Discovering relevant spatial filterbanks for VHR image classification
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Abstract

In very high resolution (VHR) image classification it
is common to use spatial filters to enhance the discrimi-
nation among landuses related to similar spectral prop-
erties but different spatial characteristics. However, the
filters types that can be used are numerous (e.g. textu-
ral, morphological, Gabor, wavelets, etc.) and the user
must pre-select a family of features, as well as their spe-
cific parameters. This results in features spaces that are
high dimensional and redundant, thus requiring long
and suboptimal feature selection phases. In this pa-
per, we propose to discover the relevant filters as well
as their parameters with a sparsity promoting regular-
ization and an active set algorithm that iteratively adds
to the model the most promising features. This way,
we explore the filters/parameters input space efficiently
(which is infinitely large for continuous parameters)
and construct the optimal filterbank for classification
without any other information than the types of filters
to be used.

1 Introduction

Recent advances in optical remote sensing opened
new highways for spatial analysis and geographical ap-
plications. Urban planning, crops monitoring, tracking:
all these applications are nowadays eased by the use
of satellite images that provide a large scale and non-
intrusive observation of the surface of the Earth.

One of the factors raising the interest of applicative
communities for remote sensing is the advent of very
high resolution (< 5m, VHR) imagery. With such im-
agery, it is now possible to observe fine scale phenom-
ena and to delineate objects in a very precise fashion.
However, such level of detail comes with a price: the
resolution is so high, that the spectral signature of lan-
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duse types becomes mixed, due to the presence of a
plethora of objects on the ground that are visible in the
image. This increases the landuse intraclass variance.
For example, with a submetric resolution, the average
signature of the tiles covering a roof can be contami-
nated by the presence of different objects such as, chim-
neys, windows, solar panels, etc.

To exploit VHR imagery efficiently, the remote sens-
ing community has turned to machine learning and im-
age processing techniques [1]. For the former, pow-
erful classifiers have been designed, among which the
Support Vector Machines (SVM) are probably the most
successful [2]. For the latter, a series of spatial filters
accounting for texture or shape of objects is often used
to cope with the spectral variance introduced by VHR
imaging. Among the 2-D filters proposed, texture [3]
and mathematical morphology [4] are the most used.

A problem that often arises is the choice of the spa-
tial filters: these filters are numerous and come with
a wide range of parameters. Even if SVM can cope
with high dimensional spaces better than other meth-
ods, the choice of the filterbank strongly affects the re-
sults, since it defines the input space in which examples
are discriminated. In remote sensing literature, most of
the proposed approaches to VHR image classification
(if not all of them) first define a large filterbank with
prior knowledge of the user and then runs a model, with
a feature selection procedure [3, 4, 5, 6, 7]. If the rel-
evant features are included in the filterbank, the pro-
cedure provides an efficient and compact model. But
what if the relevant features and related parameters are
not known beforehand?

In this paper, we consider the problem of discover-
ing the relevant filterbank by an active set method based
on SVM optimality conditions [8]. Contrarily to [5],
which also proposes sparse feature representation, the
feature filterbank is not fixed prior to analysis. The fit-
ness is based on the hinge loss, thus relying on a large



margin criterion. In our approach, we generate itera-
tively random filterbanks of known filter types and as-
sess whether one of the new features would be useful
if added to the model. This way, the high dimensional
(and continuous) space of features is explored and the
optimal set of filters for classification is retrieved. Ex-
periments on a VHR image confirm the hypothesis.

2 Selecting from an infinite set of features

Consider a set of n training examples {x;,y;}"
where x; corresponds to a pixel in the image and
y; € {—1,1} to its label. We define a §-parametrized
function ¢y(-) that maps a given pixel into his feature
space (the output of a spatial filter). In this frame-
work, we are looking for a decision function of the form
fx)= 2?21 w;d, (x), with w = [wy, ..., wg]” the
vector of all weights in the decision function. Note that
this function considers only a finite number of feature
maps d with associated parameters {6,}7_,. We de-
fine @4, as the vector whoe rows 7 are ¢y, (x;) and ®
as the matrix of feature maps, resulting from the con-
catenation of the d vectors {®y, }. Each column of &

is normalized to unit norm and ® = diag(y)®, with y
being the vector of labels {y; }. We learn the f function
by optimizing the following ¢ regularized linear SVM
problem:

