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Introduction



Optimal transport (Monge formulation)
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• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping T : Ωs → Ωt

inf
T#µs=µt

∫
Ωs

c(x, T (x))µs(x)dx (1)

• Non-convex optimization problem, mapping does not exist in the general case.

3 / 40



Optimal transport (Kantorovich formulation)
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• The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic

coupling π ∈ P(Ωs × Ωt) between Ωs and Ωt:

π0 = argmin
π

∫
Ωs×Ωt

c(x,y)π(x,y)dxdy, (2)

s.t. π ∈ Π =

{
π ≥ 0,

∫
Ωt

π(x,y)dy = µs,

∫
Ωs

π(x,y)dx = µt

}
• π is a joint probability measure with marginals µs and µt.

• Linear Program that always have a solution.
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

π∈Π

∫
Ωs×Ωt

c(x,y)π(x,y)dxdy = E(x,y)∼π[c(x,y)] (3)

where c(x,y) = ‖x− y‖p is the ground metric.

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Subgradients can be computed with the dual variables of the LP.

• Works for continuous and discrete distributions (histograms, empirical).
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Optimal transport for machine learning
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WGAN : Arjovski et al.

Occurences of OT+ML in Google Scholar

Short history of OT for ML

• Recently introduced to ML (well known in image processing since 2000s).

• Computationnal OT allow numerous applications (regularization).

• Deep learning boost (numerical optimization and GAN).

6 / 40



Table of content

Introduction

Optimal transport

Optimal transport and machine learning

Optimal transport for domain adaptation

Supervised learning and Domain adapation

Optimal Transport for Domain Adaptation (OTDA)

Joint distribution OT for domain adaptation (JDOT)

Optimal Transport on structured data

Gromov-Wasserstein distance for structured data

Structured data as distributions

Fused Gromov-Wasserstein distance

Applications on structured data classification

7 / 40



Optimal transport for domain adaptation



Supervised learning

Traditional supervised learning

• We want to learn predictor such that

y ≈ f(x).

• Actual P(X,Y ) unknown.

• We have access to training dataset

(xi, yi)i=1,...,n (P̂(X,Y )).

• We choose a loss function L(y, f(x)) that

measure the discrepancy.

Empirical risk minimization
We week for a predictor f minimizing

min
f

{
E

(x,y)∼P̂
L(y, f(x)) =

∑
j

L(yj , f(xj))

}
(4)

• Well known generalization results for predicting on new data.

• Loss is usually L(y, f(x)) = (y − f(x))2 for least square regression and is

L(y, f(x)) = max(0, 1− yf(x))2 for squared Hinge loss SVM.
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Our context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

• There exist a transport in the feature space T between the two domains.

• The transport preserves the conditional distributions:

Ps(y|xs) = Pt(y|T(xs)).

3-step strategy [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples with barycentric mapping .

3. Learn a classifier on the transported training samples.
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OT for domain adaptation : Step 1

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 
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Step 1 : Estimate optimal transport between distributions.

• Choose the ground metric (squared euclidean in our experiments).

• Using regularization allows

• Large scale and regular OT with entropic regularization [Cuturi, 2013].

• Class labels in the transport with group lasso [Courty et al., 2016].

• Efficient optimization based on Bregman projections [Benamou et al., 2015] and

• Majoration minimization for non-convex group lasso.

• Generalized Conditionnal gradient for general regularization (cvx. lasso, Laplacian).
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OT for domain adaptation : Steps 2 & 3Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples
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Step 2 : Transport the training samples onto the target distribution.

• The mass of each source sample is spread onto the target samples (line of π0).

• Transport using barycentric mapping [Ferradans et al., 2014a].

• The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples

• Transported sample keep their labels.

• Classic ML problem when samples are well transported.
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Visual adaptation datasets

Datasets

• Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

• Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

• Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments

• Comparison with state of the art on the 3 datasets.

• OT works very well on digits and object recognition.

• Works well on deep features adaptation and extension to semi-supervised DA.
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

• Works very well in practice for large class of transformation [Courty et al., 2016].

• Can use estimated mapping [Perrot et al., 2016, Seguy et al., 2017].

But

• Model transformation only in the feature space.

• Requires the same class proportion between domains [Tuia et al., 2015].

• We estimate a T : Rd → Rd mapping for training a classifier f : Rd → R.
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Joint distribution and classifier estimation

Objectives of JDOT

• Model the transformation of labels (allow change of proportion/value).

