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Abstract

The automatic summarization of speech recordings is
typically carried out as a two step process: the speech is
first decoded using an automatic speech recognition sys-
tem and the resulting text transcripts are processed to create
the summary. However, this approach might not be suitable
with adverse acoustic conditions or languages with limited
training resources. In order to address these limitations, we
propose in this paper an automatic speech summarization
method that is based on the automatic discovery of patterns
in the speech: recurrent acoustic patterns are first extracted
from the audio and then are clustered and ranked according
to the number of repetitions in the recording. This approach
allows us to build what we call a “Spoken WordCloud”
because of its similarity with text-based word-clouds. We
present an algorithm that achieves a cluster purity of up to
90% and an inverse purity of 71% in preliminary experi-
ments using a small dataset of connected spoken words.

1 Introduction

Automatic speech recognition (ASR) systems have tra-
ditionally been the cornerstone modules to extract informa-
tion from audio content. The transcript is first extracted and
then analyzed to obtain information (e.g. its topic, partic-
ular keywords, etc.) or even generate a summary. Exten-
sive research efforts have been devoted to improve ASR
over the years. However, speech recognition results are still
challenged by adverse acoustic conditions or when dealing
with languages with limited training resources. Recent re-
search addresses these limitations by analyzing the acous-
tic signal itself to find acoustic patterns that appear multi-
ple times along one or multiple recordings. This approach
was first proposed for speech by [11, 12] to augment ASR
transcripts, and has also been used as a new computational
model to avoid acoustic modeling by [13] or as a way to
summarize the most important information in the audio by
[6, 8].

In this paper we aim at automatically summarizing

acoustic data by finding the most representative and recur-
rent sequences in the input speech. Our goal is to obtain,
as a result of this process, the set of most often recurring
short acoustic words1 which represent the most prevalent
terms in the content. This could be used, for example, to
automatically classify the audio or to group it with simi-
lar content. In previous similar research, Jansen et al. [6]
consider that relevant recurrent information appears in long
(1 second) sequences which are considered relevant even
when appearing only twice in the audio. This assumption
limits the representative segments only to long repetitions,
which diverges from the WordCloud concept proposed here.
Similar to our approach, they pay special attention to a fast
implementation of the algorithm. Muscarielo et al. [8] in-
crementally perform a recurrent sequence discovery (which
they call “motifs”) by locally searching for repetitions in
the audio around defined time intervals. Aside from local
matches, they also keep a global library of long-term mo-
tifs. Like us, they aim at detecting short segments (> 0.6
seconds), but these are only stored as long-term library mo-
tifs if they occur at least twice within the local interval, thus
being prone to missing segments that might still be relevant
by occurring consistently over a long audio document but
never frequently enough within a particular local segment.

The approach proposed in this paper is inspired by the
algorithm proposed in [11, 12], where all recurrent short
(∼ 0.5 second) sequences are first found in the acoustic
data, and then clustered to form homogeneous groups. As
mentioned above, the main goal in [11] is to improve speech
recognition results by correcting the transcription of homo-
geneous segments clustered together. Therefore their effort
goes into maximizing cluster purity, without paying special
attention to inverse purity (i.e. how many clusters contain
homogeneous segments). However, our goal is to obtain a
set of the most representative spoken words in the acous-
tic data by building a list of the most recurrent acoustic
segments, ranked by the number of times they occur. The

1Although we refer to spoken words throughout the paper, as we do
not use any knowledge about the language being processed, we are in fact
detecting commonly repeated sequences which we hypothesize could cor-
respond to actual words in that language



proposed algorithm first extracts recurrent acoustic patterns
from the speech by using an extension of the Unbounded-
DTW algorithm proposed in [2]. Next, all found patterns
are clustered to form what we refer to as a “spoken Word-
Cloud” (given its similarity to text-based word-clouds). A
comparison with the algorithm in [11] shows that the pro-
posed approach is faster and more accurate when tested on
this task using a database composed of concatenated words
spoken in isolation.

