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Abstract
In many machine learning applications, like brain–computer interfaces (BCI),
high-dimensional sensor array data are available. Sensor measurements are often highly
correlated and signal-to-noise ratio is not homogeneously spread across sensors. Thus,
collected data are highly variable and discrimination tasks are challenging. In this work, we
focus on sensor weighting as an efficient tool to improve the classification procedure. We
present an approach integrating sensor weighting in the classification framework. Sensor
weights are considered as hyper-parameters to be learned by a support vector machine (SVM).
The resulting sensor weighting SVM (sw-SVM) is designed to satisfy a margin criterion, that
is, the generalization error. Experimental studies on two data sets are presented, a P300 data
set and an error-related potential (ErrP) data set. For the P300 data set (BCI competition III),
for which a large number of trials is available, the sw-SVM proves to perform equivalently
with respect to the ensemble SVM strategy that won the competition. For the ErrP data set, for
which a small number of trials are available, the sw-SVM shows superior performances as
compared to three state-of-the art approaches. Results suggest that the sw-SVM promises to
be useful in event-related potentials classification, even with a small number of training trials.

1. Introduction

Brain–computer interfaces (BCI) are assistive technologies
using brain signals to decode the users’ intention without
resorting to any muscles or peripheral nerves [1]. Some
classes of BCI potentially provide motor-disabled people with
a communication channel even when motricity is not preserved
at all [2, 3]. More recently, BCI research has focused on
improving/integrating traditional communication devices such
as the keyboard and joystick, for example, in video-game
applications [4, 5].

Because of its high temporal resolution, ease of
use and low cost, most BCI are based on EEG
(electroencephalography). EEG is a high dimensional
(typically 8 to 128 sensors) scalp measurement of a smooth
potential field. Whereas the potential field accurately reflects
the global cerebral electrophysiological activity, the volume

conduction, scalp smearing and the high spatial resolution of
the sampling introduce a high correlation between the observed
data at different electrodes (sensors) [6]. Moreover, the
measured potentials are of low amplitude (of the order of tens
of microvolts) and the measurements are very sensitive to noise
of biological, environmental and instrumental origin. Such
noise is of non-stationary nature and may vary considerably
across sensors and along time. The poor signal-to-noise
ratio (SNR), which is an inherent characteristic of EEG,
requires adequate processing techniques to tackle the problems
of dimension reduction and noise cancellation. So far the
BCI classification task has classically been solved in two
steps: (1) feature extraction techniques, typically amounting to
frequential, temporal and/or spatial filtering and (2) a machine
learning classification task.

Concerning optimal sensor weighting or spatial filtering
techniques, signal-processing criteria like the SNR and ratio
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of class variances [7–10] have been often employed because of
the instantaneous and approximately linear relation between
the amplitudes of the generating cerebral electrophysiological
current sources and the amplitude of the observed scalp
potential field. The idea here is to find a linear transformation
of the data (optimal spatial filters) optimizing the extraction
of the relevant EEG feature and the noise suppression. The
performance of such filters mainly depends on the accuracy
of spatial covariance estimations and is jeopardized by the
non-stationary nature of the noise. Although a relation might
be found between the objective functions of [7–10], yielding
optimal filters and class separability, this relation has, to the
best of our knowledge, never been addressed explicitly.

Depending on the features to be extracted, some EEG
sensors may not provide useful information, but, instead,
add noise to the system. It is often the case for the most
inferior temporal sensors (electrodes T3, T4, T5 and T6)
of the international 10/20 system, which may convey more
electromyographic data than EEG, due to steady or intermittent
jaw contractions. In addition, temporal leads carry little
information about sources generating evoked potentials such
as P300, thus for P300 detection they can usually be discarded.
But, the leads affected by biological artifacts are subject and
session dependent. For instance, some subjects tend to display
more muscular contamination on the frontal sensors (FP1,
FP2) or on the occipital sensors (O1, O2) than on sensors
covering the temporal region. Instrumental and environmental
artifacts also may affect different leads, and again, this is
subject and session dependent. It is thus crucial to derive
data-driven criteria for sensor weighting.

Concerning the classification task, simple linear classifiers
have been found to perform well in event-related potential
(ERP) paradigms [7, 11]. This has led to a prevailing
view among BCI researchers that the effort to search for
more sophisticated machine learning approaches is irrelevant.
Usually, preprocessed data are fed to a simple classifier
borrowed from the machine learning literature without
enquiring about possible improvements that could be done,
thus resulting in classifiers that do not fully exploit the
proprieties of the data. Nonetheless, a BCI is essentially a
learning machine.