• Learn an optimal target predictor with no labels on target samples.

• Approach theoretically justified.

Joint distributions and dataset

• Let Ω ∈ Rd be a feature space of dimension d and C the set of labels.

• Let Ps(X,Y ) ∈ P(Ω× C) and Pt(X,Y ) ∈ P(Ω× C) the source and target joint

distribution.

• We have access to an empirical sampling P̂s = 1
Ns

∑Ns
i=1 δxs

i ,y
s
i

of the source

distribution defined by Xs = {xsi}Ns
i=1 and label information Ys = {ysi }Ns

i=1.

• but the target domain is defined only by an empirical distribution in the feature

space with samples Xt = {xti}Nt
i=1.
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Joint distribution OT (JDOT)

Proxy joint distribution

• Let f be a Ω→ C function from a given class of hypothesis H.

• We define the following joint distribution that use f as a proxy of y

Pft = (x, f(x))x∼µt (5)

and its empirical counterpart P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i,f(xt
i) .

Learning with JDOT
We propose to learn the predictor f that minimize :

min
f

{
W1(P̂s, P̂t

f
) = inf

π∈Π

∑
ij

D(xsi ,y
s
i ;x

t
j , f(xtj))πij

}
(6)

• Π is the transport polytope.

• D(xsi ,y
s
i ;x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

• We search for the predictor f that better align the joint distributions.

• Generalization bound show that expected risk on target is bounded by 6.
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Optimization problem

min
f∈H,π∈Π

∑
i,j

πi,j
(
αd(xsi ,x

t
j) + L(ysi , f(xtj))

)
+ λΩ(f) (7)

Optimization procedure

• Ω(f) is a regularization for the predictor f

• We propose to use block coordinate descent (BCD)/Gauss Seidel.

• Provably converges to a stationary point of the problem.

π update for a fixed f

• Classical OT problem.

• Solved by network simplex.

• Regularized OT can be used

(add a term to problem (7))

f update for a fixed π

min
f∈H

∑
i,j

πi,jL(ysi , f(xtj)) + λΩ(f) (8)

• Weighted loss from all source labels.

• π performs label propagation.
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Regression with JDOT
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Least square regression with quadratic regularization
For a fixed π the optimization problem is equivalent to

min
f∈H

∑
j

1

nt
‖ŷj − f(xtj)‖2 + λ‖f‖2 (9)

• ŷj = nt
∑
j πi,jy

s
i is a weighted average of the source target values.

• Note that this problem is linear instead of quadratic.

• Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT
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Multiclass classification with Hinge loss
For a fixed π the optimization problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xtj)) + (1− P̂j,k)L(−1, fk(xtj)) + λ
∑
k

‖fk‖2 (10)

• P̂ is the class proportion matrix P̂ = 1
Nt

π>Ps.

• Ps and Ys are defined from the source data with One-vs-All strategy as

Y si,k =

{
1 if ysi = k

−1 else
, P si,k =

{
1 if ysi = k

0 else

with k ∈ 1, · · · ,K and K being the number of classes.
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DeepJDOT

g

g

+

+

min
π∈Π,f,g

1

ns

∑
i

Ls (ysi , f(g(xsi )))+
∑
i,j

πij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(xtj))

))
.

(11)

DeepJDOT [Damodaran et al., 2018]

• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.
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DeepJDOT

g

g

+

+

min
f,g

E

 1

m

m∑
i=1

L (ysi , f(g(x
s
i )) + min

π∈Π

m∑
i,j

πij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(x

t
j))
))

(11)
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• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.

21 / 40



DeepJDOT in action

DeepJDOT [Damodaran et al., 2018]

• Evaluation of DeepJDOT on visual classification tasks.

• Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

• Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]

dataset.

• Ablation study : all terms are impportant.

• TSNE projections of embeddings (MNIST→MNIST-M).
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DeepJDOT in action
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DeepJDOT in action
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DeepJDOT [Damodaran et al., 2018]
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Conclusion OTDA

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 

Optimal transport for DA

• Model transformation of the features.

• Conditional distribution preserved.

• Mapping between distributions.

• Learn classifier on the transported

samples.

Joint distribution OT for DA

• Model transformation of the joint

distribution.

• General framework for DA.

• Theoretical justification with

generalization bound.
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Optimal Transport on structured data



Structured data

Structured data

• A structure data is viewed as a combination of features informations linked within

each other by some structural information.