2 Segmental-DTW-Based Clustering

The segmental-DTW-based clustering in [11, 12] was
shown to be able to find repeating sequences within an audio
document that could be used to augment the speech recog-
nition transcripts towards an information retrieval task. In
this section we briefly review the main key points of their
algorithm as we take is as the baseline for our system. In
a first step, unsupervised pattern discovery in speech is
performed using the so-called segmental-DTW algorithm.
Segmental-DTW works as follows: A distance matrix is
first constructed by storing the Euclidean distance between
all acoustic feature vectors of the two sequences to be com-
pared (these can be the same sequence in case we are look-
ing for repetitions in the same acoustic document). The
choice of acoustic feature vectors varies between standard
MFCC’s in [11, 12] to phone posteriorgrams in more recent
work by the same authors. Next, local optimum paths are
discovered by applying standard DTW within each of sev-
eral overlapping diagonal bands along the similarity matrix
by uniformly setting start-end points along the matrix axes,
and constraining the possible paths to a maximum deviation
from the diagonal between these start-end points. Finally,
for each band, the most similar subsequence – longer than a
predefined minimum length – is returned.

In a second step, repeating sequences are clustered as
follows: a similarity profile is first constructed by accu-
mulating the resulting scores from the matching sequences
with respect to time, and by then selecting the most re-
current sequences at the peaks of such profile. In their
implementation they do not delimit a start-end times for
the selected recurrent sequences. Finally in a third step,
these sequences are set to be the nodes of a graph where
its paths (and matching scores) correspond to the edges be-
tween nodes. This graph can also be represented as a sparse
similarity matrix as later explained in section 3.3. The graph
is clustered using the algorithm proposed in [9], which is
fast to compute and has been shown to work well for com-
munity clustering.

Although the algorithm proposed in this paper closely re-
sembles the general architecture proposed by [11, 12], their
proposal favors the creation of many clusters with few se-
quences in each, therefore with a high purity but low inverse

Figure 1. Spoken WorlClouds algorithm
blocks diagram

purity (refer to Section 4.1 for a definition). This makes
their algorithm not applicable to the creation of a “spoken
WordCloud”, where we are interested in a one-to-one re-
lationship between the clusters and the actual number of
unique repeating terms in the recordings.

3 Spoken WordCloud Algorithm

In this section we describe each of the building blocks
that conform the proposed “spoken WordCloud” algorithm.
As seen in Figure 1, the algorithm is composed of 3 main
modules: (1) First we perform an automatic pattern discov-
ery to detect audio segments longer than 0.5 seconds that
repeat over time. We do this by using the previously pro-
posed Unbounded Dynamic Time Warping (U-DTW) algo-
rithm [2] and extend it to process long audio recordings;
(2) Next, a similarity profile (see section 3.2) is created and
the most repeated segments (which we will refer as acoustic
words from now on) are obtained by finding the maxima of
the profile and extracting their start-end points; (3) Finally,
the three outputs of the algorithm are created: a “spoken
WordCloud” which is generated by clustering the repeated
words, a ranked list of the most recurrent words in the au-
dio, and the segments that appear in each of the clusters.

Note that the proposed approach differs from [11] in
three aspects: the pattern discovery algorithm, the pro-
cess to obtain the start-end positions of selected acoustic
words and the similarity metric between the different acous-
tic words in the clustering step (and the clustering algorithm
itself). In this section we describe in detail each of the afore-
mentioned differences.

3.1 Unbounded DTW (U-DTW) for Long
Sequences

The first necessary step for unsupervised pattern discov-
ery entails finding the acoustic sequences that repetitively



appear in the acoustic document over time. In [2] we pro-
posed the U-DTW algorithm that is able to find all repeated
sequences in an acoustic signal longer than a given mini-
mum duration. This algorithm differs from previous pro-
posals [11, 7] in that it avoids the evaluation of the com-
plete similarity matrix between the two sequences, hence
significantly reducing its computational cost. Unbounded
DTW leverages the minimum segment matching length set
by design in order to avoid computing similarities between
acoustic vectors which do not belong to a matching se-
quence. It computes an initial set of K similarities between
both sequences. These locations need to be chosen to en-
sure that the path along the matrix of any pair of matching
sequences will at least go through one of them. By care-
fully defining the locations where to compute these similar-
ities (which we call synchronization points) we can achieve
that K << N ·M , where N and M are the sizes of both
compared sequences. Then, for every synchronization point
that we suspect belongs to a matching segment (i.e. with a
high similarity value) we perform a forward and backward
path search until the entire matching path is found or the
sequence is discarded because of being too short. Note that
this approach ensures that the similarity between pairs other
than the synchronization points is computed only when nec-
essary. For more information on the algorithm, please re-
fer to [2]. This algorithm automatically finds matching se-
quences in two acoustic segments but does not perform any
clustering of the results, which we address in the rest of the
paper.

