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Curriculum Vitae



Education and current position

2007 - 2008 Engineer + Master degrees, Electrical Engineering, INSA de Lyon

Major : Signal and image processing.

2008 - 2012 PhD + Assistant Professor (1/2 ATER), Université de Rouen

UFR des Sciences et Techniques, Laboratoire LITIS EA 4108.

Subject : Machine learning for signal processing : applications to Brain-

Computer Interfaces.

2012 - Associate Professor (MCF), Université de Nice Sophia Antipolis

UFR des Sciences, Département of Electronics,

Observatoire de la Côte d’Azur

Laboratoire Lagrange

Université Côte d’Azur
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Teaching and administrative tasks

Teaching activities

• ≈ 192h EDTD / year since 2014.

• Creation of courses slides and

practical sessions.

• All support available on website.

• Organization of Kaggle

competitions.

Courses (2012 - 2019)

• Signals and Systems (L)

• Random processes (L)

• Numerical methods in C (L)

• Statistical learning and BCI (M)

• Signal processing and applications (M)

• Theory of Machine Learning (M)

Administrative tasks

• Coordinator of License 3 Electronics, 2017-2019,

Resp: Planning, Jury, Admission in L3

• Coordinator of Competency-based learning,

Since 2017,

Resp: Define, write and evaluate competencies for L

and M in Electronics.
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Research themes and projects

Machine learning and numerical optimization

• Large scale sparse numerical optimization for machine learning

• Multi-task and transfer learning

• Optimal transport for machine learning (since 2014)

Applications

• Biomedical data processing (BCI, CAD, Spike sorting)

• Remote sensing (image classification, label noise)

• Astronomy (image processing, coronagraphy)

Research projects
• Chair 3IA Côte d’Azur, 2019-2023

• OATMIL, ANR Project 2017-2020, Local PI

Optimal transport for machine learning.

• AMOR, Young researcher project GDR ISIS 2013-2014, PI

+ Magellan, ON FIRE, TOPASE, DESTOPT, HYPANEMA
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Students supervision

PhD Students

• Kilian Fatras, with N. Courty, Université Bretagne Sud, 2018-2021.

Optimal Transport and deep learning,

• Laurent Dragoni, with K. Lounici and P. Bouret, UCA, 2017-2020.

Spike sorting for massive neurophysiological data sets,

• Raphael Rougeot, with D. Mary and C. Aime, UCA / ESA, 2017-2020.

Modeling and computation of diffraction effects for end-to-end performance of

hight-contrast space optical instruments,

• Ibrahim El Khalil Harrane, with C. Richard, UCA, 2015-2019 (June 21).

Distributed estimation over multitask networks,

Other collaborations

• 4 Master’s internships supervision.

• Past and current collaboration with other PhD students:

R. Turrisi, T. Vayer, M. Ducoffe, P. Hartley, L. Laporte.
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Research activity

Publications (since 2013)

• 17 International Journal papers (4 A&A, 2 ML, 2 TNNLS, 1 TPAMI).

• 32 International Conference papers (4 NeurIPS, 2 ICLR, 1 ICML).

• 3 Book chapters, 1 book as editor.

Organized scientific events

• Optimal Tranport for Machine Learning Workshop, NeurIPS 2019.

• Basmati CNRS Summer School, 2015 and 2018.

• GDR ISIS, 2 meetings, leader of specific action for Theme A.

Reproducible research

• POT Python Optimal Transport Toolbox (100k+ downloads).

• More than 35 publications with provided open source code.
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Introduction



The origins of optimal transport

Problem [Monge, 1781]

• How to move dirt from one place (déblais) to another (remblais) while minimizing

the effort ?

• Find a mapping m between the two distributions of mass (transport).

