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INTRODUCTION TO OPTIMIZATION WITH
APPLICATIONS IN ASTRONOMY AND ASTROPHYSICS

Stéphane Canu1, Rémi Flamary2 and David Mary2

Abstract. This chapter aims at providing an introduction to numeri-
cal optimization with some applications in astronomy and astrophysics.
We provide important preliminary definitions that will guide the reader
towards different optimization procedures. We discuss three families
of optimization problems and describe numerical algorithms allowing,
when this is possible, to solve these problems. For each family, we
present in detail simple examples and more involved advanced exam-
ples. As a final illustration, we focus on two worked-out examples of
optimization applied to astronomical data. The first application is a
supervised classification of RR-Lyrae stars. The second one is the de-
noising of galactic spectra formulated by means of sparsity inducing
models in a redundant dictionary.

1 Optimization in astronomy and astrophysics

Optimization can be sketched as the art of finding a ‘best compromise’. This is
a two-step art. The first step translates the problem, the desired objective and
possibly some constraints into a mathematical form. The second step finds the
best compromise that can be achieved within the framework defined by the first
step.

In Astrophysics, the information of interest can rarely be observed directly.
A first reason for this is that raw data like time series or astronomical images
(galaxies, nebulae, cosmological microwave background,...) are only exploitable
once corrected for various distortions1 (foreground nuisances sources, atmospheric
perturbations, limited resolution of the telescope, instrumental noise sources, etc.).
A second reason is that the astrophysical information to be detected or estimated
is often not directly related to the data. For instance, information like the mass
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of an extrasolar planet, the distance to its host star, or even simply its very
existence can sometimes be revealed only by means of sophisticated detection and
estimation algorithms in time series [Perryman, 2011] or images [Starck et al.,
2015]. Information like the internal structure of pulsating stars, their age, radius
and effective temperature can be evaluated by comparing the detected oscillation
modes with numerical models [Christensen-Dalsgaard, 2003, 2008]. A third reason
is that modern astronomy leads to build instruments giving access to surveys
of increasingly larger scale, like the Gaia satellite2, the Large Synoptic Survey
Telescope3 or the Square Kilometer Array4. The number of astrophysical sources
captured by these surveys, in the billions, prevents from performing a dedicated
analysis of each individual source. Instead, the extraction of information needs
to be statistical and automated with, for instance, detection and classification
pipelines.

Consequently, the astrophysical information always results from a complex,
more or less supervised extraction process. Because formalizing the extraction
process by means of objectives and constraints is an efficient way to proceed, the
path of optimization is useful for various studies tackled from the perspective of
inverse problems, data mining, or machine learning. In practice, optimization is
at the crossroads of several methodological families and plays therefore a central
role in many astronomical studies.

In the rest of this section we sketch some simple examples of optimization
problems that can occur in astronomy and astrophysics. We will express these
problems under the general form:

min
x∈C

F (x) (1.1)

In (1.1), F is the objective function. The best compromise is formulated as
a minimization problem (as for instance for a data fit problem). The vector
x = [x1, . . . , xn]t collects the n optimization (or primal) variables and C ⊂ Rn
is a convex set. The variables can be image parameters (pixel intensity values for
instance) or coefficients representing the data in some transform domain (wavelet
coefficients for instance). The notion of convexity is very important in optimiza-
tion. First, because existence and unicity of the solution to a convex problem are
usually guaranteed. Second, convex problems can be solved efficiently with generic
algorithms, of which various implementations are freely available online. Sec. 2.1.
provides definition and intuitive representation of convexity.