A general problem of previous algorithms [2, 11, 7] is
the quadratic memory requirements of the similarity matri-
ces, which limit their efficiency and speed when processing
very long recordings (longer than 1 hour). In order to over-
come this problem without constraining the possible pat-
terns to be found, we automatically cut the sequence into
manageable adjacent chunks and perform U-DTW on each
of them with all the rest. As seen in Figure 2(a), an extra
margin around each chunk is added to allow for any possi-
ble paths to be found even if crossing the chunk’s borders.
This way we ensure that no matching sequences will be lost
when performing this modification to the original U-DTW
algorithm.

3.2 Similarity Profile and Word Extrac-
tion

Given a list of matching paths and their scores, we wish
to obtain the start-end times of the sequences in the speech
segments that are matched. These will become the acoustic
words that will be clustered and used to build the “Spoken
WordCloud”. We first compute a similarity profile, such
as in [11], for all detected matching paths by adding their
scores along time. This similarity profile contains, at any
given time, the sum of matching similarities for all match-

(a) (b)

Figure 2. (a) U-DTW for large scale: paths are
allowed to cross the borders of the chunk; (b)
U-DTW similarity measure example between
segment s1 and s2.

ing sequences that go through that instant. Therefore, the
higher the values in the profile, the more recurrent the pat-
terns are. Acoustic words are detected as each of the max-
ima in the similarity profile plot whose value is higher than
a predefined minimum threshold. Note that we choose the
maxima because we are using a similarity matrix, instead of
choosing the minima if we used a distance matrix.

In order to determine the start-end times of the found
acoustic words, we gather all matching paths that cross such
maxima and find the median values of all their starting and
ending times. Although simple, this method turns out to
be more robust than, for example, finding the local minima
at either side of the maxima or taking the average (proba-
bly because the selected time corresponds to existing paths
starting and ending times). In order to further constrain the
acoustic words, we perform a simple energy-based speech
activity detection on the input data and slightly adjust the
start-end times or cut acoustic words in two when they in-
terfere with a silence region.

3.3 Similarity Matrix Between Acoustic
Words

All found acoustic words are clustered in order to find
the most recurrent words. The simplest strategy would be
to cluster together those acoustic words that share the most
common matching segments. However, this would not re-
turn optimum results for our WordCloud as similar acoustic
words are usually composed of an overlapping (but quite
different) set of matching sequences. In this section we
define an appropriate similarity measure between acoustic
words and in the next section we explain possible cluster-
ing strategies that lead to more desirable WordClouds.

In [11], the authors use the similarity obtained between
matching segments in the pattern discovery step, setting to
0 the similarity of all unmatched pairs. We shall denote this
similarity Kp. Note that by ignoring the similarity between
pairs that have not been matched during the discovery step,



some important information might get lost. Hence and in
addition to testing Kp, we propose to build a full similarity
matrix KU (s1, s2) between any pair of acoustic words s1
and s2 by using the metric in Eq. 1.

KU (s1, s2) =
e1 − b1
|s1|

· e2 − b2
|s2|

· udtw(s1, s2) (1)

where |s∗| is the size (in frames) of sequence s∗, b∗ and e∗
correspond to the optimum starting and ending points of the
best U-DTW path computed between the two sequences,
and udtw(s1, s2) is the total U-DTW score similarity, aver-
aged by the path length (See Figure 2(b)). Note that within
U-DTW we use the dot product, therefore udtw and the fi-
nal similarity always fall within the [0, 1] interval.

3.4 Clustering

In this paper, we evaluate two different clustering tech-
niques: graph clustering and spectral clustering. The graph
clustering technique was used in [11]. We have imple-
mented it by means of the Normalized Cuts algorithm [4].
Note that this is different from the implementation in [11]
because they require setting the value of a threshold (which
leads to an unknown a priori number of final clusters) while
in Normalized Cuts the final number of clusters is defined
a priori. In general, graph clustering is commonly used for
large scale clustering such as pixels in images. Its main in-
terest with respect to standard spectral clustering techniques
is that it is less computationally demanding as it does not
require to perform a prior factorization of the similarity ma-
trix.

