computation of continuous regularization path in p, a.

Differentiable OT layer wrt both input graphs and FUGW parameters p, .

Correlation of 0.99 with exact FUGW loss on test set (fMRI dataset).

Much faster than entropic OT approximation (100x) with similar performance.

Application on fMRI graph registration and prediction tasks.
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ULOT in practice
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ULOT numerical experiments
e Trained on datases of simulated (SBM) and fMRI brain graphs (1000 nodes).
e Eficient computation of continuous regularization path in p, a.
e Differentiable OT layer wrt both input graphs and FUGW parameters p, c.
e Correlation of 0.99 with exact FUGW loss on test set (fMRI dataset).

Much faster than entropic OT approximation (100x) with similar performance.

Application on fMRI graph registration and prediction tasks.
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Conclusion

Ch RO

Examples GDL unmixing w'® with A = 0.001

|dx (z,2") = dy (y.y)

Gromov-Wasserstein family for graph modeling

Graphs modelled as distributions, GVV can measure their similarity.
Extensions of GW for labeled graphs and Frechet means can be computed.

Weights on the nodes are important but rarely available : relax the constraints
[Séjourné et al., 2020] or even remove one of them [Vincent-Cuaz et al., 2022a].
Many applications of FGW from brain imagery [Thual et al., 2022] to Graph
Neural Networks [Vincent-Cuaz et al., 2022b].

OT is a powerful tool for (deep) graph structured prediction models
[Brogat-Motte et al., 2022, Krzakala et al., 2024].

Neural networks can help scale graph OT to large datasets or graphs
[Krzakala et al., 2025, Mazelet et al., 2025]. 30/33
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Thank you

o @ oe o @
@ ® © ® o9
@ ® @ ® o9
oo P o9
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Doc : https://pythonot.github.io/
Code : https://github.com/Python0T/POT
e OT LP solver, Sinkhorn (stabilized, GPU)
e Sliced OT, OT on sphere, Gaussian and Gaussian Mixture OT.
o Gromov-Wasserstein, Unbalanced.
e Barycenters, Wasserstein unmixing.

e Differentiable solvers for Numpy/Pytorch/tensorflow/Cupy

Course on OT for ML:
https://tinyurl.com/otml-course

Papers available on my website:
https://remi.flamary.com/

Looking for Msc interns or PhD students in Paris area!
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OTGame (OT Puzzle game on android)

OTGame

'
{ """ standard game 1/9 Timer:19s | New
\

https://play.google.com/store/apps/details?id=com.flamary.otgame
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

FE

° e u

@ Source s .. L
® Target

%

Entropic regularization [Cuturi, 2013]

We(ps, pe) = __min (T,C)p+ey TijlogT;

TEM(ps,kt) i
e Regularization with the negative entropy —H(T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
o, 8o
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Entropic regularization [Cuturi, 2013]

We(ps, pe) = Tel‘?(li?,ut) (T,C)p + E;Ti,j log T; ;

Regularization with the negative entropy —H (T).
e Looses sparsity, but strictly convex optimization problem [Benamou et al., 2015].
e Can be solved with the very efficient Sinkhorn-Knopp matrix scaling algorithm.

e Loss and OT matrix are differentiable and have better statistical properties
[Genevay et al., 2018].
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Approximating GW in the linear embedding

GW Upper bond [Vincent-Cuaz et al., 2021]
Let two graphs of order N in the linear embedding <Zg wgl)ﬁs> and (ZS w£2)ﬁs> ,
the GW divergence can be upper bounded by

oWa [ Y wDy, > w?PDs | < W = w? | (2)
s€[S] s€[S]

with M a PSD matrix of components M), = (DrD,, ﬁth>F, Dy, = diag(h).
Discussion

e The upper bound is the value of GW for a transport 7' = diag(h) assuming that
the nodes are already aligned.

e The bound is exact when the weights w® and w® are close.
e Solving GW with FW si O(N?®log(N)) at each iterations.

e Computing the Mahalanobis upper bound is O(S?) : very fast alterative to GW
for nearest neighbors retrieval.
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Solving the Gromov Wasserstein optimization problem

Optimization problem

GWP (s, =  min Dy — D5 y|PTy The
= i, 5 PP

t t

with s =37, aidx; and pe =37, b;0,0 and Dy = [Ix7 — x|, Djy =[x — x|

e Quadratic Program (Wasserstein is a linear program).
e Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

e Large problem and non convexity forbid standard QP solvers.

Optimization algorithms
e Local solution with conditional gradient algorithm
(Frank-Wolfe) [Frank and Wolfe, 1956].

e Each FW iteration requires solving an OT problems.

e Gromov in 1D has a close form (solved in discrete with
a sort) [Vayer et al., 2019c].

e With entropic regularization, one can use mirror descent
[Peyré et al., 2016] or fast low rank approximations
[Scetbon et al., 2021].
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Entropic Gromov-Wasserstein

Optimization Problem

GWp c(pss ) = _min > Dy — Dy [PTiy Tua+ €y TijlogTiy;  (3)
Tel(us,nt) | Tl i.j

with ps = 37, aidxs and py = 3, bj5m§ and D, = ||x — x3 ||, D}, = [|x5 — x{||

J

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic GV [Peyré et al., 2016]
e Problem (3) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T = min (T,GY) +ed> Tilog Ty,
0]