• Optimize with respect to a displacement cost c(x, y) (optimal).
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Optimal transport (Monge formulation)

0 20 40 60 80 100
x,y

Distributions

0 20 40 60 80 100
y

Quadratic cost c(x, y) = |x y|2

c(20, y)
c(40, y)
c(60, y)

• Probability measures µs and µt on and a cost function c : Ωs × Ωt → R+.

• The Monge formulation [Monge, 1781] aim at finding a mapping m : Ωs → Ωt

inf
m#µs=µt

∫
Ωs

c(x,m(x))µs(x)dx (1)

• Non convex problem because of the constraint m#µs = µt.

• [Brenier, 1991] proved existence and unicity of the Monge map for

c(x, y) = ‖x− y‖2 and distributions with densities.

• What about discrete distribution?
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Discrete distributions: Histogram vs Empirical

Discrete measure: µ =

n∑
i=1

aiδxi , xi ∈ Ω,
n∑
i=1

ai = 1

Eulerian (histograms)

• Fixed positions xi e.g. grid

• Convex polytope Σn (simplex):{
(ai)i ≥ 0;

∑
i ai = 1

}

Lagrangian (point clouds, empirical)

xi

• Constant weight: ai = 1
n

• Quotient space: Ωn, Σn

Inspired from Gabriel Peyré
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Kantorovich relaxation

• Leonid Kantorovich (1912–1986), Economy nobelist in 1975

• Focus on where the mass goes, allow splitting [Kantorovich, 1942].

• Applications mainly for resource allocation problems
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Optimal transport with discrete distributions

Distributions
Source s

Target t

Matrix C OT matrix                   

Kantorovitch formulation : OT Linear Program
When µs =

∑n
i=1 aiδxs

i
and µt =

∑n
i=1 biδxt

i

T 0 = argmin
T∈Π(µs,µt)

{
〈T ,C〉F =

∑
i,j

Ti,jci,j

}

where C is a cost matrix with ci,j = c(xsi ,x
t
j) and the marginals constraints are

Π(µs, µt) =
{
T ∈ (R+

)
ns×nt | T1nt = a,T

T
1ns = b

}
Linear program with nsnt variables and ns + nt constraints. Demo
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Optimal transport with discrete distributions

Distributions
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Wasserstein distance

Wasserstein distance

W p
p (µs, µt) = min

γ∈Π(µs,µt)

∫
Ωs×Ωt

‖x− y‖pγ(x,y)dxdy (2)

In this case we have c(x,y) = ‖x− y‖p

• A.K.A. Earth Mover’s Distance (W 1
1 ) [Rubner et al., 2000].

• Do not need the distribution to have overlapping support.

• Works for continuous and discrete distributions (histograms, empirical).
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Regularized optimal transport

T λ
0 = argmin

T∈P
〈T ,C〉F + λΩ(T ), (3)

Regularization term Ω(T )

• Entropic regularization [Cuturi, 2013].

• Group Lasso [Courty et al., 2016].

• KL, Itakura Saito, β-divergences,

[Dessein et al., 2016].

Why regularize?

• Smooth the “distance” estimation:

Wλ(µs, µt) =
〈
T λ

0 ,C
〉
F

• Encode prior knowledge on the data.

• Better posed problem (strict convexity, stability).

• Better statistical property (sample complexity).

• Fast algorithms to solve the OT problem

(Sinkhorn).
=0

=1
e-

2
=1

e-
1
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Optimal transport for machine learning

1990 1995 2000 2005 2010 2015
0

100

200

300

400

500

EMD : Rubner et al.

Sinkhorn : Cuturi

WGAN : Arjovski et al.

Occurences of OT+ML in Google Scholar

Short history of OT for ML

• Recently reintroduced to ML (well known in image processing since 2000s).

• Computational OT allow numerous applications (regularization).

• Deep learning boost (numerical optimization and GAN).
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Four aspects of Optimal Transport for

Machine Learning



Contributions on four aspects of optimal transport

Mapping with optimal transport

• Continuous mapping estimation

[Perrot et al., 2016, Flamary et al., 2019].

