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The origins of optimal transport

Problem [Monge, 1781]

I How to move dirt from one place (déblais) to another (remblais) while
minimizing the effort ?

I Find a mapping T between the two distributions of mass (transport).

I Optimize with respect to a displacement cost c(x, y) (optimal).
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Optimal transport (Monge formulation)
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I Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

I The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (1)

I Non-convex optimization problem, mapping does not exist in the general case.

I [Brenier, 1991] proved existence and unicity of the Monge map for
c(x, y) = ‖x− y‖2 and distributions with densities.
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Optimal transport (Kantorovich formulation)
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I The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling γ ∈ P(Ωs × Ωt) between Ωs and Ωt:

γ0 = arg min
γ

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy, (2)

s.t. γ ∈ P =

{
γ ≥ 0,

∫
Ωt

γ(x,y)dy = µs,

∫
Ωs

γ(x,y)dx = µt

}
I γ is a joint probability measure with marginals µs and µt.

I Linear Program that always have a solution.
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Wasserstein distance

Source distribution

Target distributions

Divergences (scaled)
W1

1
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Wasserstein distance

W p
p (µs, µt) = min

γ∈P

∫
Ωs×Ωt

c(x,y)γ(x,y)dxdy = E(x,y)∼γ [c(x,y)] (3)

where c(x,y) = ‖x− y‖p

I A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

I Do not need the distribution to have overlapping support.

I Subgradients can be computed with the dual variables of the LP.

I Works for continuous and discrete distributions (histograms, empirical).
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Discrete distributions: Empirical vs Histogram

Discrete measure: µ =

n∑
i=1

µiδxi
, xi ∈ Ω,

n∑
i=1

µi = 1

Lagrangian (point clouds)

xi

I Constant weight: µi = 1
n

I Quotient space: Ωn, Σn

Eulerian (histograms)

I Fixed positions xi e.g. grid

I Convex polytope Σn (simplex):
{(µi)i ≥ 0;

∑
i µi = 1}

Slide stolen from Gabriel Peyré
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Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

OT Linear Program

γ0 = arg min
γ∈P

{
〈γ,C〉F =

∑
i,j

γi,jci,j

}
where C is a cost matrix with ci,j = c(xsi ,x

t
j) and the marginals constraints are

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt

}
Solved with Network Flow solver of complexity O(n3).
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Optimal transport with discrete distributions

Distributions

Source s
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Regularized optimal transport

γλ0 = arg min
γ∈P

〈γ,C〉F + λΩ(γ), (4)

Regularization term Ω(γ)

I Entropic regularization [Cuturi, 2013].

I Group Lasso [Courty et al., 2016a].

I KL, Itakura Saito, β-divergences,
[Dessein et al., 2016].

Why regularize?

I Smooth the “distance” estimation:

Wλ(µs, µt) =
〈
γλ0 ,C

〉
F

I Encode prior knowledge on the data.

I Better posed problem (convex, stability).

I Fast algorithms to solve the OT problem.

=0
=1
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2

=1
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Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Ω(γ) =
∑
i,j

γ(i, j) log γ(i, j)

I Regularization with the negative entropy of γ.

I Solution of the form γλ0 = diag(u) exp(−C/λ)diag(v).

I Sinkhorn-Knopp algorithm (implementation in parallel, GPU).

I Smooth problem in the dual can be solved with BFGS [Cuturi and Peyré, 2016],
SGD [Genevay et al., 2016, Seguy et al., 2017].

11 / 37



Entropic regularized optimal transport

Distributions

Source s

Target t

Reg. OT matrix with =1e-3 Reg. OT matrix with =1e-2

Entropic regularization [Cuturi, 2013]

Ω(γ) =
∑
i,j

γ(i, j) log γ(i, j)

I Regularization with the negative entropy of γ.

I Solution of the form γλ0 = diag(u) exp(−C/λ)diag(v).

I Sinkhorn-Knopp algorithm (implementation in parallel, GPU).

I Smooth problem in the dual can be solved with BFGS [Cuturi and Peyré, 2016],
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Wasserstein barycenter

Matrix C

Barycenters [Agueh and Carlier, 2011] and Wasserstein Geodesic

µ̄ = arg min
µ

n∑
i

λiW
p
p (µi, µ)

I λi > 0 and
∑n
i λi = 1.

I Uniform barycenter has λi = 1
n
, ∀i.

I Interpolation with n=2 and λ = [1− t, t] with 0 ≤ t ≤ 1 [McCann, 1997].

I Regularized barycenters using Bregman projections [Benamou et al., 2015].

I The cost and regularization impacts the interpolation trajectory.
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3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Principal Geodesics Analysis

Geodesic PCA in the Wasserstein space [Bigot et al., 2017]

I Generalization of Principal Component Analysis to the Wassertsein manifold.