As mentioned above, in this work we focus on the optimal
weighting of sensor data so as to improve the separability of
the classes. We treat the problem within the classification
problem itself. By introducing the sensor weighting as hyper-
parameters in a support vector machine (SVM), weights are
optimized for the specific classification problem at hand. The
SVM is particularly well suited for online processing required
for BCI data due to its reduced computational complexity.
Indeed, SVM complexity depends far more on the number
of training trials than on the number of features used to
describe each of them. The proposed algorithm has been
named sensor weighting SVM (sw-SVM) and is built upon
the multiple kernel learning (MKL) framework [12, 13]. The
sw-SVM offers a very flexible approach, in that it can handle
any kind of features, thus adapting to any kind of EEG-based
BCI (P300, motor imagery, SSVEP, etc) or any data selection
and classification task. In this paper, we focus on ERP data

analysis; in the discussion of section 4.3, we offer possible
directions for its use in other contexts.

Two BCI data sets are considered to illustrate the
efficiency of the proposed sw-SVM algorithm as compared
to a state-of-the-art SVM approach. The first is the P300
speller data set of the BCI competition III [14] for which
the competition winner used an ensemble-SVM (e-SVM)
approach [15]. An e-SVM constructs an ensemble of classifier
decision functions on different subsets of the data and assigns a
blind pattern according to the average of all decision functions.
The BCI competition III data set has been chosen so as
to provide a comparative element versus a state-of-the-art
technique. The second data set is an error-related potential
(ErrP) data set and contains very few learning trials; thus,
no ensemble strategy is possible. Therefore, it provides an
adequate base to ascertain the robustness of the proposed
algorithm as compared to a spatial filter maximizing a ratio
of class variances followed by an SVM classifier [16], a
spatial filter maximizing an SNR criterion followed by an
SVM classifier [10] and a classical SVM approach [17].

The remainder of this paper is organized as follows.
The proposed sw-SVM algorithm is introduced in section 2
where the general SVM framework is recalled. The sw-SVM
optimization problem and a possible solution are presented.
Section 3 accounts for the description of BCI data sets and
explains the preprocessing techniques used for each data set.
Classification techniques used to compute comparative results
are discussed and justified in section 4. Finally, section 5 holds
our conclusions.

2. Method

In this section, the SVM primal and dual problems are first
recalled. Secondly, the proposed sw-SVM method is detailed.

2.1. Support vector machine

The SVM is a classification technique developed by Vapnik
[17] which has shown to perform well in a number of real
world problems, including BCI [18]. Given a set of labeled
patterns {(x1, y1), . . . , (xp, yp), . . . , (xP , yP )} with patterns
xp ∈ R

d and labels yp ∈ {−1, 1} referring to two different
classes. The central idea of the SVM is to separate data
by finding a hyperplane yielding the largest possible margin
(a margin is the distance between nearest data points of
different classes, as illustrated in figure 1. Within this figure it
is the distance between the two dashed lines). This hyperplane
is defined by a weight vector w ∈ R

d and an offset b ∈ R.
Apart from being an intuitive idea, the SVM has been shown
to provide theoretical guarantees in terms of generalization
ability [17].

One variant of the binary linear SVM consists of solving
the following primal optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

P∑
p=1

ξp

subject to yp(〈w, xp〉 + b) � 1 − ξp ∀p ∈ {1, . . . , P }
and ξp � 0 ∀p ∈ {1, . . . , P },

(1)
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Figure 1. Schematic illustration of the linear SVM. Slack variables
ξp are observations for which classification errors are tolerated to
improve generalization performance in nonlinearly separable data
sets. The circled points positioned on the dashed lines are called
support vectors (SV).

where 〈·, ·〉 stands for the inner product of two vectors. The
parameters ξp are called slack variables and ensure that the
problem has a solution in case the data is not linearly separable.
The function f (xp) = 〈w, xp〉 + b, solution of problem (1),
should correctly classify patterns along with minimizing ‖w‖2.
The trade-off between a low training error

∑P
p=1 ξp and a large

margin is controlled by the regularization parameter C. Finding
a good value for C is part of the model selection procedure. If
no prior knowledge is available, C has to be estimated from
the training data, e.g., by using cross-validation.

The dual problem of (1) can be formulated as follows:

max
α1,...,αP

P∑
p=1

αp − 1

2

P∑
p=1

P∑
q=1

αpαqypyq〈xp, xq〉

subject to
P∑

p=1

αpyp = 0

and 0 � αp � C ∀p ∈ {1, . . . , P }.