• Domain adaptation [Courty et al., 2016].

OT matrix                   

Divergence between histograms

• Invariant ground metric [Flamary et al., 2016].

• Wasserstein embeddings [Courty et al., 2018]

Divergence between empirical distributions

• Estimate discriminant subspace [Flamary et al., 2018].

• Domain adaptation [Courty et al., 2017].

Divergence between structured data

• Modeling labeled graphs as distributions.

• Fused Gromov-Wasserstein divergence [Vayer et al., 2018a].
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Domain Adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains

Domain adaptation context

• Classification problem with data coming from different sources (domains).

• Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon DLSR

Feature extraction Feature extraction

Source Domain Target Domain

+ Labels

not working !!!!

decision function

no labels !

Problems

• Labels only available in the source domain, and classification is conducted in the

target domain.

• Classifier trained on the source domain data performs badly in the target domain
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions

• There exists an OT mapping T in the feature space between the two domains.

• The transport preserves the joint distributions:

Ps(xs, y) = Pt(T (xs), y).

3-step strategy [Courty et al., 2016]

1. Estimate optimal transport between distributions.

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.

Generalization results under assumptions above [Flamary et al., 2019].
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Learning from histograms

Data as histograms

• Fixed bin positions xi e.g. grid, simplex ∆ =
{

(µi)i ≥ 0;
∑
i µi = 1

}
• A lot of datasets comes under the form of histograms.

• Images are photo counts (black and white), text as word counts.

• Natural divergence is Kullback–Leibler.

• Not all data can be seen as histograms (positivity+constant mass)!
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Optimal Spectral Transportation (OST)

OT linear spectral unmixing of musical data [Flamary et al., 2016]

min
h∈∆

WC(v,Dh) (4)

• Objective : robustness to harmonic magnitude and small frequency shift

• Encode harmonic structure in the cost matrix (harmonic robustness).

• Can use simple dictionary (diracs on fundamental frequency).

• Very fast solver for sparse and entropic regularization.

Demo : https://github.com/rflamary/OST
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Optimal Spectral Transportation (OST)
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Learning Wasserstein embeddings

Deep Wasserstein Embeddings [Courty et al., 2018]

• Learn a deep embedding ϕ and decoder ψ for histograms with fixed support.

• Siamese network for Wasserstein metric learning.

• The embedding mimics the behavior of Wasserstein in the original histograms.

• Train a decoder to reconstruct the original histogram.

• Very fast computation of approximate Wasserstein distance and barycenters, PGA.
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Empirical distributions A.K.A datasets

xi

Empirical distribution

µ =
n∑
i=1

aiδxi , xi ∈ Ω,
n∑
i=1

ai = 1

• Training set of all machine learning approaches.

• Two realizations never overlap.

• How to measure discrepancy?

• Wasserstein distance.
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Wasserstein Discriminant Analysis (WDA)

2 1 0 1 2 2 10 1 2 3

2
1
0
1
2

Original space

2 1 0 1 2

2

1

0

1

2

3

Optimal projected space

max
P∈∆

∑
c,c′>cWλ(P#µc,P#µc

′
)∑

cWλ(P#µc,P#µc)
(5)

• Wλ in entropic reg. OT loss.

• µc is distrib. from class c.

• P is an orthogonal projection;

• Converges toward Fisher Discriminant when λ→∞.

• Non parametric method that allows nonlinear discrimination.

• Problem solved with gradient ascent in the Stiefel manifold S.

• Gradient computed using automatic differentiation of Sinkhorn algorithm.
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Joint Distribution Optimal Transport for DA

x

y
Training data

s

t

x

y

JDOT model with f
t

f(x)
s

f
t

Learning with JDOT [Courty et al., 2017]

min
f

{
W1(P̂s, P̂t

f
) = inf

T∈Π

∑
ij

D(xsi ,y
s
i ;x

t
j , f(xtj))Ti,j

}
(6)

• P̂t
f

= 1
Nt

∑Nt
i=1 δxt

i,f(xt
i) is the proxy joint feature/label distribution.