• Can be seen as a distribution on a joint feature/structure space.

• Example : labeled graph.

Meaningful distances on structured data

• Us both features (labels) and structure (graph).

• Allows for comparison, classification.

• Data science (statistics, means)
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Structured data as distributions

}
}

}
Graph data representation

µ =

n∑
i=1

hiδ(xiai)

• Nodes are weighted by their mass hi.

• Features values ai and bj can be compared through the common metric

• But no common between the structure points xi and yj .
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Optimal Transport for structured data

Wasserstein distance for structures data

Wp(µA, µB) =

(
min

π∈Π(µA,µB)

∑
i,j

Mp
i,jπi,j

) 1
p

µA =
∑
i hiδai and µB =

∑
j gjδbj ,Mi,j = ‖ai − bj‖

• Wasserstein good for (empirical) distributions, samples as IID.

• OT can encode structure with OT Lp [Thorpe et al., 2017] by extending the

feature space but requires the same ambient space.
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Gromov-Wasserstein distance for structured data

Inspired from Gabriel Peyré

GW for structured data [Memoli, 2011]

GWp(D,D
′, µX , µY ) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′j,l|pπi,j πk,l
) 1

p

µX =
∑
i hiδxi and µY =

∑
j gjδyj and Di,k = ‖xi − xk‖, D′j,l = ‖yj − yl‖

• Distance over measures with no common ground space.

• Works well on graphs (using distances between nodes) but do not handle labels.

• Invariant to rotations and translation in either spaces.
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Fused Gromov-Wasserstein distance

a

b

Fused Gromov Wasserstein distance

FGWp,q,α(D,D′, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|Di,k−D
′
j,l|q

)p
πi,j πk,l

) 1
p

µs =
∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj

• Parameters q > 1, ∀p ≥ 1.

• α ∈ [0, 1] is a trade off parameter between structure and features.
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FGW Properties (1)

FGWp,q,α(D,D′, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|Di,k−D
′
j,l|q

)p
πi,j πk,l

) 1
p

Metric properties

• FGW defines a metric over structured data with measure and features

preserving isometries as invariants.

• FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.

• The distance is nul iff :

• There exists a Monge map T#µs = µt.

• Structures are equivalent through this Monge map (isometry).

• Features are equal through this Monge map.

Other properties for sontinuous distributions

• Interpolation between W (α = 0) and GW (α = 1) distances.

• Geodesic properties (constant speed, unicity).
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FGW Properties (2)

FGWp,q,α(D,D′, µs, µt) =

(
min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1−α)Mq

i,j+α|Di,k−D
′
j,l|q

)p
πi,j πk,l

) 1
p

Bounds and convergence to finite samples

• The following inequalities hold:

FGW(µs, µt) ≥ (1− α)W(µA, µB)q

FGW(µs, µt) ≥ αGW(µX , µY )q

• Bound when X = Y:

FGW(µs, µt)
p ≤ 2W(µs, µt)

p

• Convergence of finite samples when X = Y with d = Dim(X ) +Dim(Ω) :

E[FGW(µ, µn)] = O
(
n−

1
d

)
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Computing FGW

π∗ = arg min
π∈Π(µs,µt)

vec(π)TQvec(π) + vec((1− α)M)T vec(π) (12)

where Q = −2αD′ ⊗D

Algorithmic resolution (p = 1)

• Problem is a non-convex Quadratic Program.

• We use Conditional gradient [Ferradans et al., 2014b] with network simplex solver.

• Convergence to a local minima [Lacoste-Julien, 2016].

• With entropic regularization, projected gradient descent [Peyré et al., 2016].
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Computing FGW

π∗ = arg min
π∈Π(µs,µt)

vec(π)TQvec(π) + vec((1− α)M)T vec(π) (12)

Algorithm 1 Conditional Gradient (CG) for FGW

1: π(0) ← µXµ
>
Y

2: for i = 1, . . . , do

3: G← Gradient from Eq. (12) w.r.t. π(i−1)

4: π̃(i) ← Solve OT with ground loss G

5: τ (i) ← Line-search for loss with τ ∈ (0, 1)

6: π(i) ← (1− τ (i))π(i−1) + τ (i)π̃(i)

7: end for

Algorithmic resolution (p = 1)

• Problem is a non-convex Quadratic Program.

• We use Conditional gradient [Ferradans et al., 2014b] with network simplex solver.

• Convergence to a local minima [Lacoste-Julien, 2016].