(2)

The linear SVM was extended to a nonlinear classifier by
applying the kernel trick [19] originally proposed by Aronszjan
[20]. The space of possible functions f (.) is now reduced to
a reproducing kernel Hilbert space (RKHS) H with kernel
function K(·, ·). Let φ : R

d → H be the mapping defined
over the input space. Let 〈·, ·〉H be a dot product defined in H.
The kernel K(·, ·) over R

d × R
d is defined by

∀ (xp, xq) ∈ R
d ×R

d : K(xp, xq) = 〈φ(xp), φ(xq)〉H ∈ R.

The resulting algorithm is formally similar to (2), except
that every dot product is replaced by a nonlinear kernel
function K(·, ·). This allows the algorithm to fit the maximum-
margin hyperplane in a transformed feature space. The
transformation is generally nonlinear and the transformed
space high dimensional. Thus, though the classifier is a

hyperplane in the RKHS, it is generally nonlinear in the
original input space. Some common kernels include Gaussian
radial basis function, polynomial function, etc. For a detailed
discussion, refer to [21].

2.2. Sensor weighting procedure

The sw-SVM formulation involves sensor weights in the
primal and dual optimization problem and tunes these weights
as hyper-parameters of the SVM. To illustrate the proposed
method, let us consider time-locked evoked response
potentials. Each evoked response potential is considered in
a short time period of T samples recorded over S sensors and
represented as a matrix X̃p ∈ R

T ×S . A pattern xp is obtained
by concatenating elements of X̃p columnwise in a vector of
R

d×1, with d = T S. A trial xp is thus a vector containing all
the spatio-temporal information.

Our task consists in finding spatial weights that maximize
the separation margin between two post-stimulus responses
recorded on a given subject. We assume that sensor weights
for a given subject are similar across all the trials. Thus, we
aim at finding a matrix D ∈ R

d×d of sensor weights assigned to
each of the trials xp so that {Dxp}Pp=1 maximize the margin of
the SVM. For the application of EEG sensor weighting, time
features belonging to the same EEG sensor, hereafter indexed
by s, have to be dealt with in a congeneric way so that a spatial
interpretation remains possible. In this work, time samples
of one sensor are treated equally. The resulting matrix D is
thus diagonal with S different unknown coefficients, and each
coefficient ds is repeated T times on the diagonal as

D =

⎛
⎜⎜⎜⎝

d1IT 0 · · · 0
0 d2IT · · · 0
...

...
. . .

...

0 0 · · · dSIT

⎞
⎟⎟⎟⎠ ,

where IT is the identity matrix in R
T ×T and ds are coefficients

that weigh the sensors. From this context, our objective is to
find the coefficients ds that maximize the margin of a linear
SVM classifier. In this sense, we provide a method for large-
margin sensor weighting.

According to the SVM definition given above, the
optimization problem of the linear SVM sensor weighting
problem can be stated as

min
w,b,ξ,D

1

2
‖w‖2 + C

P∑
p=1

ξp

subject to yp(〈w, Dxp〉 + b) � 1 − ξp ∀p ∈ {1, . . . , P }
and ξp � 0 ∀p ∈ {1, . . . , P }

and
S∑

s=1

d2
s = 1.

(3)

By setting to zero the derivatives of the partial associated
Lagrangian according to the primal variables w, b and ξp, the
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optimization problem of the dual formulation can be written
as

min
D̃

max
α

1T α − 1

2
αT YT XT D̃XYα

subject to yT α = 0
and 0 � αp � C ∀p ∈ {1, . . . , P }

and
S∑

s=1

d̃s = 1,

(4)

where we have used D̃ = DT D and thus d̃s = d2
s . α is

the vector of Lagrangian multipliers, X = {x1, . . . , xP } is the
matrix containing the trials, y = {y1, . . . , yP } is the vector
containing the labels and Y = Diag(y) is a diagonal matrix
containing the labels on its diagonal. The overall problem
remains a concave problem in α and boils down to a MKL
problem, where a linear kernel is used over each sensor’s time
series. {d̃s} are the positive mixing coefficients associated
with the multiple kernels. According to this relationship, we
propose to use a MKL algorithm based on a reduced gradient
method, as in SimpleMKL [22], for solving the problem.