w
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where [®w]; = y; f(x;), T is a unitary vector, (-); =
max(0,.) is the element-wise positive part of a vec-
tor and C' is the SVM regularization parameter. Note
that the first term in Eq. (1) is the differentiable squared
hinge loss. The optimality conditions of this problem
[9] are:

|’I“i| <1 Vi w; = 0 (3)
with r; = %5? (I — ®w).. the scalar product between

@, and the hinge loss error. These optimality conditions
suggest the use of an active set algorithm that solves it-
eratively Eq. (1), restricted to the features in the current
active set. At each iteration, if a feature not in the ac-
tive set (i.e. w; = 0) violates optimality constraint (3),
it is added to the active set of the next iteration, lead-
ing to a decrease of the cost after re-optimization. With
continuously parametrized features, the number of can-
didate features is possibly infinite, so a comprehensive
test of the candidate features is intractable. In this situ-
ation, [8] proposed to randomly sample a finite number
of features and add to the active set the one violating the
most constraint (3).

Note that the algorithm is designed to handle large
scale datasets. Indeed checking the optimality condi-
tions and selecting a new feature has complexity O(n)
and solving the inner problem is performed only on a
small number of features using an accelerated gradient
algorithm (see [8]).

3 Data and experimental setup

Analyses have been carried out on a multi-spectral
QuickBird dataset of a residential neighborhood of
Zurich, Switzerland. The image was acquired in 2002
and it is composed by 4 bands of 329 x 347 pixels, with a
geometrical resolution of 2.4 m. Figure 1 illustrates the
original image and the associated ground truth. Data
have been scaled by dividing the pixel vectors by the
maximum value of the original 11-bit image. Random
subsets composed by 5% of the comprehensive labeled
set (2040 pixels out of the 40762 available) are extracted
for the experiments. The test set is composed by the re-
maining 38722 examples. For classification, we used a
linear ¢;-norm SVM, with regularization parameter C'
optimized by cross-validation to a value of 100. The
same C value has been used for the proposed method.

For the /1-norm SVM, we pre-computed a filterbank
composed by all the spectral bands and contextual fil-
ters extracted for each band separately. Selected filters
are morphological operators (MOR) with disk-shaped
structuring element, attribute filters (ATT) [10] and oc-
currence texture indicators. The parameters used for
computing the features are sampled at uniform intervals
from the ranges given in Tab. 1. Three experiments are
reported: a stack of the original bands with the MOR
features, a stack with the ATT features and a case in-
volving all the three types. For the dimensionality of
these sets, please refer to line ‘# Features’ of Tab. 2.

For the proposed infinite active set scheme, we gen-
erate random filterbanks iteratively, using the codebook
described in Tab. 1. At each iteration, a random sub-
set of features is computed and the one most violating
the constraints is retained. Note that the algorithm re-
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Figure 1. Datasets used, legend in Tab. 2.



Table 1. Filters used in the experiments, along with their parameters and possible values

Bank \ Filters Parameters Type Search range
All filters \ |- Band lint [[1: #bands]
Opening, Closing, Opening top-hat, |- Shape of structuring element|str  |{disk, diamond,
. _|Closing top-hat, Opening by recon- square, line}
1(\16;)(?;;1 ([)‘l‘(]))glcal struction, Closing by reconstruction, |- Size of structuring element |int |[1 : 15]

Opening by reconstruction top-hat and
Closing by reconstruction top-hat

- Angle (if Shape = ‘line’) float |[0, 7]

Texture [3]  [Mean, Range, Entropy and Std. dev. [- moving window size lint [[5:2:21]
Area - Area int [[100, 10000]

Attribute Diagonal - Diagonal of bounding box |int |[10, 100]

(ATT [10)) Inertia - Moment of inertia float ([0.1, 1]
Standard deviation - Standard deviation float [[0.5, 50]

Table 2. Averaged numerical figures of
merit of the strategies considered

Predefined library
Model /1 SVM
Feature type |Bands MOR ATT  All

Overall accuracy| 69.75 84.52 85.50 91.99 | 92.46
Cohen’s Kappa |0.613 0.806 0.819 0.901 | 0.907