• With entropic regularization, projected gradient descent [Peyré et al., 2016].
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Illustration of FGW distance
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FGW maps on toy tree

• Uniform weights on the leafs of the tree.

• Structure distance taken as shortest path on the tree.

• Only FGW can encode both features and structures.
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Application of FGW distance

Vector attributes AIDS BZR COX2 CUNEIFORM ENZYMES PROTEIN SYNTHETIC

FGW sp 99.44+/-0.47 85.12+/-4.15 77.23+/-4.86 76.67+/-7.04 71.00+/-6.76 74.55+/-2.74 100.00+/-0.00

FGW sp regul - 85.61+/-5.05 77.66+/-4.17 - 70.17+/-6.81 74.64+/-2.99 -

FGW wsp 99.55+/-0.35 84.88+/-4.34 78.09+/-3.81 - 69.50+/-7.30 75.09+/-2.34 -

FGWDMM sp - 84.39+/-5.48 76.81+/-4.30 - 61.67+/-7.19 75.00+/-2.59 -

FGWDMM wsp - 83.17+/-5.05 78.30+/-3.53 - 59.17+/-6.55 75.09+/-3.03 -

HOPPER all cv 99.50+/-0.59 84.15+/-5.26 79.57+/-3.46 32.59+/-8.73 45.33+/-4.00 71.96+/-3.22 90.67+/-4.67

PROPA all cv 98.45+/-1.06 79.51+/-5.02 77.66+/-3.95 12.59+/-6.67 71.67+/-5.63 61.34+/-4.38 64.67+/-6.70

PSCN k=10 99.80+/-0.24 80.00+/-4.47 71.70+/-3.57 25.19+/-7.73 26.67+/-4.77 67.95+/-11.28 100.00+/-0.00

PSCN k=5 99.85+/-0.23 82.20+/-4.23 71.91+/-3.40 24.81+/-7.23 27.33+/-4.16 71.79+/-3.39 100.00+/-0.00

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).

• Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]

(FGWDMM).
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Application of FGW distance

Discrete attributes MUTAG NCI1 PTC

FGW raw sp 83.26+/-10.30 72.82+/-1.46 55.71+/-6.74

FGW wl h=2 sp 86.42+/-7.81 85.82+/-1.16 63.20+/-7.68

FGW wl h=2 sp regul 84.74+/-8.03 - 63.37+/-6.75

FGW wl h=4 sp 88.42+/-5.67 86.42 +/- 1.63 65.31+/-7.90

FGW wl h=4 sp regul 86.42+/-8.81 - 63.83+/-7.83

GK k=3 82.42+/-8.40 60.78+/-2.48 56.46+/-8.03

PSCN k=10 83.47+/-10.26 70.65+/-2.58 58.34+/-7.71

PSCN k=5 83.05+/-10.80 69.85+/-1.79 55.37+/-8.28

RW all cv 79.47+/-8.17 58.63+/-2.44 55.09+/-7.34

SP all cv 82.95+/-8.19 74.26+/-1.53 -

WL all cv 86.21+/-8.48 85.77+/-1.07 62.86+/-7.23

WL h=2 86.21+/-8.15 81.85+/-2.28 61.60+/-8.14

WL h=4 83.68+/-9.13 85.13+/-1.61 62.17+/-7.80

Without attribute IMDB-B IMDB-M

FGW raw sp 63.80+/-3.49 48.00+/-3.22

GK k=3 56.00+/-3.61 41.13+/-4.68

SP all cv 55.80+/-2.93 38.93+/-5.12

Graph classification

• Classifiation accuracy on classical graph datasets.

• Comparison with state-of-the-art graph kernel approaches and Graph CNN.

• We use exp(−γFGW) as a non-positive kernel for an SVM [Loosli et al., 2016]

(FGW).

• Train Wassertsein Distance Measure Machine [Rakotomamonjy et al., 2018]

(FGWDMM).
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FGW barycenter

FGW barycenter p = 1, q = 2

• Estimate FGW barycenter using Frechet means.

• Barycenter optimization solved via block coordinate descent (on π, D, {ai}i).

• Can chose to fix the structure (D) or the features {ai}i in the barycenter.

• aii, and D updates are weighted averages using π.
34 / 40



FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs

• We select a clean graph, change the number of nodes and add label noise and

random connections.

• We compute the barycenter on n = 15 and n = 7 nodes.

• Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter for time series

−2

0

Euclidean barycenter (N = 275)

−2

0

DBA barycenter (N = 20)

0 50 100 150 200 250

−2

0

Soft-DTW barycenter (γ = 1, N = 20)

0 50 100 150 200 250

−2

0

FGW barycenter (α = 10−6, N = 20)

Time series averaging

• Comparsion with Euclidean, DBA [Petitjean et al., 2011] and Soft-DTW

[Cuturi and Blondel, 2017].

• Structure is time position of samples, fetaure value of the signal.

• Temporal position of nodes recovered with a MDS of D.

• Barycenter have non-regular sampling.
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FGW barycenter for mesh interpolation

Mesh interpolation

• Two meshes (deer and cat).

• Fix structure from cat, estimate barycenter for the positions of the edges.

• Wasserstien (α = 0) do not respect the graph (mesh neighborhood).

• FGW conserve the graph, regularized FGW smoothes the surface.
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FGW for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signle and multiple modes in the clusters.
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FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering

min
D,µ

FGW(D,D0, µ, µ0)

• Approximate the graph (D0, µ0) with a small number of nodes.

• OT matrix give the clustering affectation.

• Works for signle and multiple modes in the clusters.
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Conclusion for FGW

}
}

}

a

b

Fused Gromov-Wasserstein distance [Vayer et al., 2018]

• Model structured data as distributions.

• New versatile method for comparing structured data based on Optimal Transport

• Many desirable distance properties

• New notion of barycenter of structured data such as graphs or time series

• Promising applications for signal over graphs and deep learning for structured data

What next ?

• Devise efficient optimization shemes for large structures.

• Add interpretability to deep neural networks on graph.
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Thank you

Python code available on GitHub:

https://github.com/rflamary/POT

• OT LP solver, Sinkhorn (stabilized, ε−scaling, GPU)

• Domain adaptation with OT.

• Barycenters, Wasserstein unmixing.

• Wasserstein Discriminant Analysis.

Python code for JDOT on GitHub:

https://github.com/rflamary/JDOT

Papers available on my website:

https://remi.flamary.com/

Post docs available in:

Nice, Rouen, Rennes (France)
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Generalization bound (1)

Expected loss
The expected loss on a domain D and for a given predictor f is defined as

errD(f)
def
= E

(x,y)∼Pt

L(y, f(x)).

Probabilistic Lipschitzness [Urner et al., 2011, Ben-David et al., 2012]
Let φ : R→ [0, 1]. A labeling function f : Ω→ R is φ-Lipschitz with respect to a

distribution P over Ω if for all λ > 0

Prx∼P [∃y : [|f(x)− f(y)| > λd(x, y)]] ≤ φ(λ).

Probabilistic Transfer Lipschitzness
Let µs and µt be respectively the source and target distributions. Let φ : R→ [0, 1]. A

labeling function f : Ω→ R and a joint distribution Π(µs, µt) over µs and µt are

φ-Lipschitz transferable if for all λ > 0:

Pr(x1,x2)∼Π(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ φ(λ).
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Generalization bound (2)

Theorem 1
Let f be any labeling function of ∈ H. Let

Π∗ = argmin
Π∈Π(Ps,Pf

t )

∫
(Ω×C)2 αd(xs,xt) + L(ys, yt)dΠ(xs, ys;xt, yt) and W1(P̂s,

ˆPf
t ) the

associated 1-Wasserstein distance. Let f∗ ∈ H be a Lipschitz labeling function that verifies the

φ-probabilistic transfer Lipschitzness (PTL) assumption w.r.t. Π∗ and that minimizes the joint error

errS(f∗) + errT (f∗) w.r.t all PTL functions compatible with Π∗. We assume the input instances are

bounded s.t. |f∗(x1)− f∗(x2)| ≤M for all x1,x2. Let L be any symmetric loss function, k-Lipschitz

and satisfying the triangle inequality. Consider a sample of Ns labeled source instances drawn from Ps and

Nt unlabeled instances drawn from µt, and then for all λ > 0, with α = kλ, we have with probability at

least 1− δ that:

errT (f) ≤ W1(P̂s,
ˆPf
t ) +

√
2

c′
log(

2

δ
)

(
1
√
NS

+
1
√
NT

)
+errS(f

∗
) + errT (f

∗
) + kMφ(λ).

• First term is JDOT objective function.

• Second term is an empirical sampling bound.

• Last terms are usual in DA [Mansour et al., 2009, Ben-David et al., 2010].
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