Conversely, spectral clustering performs the classifica-
tion of the segments in a smaller meaningful linear subspace
[10]. In other words, a singular value decomposition of the
similarity matrix is first performed in order to get its eigen-
vectors and eigenvalues. Then the matrix is projected on a
small number of eigenvectors having the biggest eigenval-
ues in order to get the Principal Components of the matrix
(PCA). Finally a standard clustering technique such as k-
means can be applied on the projected segments. The possi-
ble limitation of this approach is an intractable dimensional-
ity reduction when too many segments have to be clustered.
In such cases one can use the large scale extension of this
method as proposed in [5].

Note that the dimensionality reduction used in spectral
clustering is useful to regularize the acoustic words by fre-
quency. For instance, words that appear a lot will corre-
spond to a principal direction, whereas unique or rare words
are neglected by the dimensionality reduction. Such behav-
ior is interesting when clustering a long speech segment if
we want to extract only the most recurrent acoustic words.
This dimensionality reduction can also be seen as a smooth-

ing of the similarity matrix which helps in separating the
acoustic words.

4 Experiments

4.1 Experimental Setup

In our experiments we used the MAMI dataset (see [3]),
which we are making publicly available to the community2

. It consists of recordings from 23 different speakers,
each one uttering 47 different words, 5 times each, using
a mobile phone in a noisy environment. Results using this
database should be considered preliminary, given that they
do not take into account the co-articulation effects of pro-
nouncing several words together in natural speech. On the
contrary, the background conditions in which each word
is recorded are not ensured to be constant, unlike in other
datasets like lecture recordings. We are planning on evalu-
ating the proposed approach on larger datasets in our future
work.

For each speaker we create a single long feature stream
by concatenating the 235 spoken words, and apply a simple
energy-based speech/silence detector to filter out silence.
The presence of silence is a big problem for unsupervised
word discovery as all silence regions look very much alike.
Note that no bias is introduced by the concatenation of
words as the silence detector separates the words and the
paths cannot cross the silences. For each file we extract 20
dimensional Mel-Frequency Cepstral Coefficients (MFCC)
features every 20ms. As MFCC are speaker dependent we
treat all speakers independently in our experiment, leaving
the multi-speaker case to future work.

The performance measures used for the evaluation of
the clustering are purity, inverse purity and F-score as ex-
plained in [1]. The purity focuses on the frequency of the
most common category in each cluster. This is important
as we want to prioritize having only one class of acoustic
words in every given cluster. On the contrary, purity does
not take into account how spread the acoustic words from
a given class are in the clustering. For instance having one
cluster per acoustic word would lead to a purity value of 1
but this is not desirable for a WordCloud application. There-
fore, we also compute the inverse purity, which measures
how accurate is the grouping of the acoustic words into the
real classes. Finally, the F-score takes into account both the
purity and the grouping of the true classes together.

One application of a spoken WordCloud is a sum-
mary of the spoken content with only the most represen-
tative/recurring acoustic words. Hence, it is of interest that
these few acoustic words be as pure as possible. For this
reason we also compute these metrics only on the n biggest
clusters. In our experiments, we keep the n = 40 biggest

2http://mm2.tid.es/mamidb/mamidb.tar.gz



Method Pur. IPur. Fsc. time (m)
Segmental DTW 0.757 0.556 0.645 110
Unbounded DTW 0.802 0.587 0.675 70

Table 1. Comparison between Segmental
DTW and Unbounded DTW for Unsupervised
Pattern Discovery.

clusters, which is slightly less than the real number of dif-
ferent words in the MAMI database for each speaker. Note
that all results correspond to the average over the 23 sub-
jects in the database.

4.2 Segmental vs. Unbounded DTW

In this section we compare Segmental-DTW and
Unbounded-DTW for unsupervised pattern discovery and
posterior clustering. We use a pipeline similar to the one
used in [11]. All the parameters are exactly the same for
both algorithms except for the path detection threshold that
has been set to 0.7 for U-DTW and 0.6 for Segmental-DTW
in order to obtain a similar number of paths in the pattern
discovery step. The minimum path size is set to 0.4 seconds
for both, and the minimum similarity for a maximum in the
similarity profile to be considered as an acoustic word is set
to 1. This means that at least 2 paths crossing the sequence
are necessary to consider a sequence to be a word. An Ncuts

graph clustering is used with 60 clusters in both cases.
Results are shown in Table 1. The purity, the inverse

purity and the F-score are all better with U-DTW (∼ 4%
absolute improvement). Furthermore, the last column of
the table shows the execution time – in minutes – for the
pattern recognition on all 23 subjects, showing that the U-
DTW is 40% quicker than Segmental-DTW. Here the time
needed for word detection and clustering is neglected due to
the small number of words (≈ 1 min per subject). All these
results show the advantage of using U-DTW for pattern de-
tection and posterior clustering over the Segmental-DTW
algorithm for the WordCloud task.