1.1 Image reconstruction

The best example of information restitution in Astronomy is perhaps the need for
counteracting the ‘telescope blur’. Indeed, the (Fourier) frequential contents of

2http://sci.esa.int/gaia/28820-summary/
3http://lsst.org
4https://www.skatelescope.org
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an image observed through a telescope is modified. When the telescope’s effect
is the same whatever the position of the source (i.e., when the observing system
is translation invariant), the image is the result of a convolution of the true sky
intensity distribution by a band pass (usually lowpass for monolithic telescopes)
filter of impulse response called Point Spread Function (PSF). Because the width of
the PSF is inversely proportional to the diameter of the telescope, bigger telescopes
provide images with finer details. To reconstruct images with a better resolution,
a deconvolution step is often applied to data images. The aim of this step is
to restore some of the high frequencies switched-off by the telescope, to obtain
(hopefully) an image closer to the original image than the data image.

When the geometry of the telescope is known exactly, the PSF can be computed
theoretically and the convolution can be exactly modeled by a linear operator on
the vectorized image, x. The optimization problem becomes

min
x≥0

L(y,Hx) (1.2)

where optimization acts here directly on the flux values in each pixel, H is the linear
modeled obtained from the PSF (convolution matrix), L measures the discrepancy
between the observation y and the convolved image Hx. The notation x ≥ 0
means that each variable xi is contrained to be nonnegative as it corresponds to
an intensity.

This problem has been studied in depth in the inverse problem community.
In practice, the data fidelity function L can be selected according to a statisti-
cal model of the measurement noise, or simply to make the computations more
tractable. For instance, when the noise on Hx is additive and Gaussian, min-
imizing L(y,Hx) = ‖y − Hx‖2 is equivalent to maximum likelihood estima-
tion. When the noise can be modeled as Poisson noise (corresponding to pho-
ton counts), then the maximum likelihood estimator is obtained by minimizing

L(y,Hx) =
∑
i yi log

(
yi

(Hx)i

)
+ (Hx)i − yi, that is, the Kullback-Leibler diver-

gence between y and Hx. [Lantéri et al., 2013].
The optimization problem (1.2) with positivity constraints can be solved with

the Image Space Reconstruction Algorithm (ISRA) [De Pierro, 1987] for the eu-
clidean data fitting and by the well known Richardson-Lucy [Richardson, 1972,
Lucy, 1974] Algorithm when using KL divergence5.

Optimization techniques dedicated for image reconstruction in radio-astronomy
are currently subject to very active developments with the advent of various pre-
cursors and pathfinders of the future SKA. Radio telescopes aim at having a better
resolution using antennas separated by large distances. In radioastronomy, the im-
age is actually formed a posteriori by computing numerically Fourier Transform of
data recorded on each antenna (as opposed to direct imaging formed in the focal
plane of classical optical telescopes by means of mirrors and/or lenses). In the
Fourier domain, the bandpass of a radiotelescope array has however a very sparse

5Note that care must be taken with negative data values in these algorithms.
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support, owing to the limited number of antennas [Thompson et al., 2008]. New
generation radiotelescopes, for which (few and costly) antennas are replaced by
(numerous and cheap) dipoles, can improve this situation. Besides resolution, the
two other advantages of new radiotelescopes arrays are their flux sensitivity (e.g.,
SKA will use millions of dipoles, allowing a large collected flux) and their capabil-
ity of being pointed electronically and not physically (as dipoles virtually see the
whole sky, introducing electronically and off-line a delay and summing coherently
the signals of two dipoles make them sensitive to one direction of the sky). This
is why they are called ‘software telescopes’. This capability, called survey speed,
allows to cover large parts of the sky much more rapidly than classical dish-based
radio arrays.