I Regularized OT [Seguy and Cuturi, 2015].

I Approximation using Wasserstein embedding [Courty et al., 2017a].

I Also note recent Wasserstein Dictionary Learning approaches
[Schmitz et al., 2017].
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Learning with optimal transport

OT matrix                   

Learning from histograms

I Wasserstein distance.

I Ground metric design.

I Loss for multilabel classifier
[Frogner et al., 2015]

I Loss for linear unmixing
[Flamary et al., 2016b].

Learning from empirical distributions

I Non parametric divergence between
non overlapping distributions.

I Estimate discriminant subspace
[Flamary et al., 2016a].

I Objective function for GAN
[Arjovsky et al., 2017].

OT matrix                   

Learning from empirical distributions with OT

I Non parametric divergence between non overlapping
distributions.

I Estimate discriminant subspace [Flamary et al., 2016a].

I Objective function for GAN [Arjovsky et al., 2017].
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Supervised learning with Wasserstein Loss

Learning with a Wasserstein Loss [Frogner et al., 2015]

min
f

N∑
k=1

W 1
1 (f(xi), li)

I Empirical loss minimization with Wasserstein loss.

I Multi-label prediction (labels l seen as histograms, f output softmax).

I Cost between labels can encode semantic similarity between classes.

I Good performances in image tagging.
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Linear unmixing with optimal transport

Linear unmixing
min
h∈∆

WC(v,Dh) (5)

I ∆ is the probability simplex (positivity, sum to one).

I v is the observation, D the dictionary, h the mixing coefficients.

I Wasserstein as data fitting proposed in [Zen et al., 2014] for matrix factorization.

I Fast algorithm with regularization in [Rolet et al., 2016], non linear unmixing in
[Schmitz et al., 2017].

Musical spectral unmixing

I State of the art: KL + designed dictionary.

I Spectra with harmonic structure.

I Variability in the fundamental frequency.

I Variability in the magnitude of the harmonics.

⇒ Optimal spectral transportation [Flamary et al., 2016b].
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Optimal spectral transportation (OST)

Quadratic cost C (log) Quadratic cost between frequencies

I Allows small shift in frequencies.

I Very sensitive to harmonics magnitude.

Harmonic invariant cost
cij = min

q=1,...,

⌈
fi
fj

⌉(fi − qfj)2 + ε δq 6=1,

I Allow mass transfer between harmonics.

I ε > 0 discriminates between octaves.

Solving the optimization problem

I A good invariant cost allows for extremely simple dictionary elements (diracs on
the fundamental frequency).

I We take D as diracs on the fundamental frequencies of the notes.

I Closed form for solving the OT problem.

I Non-convex Group lasso for sparse estimates and/or entropic regularization.
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OST in action

Simulated data

I Robust to shifted fundamental frequency.

I Robust to harmonics magnitude variability.

I Very fast (∼ms per frame).

MAPS Dataset [Emiya et al., 2010]

I Several piano sequence from classical music
(m = 60 notes)

I Comparison with ground truth given as MIDI.

I OST similar of better than KL+Dico while
≥ 70 times quicker.

Real time demonstration

I Python+Pygame implementation.

I Demo url:
https://github.com/rflamary/OST
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Wasserstein Discriminant Analysis (WDA)

2 1 0 1 2 2 10 1 2 3

2
1
0
1
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Original space
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1

0
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Optimal projected space

max
P∈∆

∑
c,c′>cWλ(PXc,PXc′)∑

cWλ(PXc,PXc)
(6)

I Xc are samples from class c.

I P is an orthogonal projection;

I Converges to Fisher Discriminant when λ→∞.

I Non parametric method that allows nonlinear discrimination.

I Problem solved with gradient ascent in the Stiefel manifold.

I Gradient computed using automatic differentiation of Sinkhorn algorithm.
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WDA in action
Simulated datasets : 10→2

MNIST Dataset: 784→10(→2 TSNE)

T
ra
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a
ta

PCA FDA LFDA LMNN LDSR CEML WDA

T
e
s
t 
d
a
ta
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Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

min
G

max
D

Ex∼µd [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

I Learn a generative model G that outputs realistic samples from data µd.

I Learn a classifier D to discriminate between the generated and true samples.

I Make those models compete (Nash equilibrium [Zhao et al., 2016]).

I Generator space has semantic meaning [Radford et al., 2015].

I But extremely hard to train (vanishing gradients).
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Wasserstein Generative Adversarial Networks

Wasserstein GAN [Arjovsky et al., 2017]

min
G

W 1
1 (G(z), µd), s.t. z ∼ N (0, I) (7)

I Minimize the Wasserstein distance between the data and the generated data.

I Wasserstein approximated in the dual (separable w.r.t. the samples).

