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Small history of gravitational lenses

Timeline

1704 Newton suspects gravitational deflection of light.

1915 General relativity predicts twice the deflection of Newton.

1919 Lensing effect observed by Arthur Eddington during a solar eclipse.

1979 Observation of the first strong lens : Twin Quasar Q0957+561A

[Walsh et al., 1979]
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Strong Gravitational lenses

• Cosmic telescopes (magnification of far-off objects).

• 300 strong lenses currently known, detected by humans.

• Euclid mission [Laureijs et al., 2012], Strong Lens Legacy Science Group :

300 000 galaxy/galaxy lenses out of 10 billion sources. How to find them ?
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Supervised machine learning

Training examples

Classification function f

• Teach the machine to perform a given task.

• Give it n example of observations x and the corresponding prediction y.

• Optimization problem:

min
f

1

n

n∑
i=1

L(yi, f(xi)) (1)

• We chose Support Vector Machines that work well on small datasets.
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Training dataset

• Use training data from the lens finding challenge [Metcalf et al., 2018].

• Simulated with Bologna Lens factory.

• 20 k Ground observation (4 wavelengths) and 20k images Space observations.

• Simulated following Kilo degree Survey (Kids) and Euclid observation models.

• Validation on part of the dataset suggest 96% and 88% AUC.
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Gravitational lens finding challenge

Competition [Metcalf et al., 2018]

• Training dataset presented earlier.

• 100 000 simulated test images, 48 hours for classifying.

• Performances measured with Area Under the ROC Curve (AUC) and the ratio of

correctly classified lenses before a false positive occur (TPR0).
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Competition results in AUC

Results

• 3 family of submissions:

• Convolutional neural networks (CNN).

• Support vector Machines (us).

• Human Annotator (us).

• AUC is ability to separate the classes in average.

• CNN works best in AUC, well in TPR0.
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Competition results in TPR0

Results

• TPR0 is the ratio of detected lenses before a false positive occur when sorted by

classifier scores.

• Measure of trust for the highest predicted scores, better for retrieval.

• SVM work far better in TPR0 for space data.

• CNN work better on space data.

• None of the methods is designed to optimize this criterion.
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Man vs machine

Results

• Eyeball inspection of the 100 000 simulated test images.

• 5 level confidence score.

• Done by Neal jackson and Amit Tagore (5000/2000 imgs/h ).

• Greatly outmatched by the best automatic methods (CNN/SVM).

• Human and machine have different strength (small/large Einstein radius).

9 / 13



Man vs machine

Results

• Eyeball inspection of the 100 000 simulated test images.

• 5 level confidence score.

• Done by Neal jackson and Amit Tagore (5000/2000 imgs/h ).

• Greatly outmatched by the best automatic methods (CNN/SVM).

• Human and machine have different strength (small/large Einstein radius).

9 / 13



Man vs machine

Results

• Eyeball inspection of the 100 000 simulated test images.

• 5 level confidence score.

• Done by Neal jackson and Amit Tagore (5000/2000 imgs/h ).

• Greatly outmatched by the best automatic methods (CNN/SVM).

• Human and machine have different strength (small/large Einstein radius).

9 / 13



Man vs machine

Results

• Eyeball inspection of the 100 000 simulated test images.

• 5 level confidence score.

• Done by Neal jackson and Amit Tagore (5000/2000 imgs/h ).

• Greatly outmatched by the best automatic methods (CNN/SVM).

• Human and machine have different strength (small/large Einstein radius).
9 / 13



Real data: Kilo Degree Survey

• Apply our classifier on 1 million images from Kilo Degree Survey (KiDS).

• Classification score far more uncertain (simulation ̸= real life).

• Look at images with larger scores.

• Kept 213 object that range from possibly to very likely lenses.
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Conclusion

Conclusions

• We need automatic procedure to detect strong gravitational lenses.

• Machines now surpass humans in finding lenses.

• Strength of SVMs when false positives are a problem.

• CNN better approach (they learn the Gabor filters).

Best strategy?

• Use CNN but encode expert knowledge (polar representation, ...)

• Design dedicated objective to minimize false positives (neyman-pearson

classification)

• Discrepancy between training and test data?
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The future : Domain adaptation

Domain adaptation

Class 1

Class 2

Samples 

Samples 

Classifier on 

Domain adaptation (special case of tranfer learning)

• Problem: New data is different from training data.

• In astronomy: Simulated data is always different from real life data.

• How to train on simulated data but still work on real data?

• Use of Optimal Transport theory to adapt between domains

[Courty et al., 2016, Damodaran et al., 2018].
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Thank you
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