We proceed with an alternate optimization algorithm. For
any admissible value of D̃, the maximization problem over
α is strictly concave. It is noteworthy that for an admissible
value of D̃, the objective function reduces to a regular SVM
optimization. Hence, we can use any SVM solver to find
α for once D̃ has been fixed [23]. For the so-obtained α,
the minimization problem over D̃ is smooth and convex [24].
Hence, we can use a reduced gradient method which converges
for such functions [25]. Once the gradient of the first equation
in (4) is computed, D̃ is updated by using a descent direction
ensuring that the equality constraint and the non-negativity
constraints on {d̃s} are satisfied. These two steps are iterated
until a stopping criterion is reached. The stopping criterion
we chose is based on a norm variation of the sensor weights.

3. Experimental data

Experiments were performed on a P300 data set and an ErrP
data set. The experimental setup, preprocessing techniques
and notations are detailed in this section.

3.1. P300 speller data set

The P300 speller data set from the BCI competitions 2004
[14] was used to benchmark the proposed filtering algorithm
and to compare it to the competition winner, where an
e-SVM approach clearly outperformed the competitors [15].
A P300 speller paradigm allows the user to choose a character
among a predefined set of alphanumeric characters [26] (letters
from A to Z, digits from 1 to 9 and ). A 6 × 6 matrix of
characters is presented to the user and the rows and columns
of the matrix are flashed (intensified) in random order. The
user can select a character by concentrating on it. Since the
target character is rare as compared to the others, a P300
evoked response is elicited when the target flashes. The task
of the P300 speller is to guess what target the subject focuses
upon by comparing responses evoked by each row/column
intersection. The P300 potential is in the order of a few

microvolts highly corrupted by noise and superimposed on
background activity of significantly higher amplitude (as an
integration over multiple ongoing activities). Thus, in order
to obtain sufficient accuracy, the sequence of flashes must
be repeated several times for each character to be spelled,
typically 8 to 15 times and responses should be averaged to
reduce noise and enhance the signal of interest.

3.1.1. Experimental setup and mental task. EEG signals
were recorded from two subjects using 64 earlobe-referenced
scalp electrodes. Before digitization at a sample rate of
240 Hz, signals have been band-pass filtered from 0.1 to
60 Hz. A detailed description of the data set can be found
in the BCI competition paper [27]. For each subject, the
training set is composed of 85 characters and the test set of
100 characters. One spelled character corresponds to 180
post-stimulus labeled signals (12 row/column intensifications
×15 repetitions per letter). Only 30 post-stimuli from the
180 correspond to a target intensification yielding a P300
deflection.

Five sessions were recorded for each subject. Each
session consisted of a number of runs where subjects focused
attention on a series of characters. For each spelled character,
the matrix was displayed for a 2.5 s period during which each
character had the same intensity. This period informed the user
that the previous character spelling was completed and gave
instruction to focus on the next character in the word, which
was displayed on the top of the screen. Subsequently, each
row and column in the matrix were randomly intensified for
100 ms alternating with a blank period of 75 ms. Row/column
intensifications were block randomized in blocks of 12.

3.1.2. Data preprocessing. In ‘oddball’ paradigms such
as the one described above, the perception of the rare
stimulus typically triggers a positive low amplitude deflection
approximately 300 ms following the stimulus onset, also
known as the P3b component of the P300 waveform [28, 29].
Consequently, only the time window of approximately 667 ms
post-stimulus onset, corresponding to 160 time samples, was
retained. Before submitting the data to the feature extraction
and learning algorithms, the data were band-pass filtered
between 0.1 and 20 Hz with a fourth-order Tchebychev filter
(type 1) and then decimated so as to retain 14 samples
per sensor for each trial. Prior to decimation, the signal
is filtered with an eighth-order Chebyshev Type I low-pass
filter. This acts as an anti-aliasing filter suppressing frequency
contents above 0.8FS

2fd
, where fd is the decimation factor (here

fd = 12). Secondly, we downsample the so-obtained signal
to a sample frequency of FS

fd
, retaining each 12th sample

(14 samples in total). Thus, the dimensionality of the input
vector is 14×64. Let P denote the number of stimuli of the data
sets (P = 15 300 = 12 intensifications ×15 repetitions ×85
characters for the training set and P = 18 000 for the test set)
and let d denote the data dimension (d = 14 × 64 = 896 for
each stimulus). A trial is denoted as xp ∈ R

d , p = 1, . . . , P ,
with labels yp ∈ {−1, 1}. A label y = 1 corresponds to an
expected P300 post-stimulus signal and y = −1 corresponds
to an expected absence of a post-stimulus P300 signal.
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Figure 2. Temporal diagram of one ErrP trial.