4.3 Similarity and Clustering

In this section we investigate the use of the proposed
similarity measures and two different clustering strategies
(graph and spectral) using the U-DTW algorithm. From the
obtained acoustic words we first compute the standard sim-
ilarity matrix KP proposed by [11] and the U-DTW simi-
larity matrix KU proposed in section 3.3. We then compare
the clusters using each similarity matrix and also using the
average of the two. Both the graph and spectral clustering
algorithms are set to find 60 clusters.

Results are shown on Table 2. First, we observe that
on this dataset, the spectral clustering works better than the

20 30 40 50 60 70 800.650.70.750.80.850.90.951 purityipurityfscorepurity40ipurity40fscore40Number of clusters mPurity, Inverse purity and Fscore for different m numberof clusters with and without keeping the 40 biggest clusters
Figure 3. Purity, inverse Purity and F-score
for different number of clusters with KU +KP

and spectral clustering.

graph clustering. Concerning the similarity measure, the U-
DTW measure alone is not as good as the standard one, but
combining the two leads to a purity improvement of 2% ab-
solute. Note that the three measures used (purity, inverse
purity and F-score) show similar improvements for the dif-
ferent clustering approaches and similarity measures. This
shows that we are not promoting one aspect of the clustering
over others, but rather evaluating the global efficiency.

Previous results correspond to a fixed number of over-
all clusters, but in a real life application, the total number of
spoken words is usually not known a priori. Figure 3 shows
results for different numbers of clusters when using the best
method (KU + KP for similarity and spectral clustering).
The dotted lines correspond to the results of keeping only
n = 40 biggest clusters. We can see that when the number
of clusters increases the purity increases and the inverse pu-
rity decreases. But when keeping only the 40 biggest clus-
ters, the purity remains more constant while the inverse pu-
rity still increases, leading to an overall better F-score. This
shows that regardless of the total number of clusters we use
in the clustering of a speech recording, our final WordCloud
(containing only the n-best clusters) will usually be a good
summarization of that recording.

5 Conclusions and Future Work

Automatic speech recognition (ASR) systems have tra-
ditionally been the cornerstone modules to extract infor-
mation from audio content. However, ASR may be very
challenging under adverse acoustic conditions or for lan-
guages with limited resources. Recent research address the
problem by looking directly at the signal and finding repet-
itive content that can be later used, for example, to help
improve ASR results or to summarize the acoustic content



Graph Spectral
Sim. Meas. Pur. Pur.40 IPur. IPur.40 Fsc. Pur. Pur.40 IPur. IPur.40 Fsc.

KP 0.80 0.78 0.59 0.67 0.68 0.88 0.86 0.69 0.80 0.74
KU 0.82 0.81 0.61 0.71 0.69 0.86 0.84 0.68 0.78 0.73

KP +KU 0.84 0.84 0.62 0.72 0.71 0.90 0.89 0.71 0.82 0.77

Table 2. Results obtained for different similarity measures and clustering (60 clusters).

with representative acoustic snippets. In this paper we are
interested in obtaining a representation of the most preva-
lent spoken words in the acoustic input by building a list of
the most recurrent acoustic segments, ranked by the number
of times they occur. We refer to the output of our system as
“Spoken WordClouds” given its similarity with text-based
word-clouds. We have proposed important modifications to
a well known pattern discovery and clustering algorithm,
originally used to improve ASR, to make it more suitable
for this application. First, we have used U-DTW for un-
supervised pattern discovery with good results in terms of
computational time and clustering performances. Next we
have investigated the use of a new similarity measure be-
tween acoustic words and the use of two different cluster-
ing algorithm. We have evaluated the proposed approach
in a small database and obtained up to 90% cluster purity
and 71% inverse purity. Future work will entail testing the
algorithm on recorded lectures and meetings, working on
a speaker-independent version and evaluating the meaning-
fulness of the obtained WordClouds as a summary of the
content.
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