• D(xsi ,y
s
i ;x

t
j , f(xtj)) = α‖xsi − xtj‖2 + L(ysi , f(xtj)) with α > 0.

• We search for the predictor f that better align the joint distributions.

• OT matrix does the label propagation (no mapping).

• JDOT can be seen as minimizing a generalization bound.
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JDOT for large scale deep learning

g

g

+

+

DeepJDOT [Damodaran et al., 2018]

• Learn simultaneously the embedding g and the classifier f .

• JDOT performed in the joint embedding/label space.

• Use minibatch to estimate OT and update g, f at each iterations.

• Scales to large datasets and estimate a representation for both domains.

• TSNE projections of embeddings (MNIST→MNIST-M).
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Structured data as distributions

}
}

}
Graph data representation

µs =

n∑
i=1

hiδ(xiai) µt =

m∑
j=1

gjδyj ,bj

• Nodes are weighted by their mass hi and gj .

• Features values ai and bj can be compared through the common metric

• Relationship between nodes is encoded through ‖xi − xj‖ (shortest path).

• But no common between the structure points xi and yj across graphs.
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Gromov-Wasserstein distance

Inspired (again) from Gabriel Peyré

GW distance [Mémoli, 2011]
X = (X, dX , µX) and Y = (Y, dY , µY ), two mesurable metric spaces.

GWp,α(µX , µY ) =

(
min

T∈Π(µX ,µY )

∑
i,j,k,l

|Ci,k − C′j,l|pTi,j Tk,l
) 1

p

• Ci,k = ‖xi − xj‖ and C′j,l = ‖yj − yl‖ distances in the structures.

• Distance over measures with no common ground space.

• Compares the intrinsic distances in each space (with matrices C and C′).

• Invariant to rotations and translation in either spaces. 28 / 32



Fused Gromov-Wasserstein distance

Fused Gromov Wasserstein distance [Vayer et al., 2018b]

With µs =
∑n
i=1 hiδxi,ai and µt =

∑m
j=1 gjδyj ,bj and q ≥ 1, p ≥ 1:

FGWp,q,α(µs, µt)
p = min

π∈Π(µs,µt)

∑
i,j,k,l

(
(1− α)Mq

i,j + α|Ci,k − C′j,l|q
)p
πi,j πk,l

• Mi,j = d(ai, bj) is the distance betweens the features.

• α ∈ [0, 1] is a trade off parameter between structure and features.

• FGW is a metric for q = 1 a semi metric for q > 1, ∀p ≥ 1.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter an graph compression

• We compute the barycenter of several graphs on n = 15 and n = 7 nodes.

• Barycenter graph is obtained through thresholding of the D matrix.

• Community clustering:

• Approximate a graph with a small number of nodes (clusters)

• OT matrix give the clustering affectation.
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FGW barycenter on labeled graphs

Graph with communities Approximate Graph Clustering with transport matrix

Barycenter an graph compression
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Conclusion and discussion



Future works and open questions

OT matrix                   

Future works

• Monge mapping estimation (non linear, statistical properties).

• Minibatch Wasserstein (geometrical regularization).

• Adversarial Wasserstein regularization (pairwise regularization between classes).

• OT on graphs (dictionary learning)

The big questions

• Large scale optimization (solving is OK, optimizing still hard).

• Wasserstein distance and regularization (keep geometry, lose complexity).

• Learning the ground metric.
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Thank you
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DeepJDOT in action

DeepJDOT [Damodaran et al., 2018]

• Evaluation of DeepJDOT on visual classification tasks.

• Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

• Home-office [?] and VisDA 2017 [?] dataset.

• Ablation study : all terms are important.

• TSNE projections of embeddings (MNIST→MNIST-M).
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