3.2. The ErrP data set

In 1991, Falkenstein et al [30] reported the presence of a
negative deflection in EEG when subjects committed errors
in a time-reaction task. Since then, several studies have
shown the presence of ErrP components such as error-related
negativity (Ne) and error-related positivity (Pe) in a variety
of experimental paradigms. Error processing systems were
categorized in time-reaction tasks [31, 32], feedback tasks
indicating incorrect performance after a decision task [33, 34]
or observation tasks following observation of errors made by
an interface or someone else [35].

The experiment, described in the following, is based on
a visual feedback presented on a computer screen following a
memorization task.

3.2.1. Experimental setup and mental task. Eight healthy
volunteers (including three women) participated in this
experiment. All subjects were BCI-naive at the time of the
experiment. Subjects had to retain the position of an ensemble
of two to nine digits. The digits were displayed as a sequence
in square boxes and evenly distributed along a circle. When the
sequence disappeared, a target digit was shown and subjects
were asked to click on the box where it previously appeared.
A visual feedback indicates whether the answer was wrong
or correct. The experiment involved two sessions that lasted
together approximately half an hour. Each session consisted
of six blocks of six trials, for a total of 6 × 6 × 2 = 72 trials.

The temporal order of each trial, illustrated in figure 2, is
detailed next. The score, initially zero, was displayed for
3000 ms followed by a fixation cross, which was in turn
displayed for 3000 ms. Then the memorization sequence
started with variable duration depending on the number of
digits the subject had to memorize. When it ended the subject
was asked to click on the box where the target digit had
appeared. Once the subject had answered, the interface was
paused for 1500 ms and then turned the clicked box green
upon a correct answer or red upon an erroneous answer.
This feedback lasted for 2500 ms. The 1500 ms preceding
the feedback was introduced to avoid any contamination of
ErrP by beta rebound motor phenomena linked to mouse
clicking [36]. The subject was then asked to report if the
feedback (correct/error) matched his expectation by a mouse
click (‘yes’/‘no’). Following his answer a random break of
1000 to 1500 ms preceded the beginning of the new trial.
The number of digits was adapted with an algorithm tuned to
allow about 20% errors for all subjects. The mean error rate
(standard deviation) was equal to 17.87(±4.64)% of the trials.

Recordings of EEG were made using 31 sensors from the
extended 10/20 system. The Mitsar 202 DC EEG amplifier
was used for signal acquisition. These amplifiers have two
independent references and associated grounds. We used one

ground positioned on the forehead and both references: half
of the sensors are referenced to the right earlobe and the other
half are referenced to the left earlobe. The acquisition software
links the two references digitally and computes one common
reference for all cephalic sensors. During acquisition, EEG
was band-pass filtered in the range 0.1–70 Hz and digitized at
500 Hz.

3.2.2. Data preprocessing. Raw EEG potentials were first
re-referenced to the common average by subtracting from each
sensor the average potential (over the 31 sensors) for each time
sample. Many studies report two peaks, Ne and Pe, as the main
components of ErrP components [33]. Ne shows up about
250 ms after the response as a sharp negative peak and Pe
shows up about 300 to 500 ms after the response as a broader
positive peak. According to this knowledge, only a window
of 1000 ms posterior to the stimulus has been considered for
each trial, which results in 500 samples per sensor. A 1–10 Hz
fourth-order Butterworth filter was applied as ErrP is known
to be a relatively slow cortical potential. Finally, EEG signals
were decimated so as to retain 16 samples, with the same
process as mentioned above (anti-aliasing filter followed by a
decimation with factor 32). Thus, the dimensionality of the
input vector is 16 × 31. No artifact rejection algorithm was
applied and all trials were kept for analysis. Let P denote
the number of training vectors (trials) of the data sets (P =
72 for all eight data sets) and let d denote the data dimension
(d = 16 × 31 = 496 for all eight data sets). A trial is denoted
as xp ∈ R

d , p = 1, . . . , P , with labels yp ∈ {−1, 1}. For the
task used in this paper, y = 1 denotes error trial and y = −1
denotes correct one.