Where Gitj) =2, 1Dk — D;JV’T,SZ) is the gradient of the GW loss at previous
point "),

e Problem above solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021].
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Solving the unmixing problem

Optimization problem

. 2 - 2
min - GW;3 > w.Ds, D | - \wl|3
s€[S]
e Non-convex Quadratic Program w.r.t. T and w.
e GW for fixed w already have an existing Frank-Wolfe solver.

e We proposed a Block Coordinate Descent algorithm

BCD Algorithm for sparse GW unmixing [Tseng, 2001]
1. repeat
2. Compute OT matrix T of GW3(D, " w.D;), with FW [Vayer et al., 2018].
3:  Compute the optimal w given T" with Frank-Wolfe algorithm.
4: until convergence

e Since the problem is quadratic optimal steps can be obtained for both FW.

e BCD convergence in practice in a few tens of iterations.
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GDL Extensions

GDL on labeled graphs

e For datasets with labeled graphs, on can learn simultaneously a dictionary of the
structure {D.};c(s] and a dictionary on the labels/features {F.}¢[g).

e Data fitting is Fused Gromov-Wasserstein distance FGW, same stochastic
algorithmm.

Dictionary on weights

K
min W3 DW, wgk)DS,h<k), vgk)his —Allw® z2_ v 2
I
{(Wﬁ)vi(k))}k k=1 s s
{(Ds,hs)}s

e \We model the graphs as a linear model on the structure and the node weights

(D™ R®) <Z w®D,, 3 v,i.’“’hs>

e This allows for sparse weights h so embedded graphs with different order.
e We provide in [Vincent-Cuaz et al., 2021] subgradients of GW w.r.t. the mass h.
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Experiments - Unsupervised representation learning

Graph from dataset Model unif. h (GW=0.09) Model est. h (GW=0.08)

Comparison of fixed and learned weights dictionaries
e Graph taken from the IMBD dataset.
e Show original graph and representation after projection on the embedding.
e Uniform weight h has a hard time representing a central node.

Estimated weights h recover a central node.

e In addition some nodes are discarded with 0 weight (graphs can change order).

40/33



Experiments - Clustering benchmark

Table 1. Clustering: Rand Index computed for benchmarked approaches on real datasets.

no attribute discrete attributes real attributes
models IMDB-B IMDB-M MUTAG PTC-MR BZR COX2 ENZYMES PROTEIN
GDL(ours) | 51.64(0.59) | 55.41(0.20) | 70.89(0.11) | 51.90(0.54) | 66.42(1.96) | 59.48(0.68) | 66.97(0.93) | 60.49(0.71)
GWF-r 51.24(0.02) | 55.54(0.03) - - 52.42(2.48) 56.84(0.41) | 72.13(0.19) | 59.96(0.09)

GWF-f | 5047(034) | 54.01(0.37) - - 51.65(296) | 52.86(0.53) | 71.64(0.31) | 58.89(0.39)
GW-k 50.32(0.02) | 53.65(0.07) | 57.56(1.50) | 50.44(0.35) | 56.72(0.50) | 52.48(0.12) | 66.33(1.42) | 50.08(0.01)
sC 50.1100.10) | 544009.45) | 50.82(2.71) | 50.45(0.31) | 42.73(7.06) | 4132(6.07) | 70.74(10.60) | 49.92(1.23)

Clustering Experiments on real datasets

e Different data fitting losses:

e Graphs without node attributes : Gromov-Wasserstein.
e Graphs with node attributes (discrete and real): Fused Gromov-Wasserstein.

e We learn a dictionary on the dataset and perform K-means in the embedding
using the Mahalanobis distance approximation.

e Compared to GW Factorization (GWF) [Xu, 2020] and spectral clustering.

e Similar performance for supervised classification (using GW in a kernel).
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FGW for graphs based clustering

Centroids
Training dataset examples »iter

cluster 1

ster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs x 4 types of communities)

e k-means clustering using the F'GW barycenter
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FGW baryenter for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and community clustering [Vayer et al., 2018]
min  FGW(D, Do, u, po)

sH

e Approximate the graph (Do, 110) with a small number of nodes.

OT matrix give the clustering affectation.
e Semi-relaxed GW estimates cluster proportions [Vincent-Cuaz et al., 2022a].

e Connections with spectral clustering [Chowdhury and Needham, 2021].

Connections with dimensionality reduction [Van Assel et al., 2025].
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FGW baryenter for community clustering

GW(C, h, 13, h)=0.235 GW(C, h,15,h)=0.274 srGW(C, h, 13) = 0.087 srGW(C, h, 13) =0.087
(ami=0.66) (ami=0.54) (ami=1.0) (ami=1.0)

Graph approximation and community clustering [Vayer et al., 2018]
min }-gW(D7DO7/'qu’0)
D,p

e Approximate the graph (Do, 110) with a small number of nodes.

e OT matrix give the clustering affectation.

e Semi-relaxed GW estimates cluster proportions [Vincent-Cuaz et al., 2022a].
e Connections with spectral clustering [Chowdhury and Needham, 2021].

e Connections with dimensionality reduction [Van Assel et al., 2025].
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GRALE Architecture
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