I Parametrization of the dual variable D with a neural network.

I Lipschitz constraints in the dual (constrained parameters).

I No vanishing gradients ! Far better convergence in practice.
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Mapping with optimal transport
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Mapping estimation

I Mapping do not exist in general between empirical distributions.

I Barycentric mapping [Ferradans et al., 2014].

I Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2017].

Why map ?

I Sensible displacement to align distributions.

I Color adaptation in image [Ferradans et al., 2014].

I Domain adaptation and transfer learning [Courty et al., 2016b].
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Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂γ0
(xsi ) = arg min

x

∑
j

γ0(i, j)c(x,xtj). (8)

I The mass of each source sample is spread onto the target samples (line of γ0).

I The mapping is the barycenter of the target samples weighted by γ0

I Closed form solution for the quadratic loss.

I Limited to the samples in the distribution (no out of sample).
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Optimal transport mapping estimation

Joint OT and mapping estimation [Perrot et al., 2016]

I Estimate jointly the OT matrix and a smooth
mapping approximating the barycentric
mapping.

I The mapping is a regularization for OT.

I Controlled generalization error.

I Linear and kernel mappings limited to small
scale datasets.

2-step mapping estimation [Seguy et al., 2017]

1 Estimate regularized OT in the dual.

2 Estimate a smooth version of the barycentric
mapping with a neural network.

I Stochastic Gradient Descent on the OT dual.

I Convergence to the true OT and mapping for
small regularization.
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]

27 / 37



Histogram matching in images
Image colorization [Ferradans et al., 2014]
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

I Classification problem with data coming from different sources (domains).

I Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

I Labels only available in the source domain, and classification is conducted in the
target domain.

I Classifier trained on the source domain data performs badly in the target domain
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OT for domain adaptation : Step 1
Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 

Optimal transport 

Samples 

Samples 

Classification on transported samples

Samples 

Samples 

Classifier on 

Step 1 : Estimate optimal transport between distributions.

I Choose the ground metric (squared euclidean in our experiments).

I Using regularization allows

I Large scale and regular OT with entropic regularization [Cuturi, 2013].
I Class labels in the transport with group lasso [Courty et al., 2016b].

I Efficient optimization based on Bregman projections [Benamou et al., 2015] and

I Majoration minimization for non-convex group lasso.
I Generalized Conditionnal gradient for general regularization (cvx. lasso,

Laplacian).
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OT for domain adaptation : Steps 2 & 3
Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 

Optimal transport 

Samples 

Samples 

Classification on transported samples

Samples 

Samples 

Classifier on 

Step 2 : Transport the training samples onto the target distribution.

I The mass of each source sample is spread onto the target samples (line of γ0).

I Transport using barycentric mapping [Ferradans et al., 2014].

I The mapping can be estimated for out of sample prediction
[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples

I Transported sample keep their labels.

I Classic ML problem when samples are well transported.
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Visual adaptation datasets

Datasets
I Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

I Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

I Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

I Comparison with state of the art on the 3 datasets.

I OT works very well on digits and object recognition.

I Works well on deep features adaptation and extension to semi-supervised DA.
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]

I Use the color gradient from the source image.

I Use color border conditions on the target image.

I Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

I Transport the gradient from the source to target color gradient distribution.

I Solve the Poisson equation with the mapped source gradients.

I Better respect of the color dynamic and limits false colors.
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Seamless copy with gradient adaptation

Example and webcam demo: https://github.com/ncourty/PoissonGradient
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Optimal transport for machine learning

OT matrix                   

Learning with optimal transport

I Natural divergence for machine learning and estimation.

I Cost encode complex relations in an histogram.

I Regularization is the key (performance, smoothness).

I Recent optimization procedures opened it to
medium/large scale datasets.

I Sensible loss between non overlapping distributions.

I Works with both histograms and empirical distributions.

Mapping with optimal transport

I Optimal displacement from one distribution to another.

I Can estimate smooth mapping for out of sample
displacement.

I Domain, color and gradient adaptation, transfer
learning.
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Optimal transport for machine learning

Current and future works

I Joint distribution domain adaptation OT [Courty et al., 2017b].

I Large scale OT and mapping estimation (SGD) [Seguy et al., 2017].

I Approximate Wasserstein embedding for fast data mining [Courty et al., 2017a].

Open questions

I Generalization bounds for learning with OT.

I Learning the ground metric (supervised, unsupervised).

I Large scale OT and mapping estimation, accelerated stochastic optimization.
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Thank you
Python code available on GitHub:
https://github.com/rflamary/POT

I OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

I Domain adaptation with OT.

I Barycenters, Wasserstein unmixing.

I Wasserstein Discriminant Analysis.

Papers available on my website:
https://remi.flamary.com/
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