3.3. Cross-validation

For the P300 data set, an ensemble of linear sw-SVM
classifiers was used to make results comparable to those of
the competition winner [15] where an ensemble of the SVM
(e-SVM) was learned. The data set was split, as per
the competition winner method [15], into 17 subsets, each
composed of five characters or 5 × 12 × j post-stimuli, with j

being the number of repetitions for one character. An ensemble
of the classifiers’ system for each single subject was designed.
For the ensemble of the sw-SVM, 17 sw-SVM classifiers
were trained for j = 15 repetitions on one of the 17 subsets
and its regularization parameter C was chosen by validating
performances on the remaining 16 subsets. To assign a test
datum to one of the 36 classes, 17 real-valued sw-SVM
decision functions were computed for each j = 1, . . . , 15;
the most probable row and column at the j th repetition
was the one that maximizes the average of the 17 sw-SVM
classifiers’ scores. For the e-SVM, 17 linear SVM classifiers
with backward elimination technique were trained for

5
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Figure 3. P300 component (solid) and non-P300 component (dotted) are illustrated for subjects A (left) and B (right). Components are the
projection of the original post-stimuli (with 160 samples per post-stimulus window) according to the sw-SVM filters computed on
downsampled post-stimuli (with 14 samples per post-stimulus window).

j = 15 repetitions on one of the 17 subsets and
its regularization parameter C was chosen by validating
performances on the remaining 16 subsets. To assign a test
datum to one of the 36 classes, 17 real-valued SVM decision
functions with the selected sensors were computed for each
j = 1, . . . , 15 repetitions, the most probable row and column
at the j th repetition was the one that maximizes the average
of the 17 SVM classifiers’ scores. For the ErrP data set, only
five subsets were considered because of the limited number
of trials. An sw-SVM classifier learned on four subsets with
different regularization parameter C, and performances were
computed on the remaining subset. For a set of pre-defined
values of C, this process was repeated five times for a given
subject and averaged. The highest average accuracy was
reported. Besides, five cross-validation results with SVM
preceded by the optimal filter obtained by xDAWN [10], SVM
preceded by optimal spatial filter as proposed by Hoffmann
et al [16] and baseline SVM without previous spatial filtering,
were reported for comparison3. It is noteworthy that for the
ErrP data set, a nonlinear SVM with second degree polynomial
kernel was used.

4. Results

4.1. P300 experimental results

In this experiment, an ensemble of the sw-SVM is compared
to the e-SVM [15]. For each single classifier built on one of
the 17 subsets, sensor weighting has been performed based on
the training set A · k or B · k (k = 1, . . . , 17) and the related
validation set. The sw-SVM can be considered as a one-
component spatial filter, and thus, a unique linear combination
of sensor measurements can be computed. Figure 3 shows the
average of the weighted potential for common (non-P300 in
the dotted line) and rare (P300 in the solid line) signals for
a random subset of data, referring to subjects A (left) and B
(right). For both subjects, a positive deflection in voltage with

3 Although a one-level cross-validation performance may give optimistic
results, we did not opt for a two-level cross-validation performance because of
the data set properties (few trials, high variability, highly unbalanced classes).

Figure 4. Topographies of sw-SVM weights for subjects A (left)
and B (right).

a latency of roughly 300 to 600 ms can be clearly identified.
This analysis suggests that the sw-SVM provides an efficient
spatial filter.

4.1.1. Sensor weighting results. Sensors PO7, PO8, Pz and
CPz receive consistently the highest weights, which is in line
with our expectation. As compared to [15], where some frontal
sensors were top ranked, the weight analysis of the sw-SVM is
more consistent with the midline central generation of P300.
Also, as expected, weighting varies considerably from one
classifier to another and from subject to subject.

Typical topographies of sw-SVM weights are given for
subjects A and B in figure 4. These maps are in line with
previous findings in P300 research (e.g., [26, 37, 38]) and
confirm the ability of the sw-SVM to weight sensors in such a
way as to extract relevant information about P300.

4.1.2. Classification results. The character recognition rate
(in %) is presented for several numbers of repetitions for both
subjects A and B in figure 5. They are compared to the winner
results of BCI competition III [15] (e-SVM) and the classical
single SVM treating all sensors homogeneously.

Figure 5 illustrates that the sw-SVM performs at least as
well as the e-SVM and simple SVM without sensor weighting,
especially for a small number of repetitions (less than seven
repetitions for subject A and five repetitions for subject B).
For 15 repetitions, all three strategies give similar results. We
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Figure 5. Percentage of correctly recognized characters for subjects A (left) and B (right) for different numbers of repetitions. sw-SVM
(black bar) results are compared with the winner results of BCI competition III [15] (e-SVM, gray bar) and a single SVM classifier (white
bar).
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Figure 6. Average of error (solid line) and correct (dotted line) trials on channel FCz for the eight subjects.

conclude that the sw-SVM is well suited for noisy data where
a small number of trials are available. It enables us to reduce
the number of required stimulus repetitions and consequently
boosts the information transfer rate.