Residential |76.71 92.17 92.44 96.07 | 96.71
[l Commercial | 51.49 74.02 66.42 79.65 | 83.73
B Meadows | 99.93 99.75 99.58 99.54 | 99.60

Harvested 0 3047 83.24 98.40 | 97.51
[ Bare soil 49.53 99.98 99.41 99.93 | 99.91

Infinite

Roads 88.92 84.50 84.32 88.95 | 89.39
Il Pools 21.09 95.47 98.28 97.42 | 96.40
[ Parkings 0 4205 31.26 56.41| 51.99

Trees 0 41.10 12.81 65.98 | 6593

# Features 4 148 324 508 o0

# Selected 4 84.20 114.60 202.40/210.40

trieves class-specific filterbanks in the One Against All
(OAA) architecture. For each class, we performed 200
generations of filters.

4 Results and discussion

Figures of merit are given in Tab. 2. Results re-
ported are averages over 5 independent realizations of
the training sets. The infinite feature learning algo-
rithm provides the best results in terms of overall ac-
curacy and estimated Cohen’s kappa statistic [1], and
ranks among the best for single class accuracy in most
classes. The proposed active set method selects roughly
the same number of features as the ¢;-norm SVM ex-
periments, indicating a good convergence to the optimal
situation in which filters are computed manually.
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Figure 2. Infinite active set algorithm: (a)
selected filterbank per type and (b) num-
ber of retained features per class.

Figure 2(a) summarizes the number and type of fil-
ters selected by the proposed method. Features that
model the geometry and morphology of regions (e.g.,
generated by attribute filters), as well as features in
which locally dark/bright objects are extracted (i.e., by
morphological top-hat operators) play an important role
for this classification task (55% of the filterbank). This
can be related to the nature of the classes to be detected,
that ranges from structured geometry (roofs and roads)
to large homogeneous patches (fields and meadows).

Regarding the class specific results, Fig. 2(b) illus-
trates the number of features required by each OAA
subproblem. Classes related to large amounts of fea-
tures are the ‘road’ and the ‘commercial’ classes, (47%
of all the chosen features). From a spectral point of view
these land use classes are ambiguous, since in the origi-
nal input space they are not linearly separable from their
counterparts ‘parkings’ and ‘buildings’. Hence, more
descriptors are needed to discriminate those classes.
The same holds for the classes ‘trees’ and ‘harvested’,
not spectrally separable from the class ‘meadows’ in the
original spectral bands space. When using the spectral
bands only, all the pixels are attributed to the most rep-
resented class (‘meadows’) and the other similar classes
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Figure 3. (a) Structuring element size
within the morphological filters selected
for five classes (for color legend, refer to
Tab. 2). (b) Orientation of linear structur-
ing elements for the class ‘roads’.

are never predicted by the SVM (0% accuracy). On
the contrary, the proposed active set method discovers
features related (both in terms of types and quantities)
to the degree of complexity of the class represented.
To illustrate this principle even further, Fig. 3(b) re-
ports the size of the structuring elements chosen for five
classes: for spatially wide classes, the structuring ele-
ment size is larger (‘parkings’, ‘pools’ and ‘bare soil’),
while for classes related to small or thin objects (‘trees’
and ‘roads’), the size of the structuring elements are
smaller. The example of the class ‘roads’ is also in-
teresting, because of the geometrical properties of the
class: since roads are linear structures, line structuring
elements are often selected (26% of the features) and
orientation of the filters correspond to the main street
directions observed in the image (Fig. 3(b)).

5 Conclusions

In this paper, we presented and discussed a /1-norm
SVM-based feature learning scheme for image classifi-
cation. This scheme is based on active sets and discov-
ers interesting features from a potentially infinite filter
library. Without any prior knowledge other than fil-
ters types, the proposed method is able to identify the
contextual information needed to correctly classify the
OAA subproblems. This way, besides a high classifica-
tion accuracy, the user is also provided with a filterbank
describing the main spatial characteristic of the classes.
It is also shown that not linearly separable classes be-
come separable after the automatic dimensional expan-
sion of the input space, producing accuracies close or
even superior to a feature space created by an expert
user. This opens new perspectives for VHR hyperspec-
tral imaging, where the extraction of contextual filters
in an input space of several hundreds of bands remains
unsolved.
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