The e-SVM [15] witnesses the good performance of
ensemble classifier averaging methods. Therefore, an
ensemble of the sw-SVM was used. We are of the opinion that
it is interesting to reveal the advantages of sensor weighting
by using a single sw-SVM.

4.2. ErrP experimental results

For ErrP data sets, the number of available trials is very
low. Hence, it was not possible to use e-SVM strategy.
Moreover, no artifact rejection whatsoever is carried out,
making it a challenging classification task. The main goal
of this experiment is to test robustness of the sw-SVM to EEG
waves of various nature and to validate the performance of a
simple sw-SVM on raw data set. Eight subjects are considered
to test the ability of the sw-SVM to adapt to inter-subject
variability. We compare the performance of the sw-SVM
classifier, in terms of classification accuracy, against an SVM

classifying spatially filtered data as proposed by Rivet et al [10]
(xDAWN+SVM) or by Hoffmann et al [16] (Hoff+SVM), and
a baseline SVM classifier without any spatial filtering or sensor
selection procedure.

Figure 6 shows the averages of error and correct trials
for sensor FCz. As expected, and in accordance with [39], a
negative deflection (Ne) can be seen after the feedback for error
trials followed by a positive one for almost all the subjects.
Latency and amplitudes are very different from subject to
subject. Inter-subject differences are large in this data set
due to the small number of trials available for averaging. For
some subjects, like subjects S3 and S5, Ne and Pe do not
clearly appear on sensor FCz. For subjects S2 and S3, there is
no major difference to be noted between potentials generated
for correct and incorrect trials, as recorded on sensor FCz. As
a consequence, the classification task promises to be hard for
this data set.

4.2.1. sw-SVM sensor weighting results. Results elucidate
clearly the sparsity promoted by the sw-SVM. Figure 7 shows
the sensor weights found by the sw-SVM averaged across
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Figure 7. Topographical maps of the weights averaged across the five subsets for the ErrP dataset. Each map refers to a subject. The large
variability is caused by the low number of trials.
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Figure 8. Accuracies (standard deviation) of the eight subjects and their average for sw-SVM (black bar), xDAWN+SVM (dark gray bar),
Hoff+SVM (light gray bar) and baseline SVM (white bar).

the five subsets as topographic maps. For six out of the
eight subjects, the central area holds the strongest weights,
which is in accordance with current knowledge of ErrP.
Indeed several studies cite the anterior cingulate cortex (ACC,
Brodmann areas 24&32) as the main source responsible for
the generation of the Ne [40, 41]. For subject S7, sensor
Cz captures almost all necessary information. It is also
remarkable that for subjects S2 and S8, weights do not have
a medial central or fronto-central distributions, but rather a
fronto-lateral distribution, a fact that can be put in relation
with studies pointing to the lateral prefrontal cortex as another
possible generator of the Ne [42].

4.2.2. Comparison of classification results. Figure 8
reports the recognition rates (mean and standard deviations)
for the eight subjects and their average obtained by four
filtering/classification algorithms (sw-SVM, xDAWN+SVM,
Hoff+SVM, baseline SVM). Interestingly, the sw-SVM shows
classification accuracies between 74% and 91%, averaging to
about 81%. These figures have been achieved with a relatively
low number of sensors (from 1 to 11 sensors). It is noteworthy

that available data include a small number of trials (only 72
trails are available in total) with a small number of errors (for
instance, only 10 error trials were available for subject S4).
Thus, as expected, the cross-validation variance is elevated.
Since no artifact rejection was applied as pre-processing, our
results refer to a realistic situation of BCI use.

Mean (standard deviation) accuracies across the eight
subjects were 80.71(±6.61)% for sw-SVM, 77.85(±5.54)%
for xDAWN+SVM, 76.78(±7.23)% for Hoff+SVM and
70.71(±10.77)% for baseline SVM. Three repeated measure
t-tests have been performed to test the null hypothesis of
no difference in the performance of the sw-SVM against
xDAWN+SVM, Hoff+SVM and SVM. Pairwise comparison
of means reveals that the sw-SVM proves significantly and
constantly superior to the other three methods (sw-SVM versus
xDAWN+SVM: t (7) = 3.5362, p-value = 0.0095; sw-SVM
versus Hoff+SVM: t (7) = 2.6720, p-value = 0.0319 and
sw-SVM versus SVM: t (7) = 5.2389, p-value = 0.0012).

As a comparison with previous single-trial ErrP
classification studies, our results are competitive in terms of
accuracy. For instance, Ferrez et al [43] reported an average
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detection rate of 76.2(±4.6)% for error and 81.8(±3.5)% for
correct trials. Six subjects participated in their study; they used
64 sensors and 1500 trials (1125 to train the classifiers and 375
to test them) with 20% of erroneous trials, see also [44, 45].
It is important to note that for the above-mentioned studies,
training data sets are much larger than our sets. Considering
previous studies on ErrP the level of performance already
achieved on these small data sets appears very promising.

4.2.3. Discussion. In this data set, the sw-SVM approach
yields both a significant dimensionality reduction and a
considerable performance improvement. The sw-SVM has
only one degree of freedom inherent to the regularization
parameter of the SVM whilst xDAWN and Hoffmann filters
require, along with tuning classifier parameters, an estimation
of the number of spatial components providing the highest
accuracy (model order selection). For the xDAWN algorithm,
a recent study [38] proposed a strategy to find the number of
filters yielding the optimal classification performance. But the
sw-SVM extracts the component that directly optimizes the
classification, while xDAWN and Hoffmann filters optimize
criteria that are not explicitly related to the classification
accuracy. This may lead to a suboptimal solution from the
point of view of the classifier. Another reason advocating
for the sw-SVM is the fact that it is well suited for
situations wherein one has high dimensional data with a rather
limited number of trials. In these conditions, Hoffmann’s
method may lead to poor performance. Indeed, since it
is based on an empirical estimation of scatter matrices, a
proper regularization technique to handle situations of high
dimensionality and small data size is needed [7, 16].

4.3. Discussion

Our experimental investigations suggest that the sw-SVM
localizes relevant information from a physiological and a
classification point of view and it reliably classifies ERP.
Its particularity lies in the ability to select a relatively
small proportion of sensors bearing useful information, while
optimally weighting them. For EEG data, in which a large
numbers of trials are difficult to collect, and in which each
trial may contain many thousands of sample points across
dozens of sensors, this is a considerable advantage.

The sw-SVM is a completely data-driven method not
imposing any assumption regarding EEG dynamics. It appears
to be a flexible technique that can be directly used in various
BCI scenarios. This flexibility is mainly due to the criterion
used to weight sensors, which consists in maximizing the SVM
margin (and thus the ability to generalize from the examples)
and the fact that one may populate the input feature vector xp

with any kind of features, such as amplitude, power, coherence,
etc.

SVM margin was recently introduced as a criterion
for multi-modal data filtering [46] and has proven good
performance. Future work may look simultaneously to the
best ‘spatial’ configuration, as in the current paper, the best
‘spectral’ configuration, as in [46] and the best temporal
configuration as well. Such an attempt would consider all

relevant aspects of EEG dynamics to find the best margin
SVM. Such extension would also allow us to exploit more
than one EEG source. For instance, in ErrP data it would be
possible to separate and exploit the source of the Ne and Pe
components.

5. Conclusion

In this paper, we have considered the problem of sensor
weighting from a machine learning point of view. Sensor
weights are introduced in the SVM theoretical framework
and tuned as hyper-parameters of the SVM. They maximize
the margin between classes and optimize classification
performances. The proposed sensor weighting SVM (sw-
SVM) involves spatial filtering along with classification in
one optimization step. Unlike usual spatial filter techniques
that do not directly optimize a discrimination criterion, the
sw-SVM helps locating sensors which are relevant for optimal
classification performance.

Experimental data on P300 and ErrP data sets illustrate the
efficiency of the proposed approach. Our algorithm performs
well in experimental situations as well in terms of spatial
distribution as in terms of classification accuracy. For the
P300 data set (BCI competition III), the sw-SVM proves
equivalent performance with respect to the strategy that won
the competition. For the ErrP data set, the sw-SVM shows
competitive performance as compared to three state-of-the-
art approaches (spatially filtered data using xDAWN followed
by the SVM, spatially filtered data using Hoffmann’s method
followed by the SVM and baseline SVM).

We believe that the sw-SVM is a promising tool for data
classification that could perform well on a large variety of
EEG data types, even with a small number of training trials.
Besides, the sw-SVM is a completely data-driven strategy.

Simulations and experiments yield encouraging results
motivating further research. The sw-SVM may be further
extended toward a spatial–temporal–spectral filtering SVM
that can provide a comprehensive modeling of brain post-
stimulus dynamics recorded in EEG. It is also possible to
apply the sw-SVM on input data populated with various
kinds of EEG features, such as those extracted from event-
related synchronization/desynchronization, etc. In this case,
weights to be found will be considered non-negative and as
such the outputs will be a non-negative weighting of signal
power (energy). All other aspects of the method would remain
unchanged.
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