In this domain a classical approach is the CLEAN algorithm proposed by
Högbom [1974] and its variants [Cornwell, 2008, Wakker and Schwarz, 1988] that
can be applied to images with diffuse intensity distributions. Such approaches
belong to the family of sparse greedy algorithms. In these algorithms, sparsity
is imposed by selecting iteratively some model(s) among a collection of possible
models. The selected models are those who decrease most the data fidelity term.
Hence, the approach of greedy algorithms is different from global optimisation
strategies discussed in this course, which focus on the best compromise (lowest
cost) with respect to a cost function including data fidelity and sparsity promot-
ing terms (as in (1.4) for instance).
As far as (global) optimization is concerned, the last decade has witnessed many
new radio imaging algorithms based on convex optimization with additional regu-
larization terms such as sparsity in overcomplete dictionaries [Carrillo et al., 2012,
2014]. In such cases, the problem (1.2) is augmented with additional terms, which
are usually non-differentiable to promote sparsity. Non-differentiability requires
to use dedicated algorithms (based for instance on proximal operators) and some
of them will be discussed below. As a final note, it is important to emphasize that
the approaches discussed here can be extended to spatio-spectral reconstruction,
i.e., reconstruction of cubes of images collected in different colors. This is a partic-
ularly active research field for SKA for instance, which will provide large images
over hundreds of channels.

1.2 Spectral object detection and denoising

Astronomical observations often measure not only a quantity of light but also a
full spectrum of the object of interest. This leads to large datasets of spectra
associated to galaxies or stars, such as the Sloan Digital Sky Survey [York et al.,
2000]. Novel observation techniques such as the Multi Unit Spectroscopic Explorer
(MUSE) provide 3D hyperspectral images at high spectral and spatial resolutions.
The high spectral resolution comes with an important noise level and spectral
denoising is critical for some sources. This problem can also be expressed as an
optimization problem.

For instance in Bourguignon et al. [2012, 2010] the spectrum is modeled as
a sum of a sparse vector (impulses) and a continuous vector that is sparse in
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the Discrete Cosine Transform (DCT) basis leading to the following optimization
problem, given λl > 0 and λc > 0

min
x∈Rn

‖y −Hx‖2 + λl‖xl‖1 + λc‖Fxc‖1 s.t. x = xl + xc, (1.3)

where F is the linear operator that computes the DCT of the spectrum. Efficient
algorithms such as proximal methods can be used to solve (1.3).

1.3 Machine learning in astronomy

Ball and Brunner [2010] propose a review of machine learning applications to
astronomy, defined as the science of building computer programs that automatically
improve with data [Mitchell, 2006]. A good reference is also the book Ivezić et al.
[2014] that illustrates several possible applications. Machine learning techniques
have been used to automatically detect gravitational lenses in images by Agnello
et al. [2015] and variable stars in Gaia data by Süveges et al. [2015].

The improvement process of machine learning is often formalized as an opti-
mization problem. For instance when learning an automatic classifier that will for
instance detect gravitational lenses in an image [Agnello et al., 2015], one minimize
the following optimization problem, for a given λ > 0

min
x∈Rn

L(x) + λΩ(x), (1.4)

where L is a data fitting term that measures the error of a given model x on
the available training data set and Ω is a regularization term that promotes a
simple classifier with good generalization abilities that is the ability to perform
good prediction on unseen data. A typical choice would be the least square error
for L and some norm for Ω.

Among the most known classifiers that fit this optimization problem, one can
cite Support Vector Machines, that have shown state of the art performances in
several domains, penalized logistic regression or neural networks whose last layer
of neurons is estimated by solving problem (1.4). Theory and examples on such
classifiers will be provided below.

The remaining of this chapter is organised as follows: The overall framework of
optimization is introduced in the next section with a definition of the notions of
convexity and differentiability. Then, using these distinctions in the three follow-
ing sections, different kinds of optimization problems of increasing complexity are
presented and illustrated by examples. They cover the cases of differentiable un-
constrained optimization (section 3), differentiable constrained optimization (sec-
tion 4) and non-differentiable unconstrained optimization (section 5). Section 6
presents two applications involving astronomical data and machine learning.
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2 Optimization framework

All four optimization problems presented in the previous section (1.1), (1.2), (1.3)
and (1.4) can be put in the following general setting

P =


min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(2.1)

Function F is referred as the objective function while functions hj and gi define
respectively the equality and inequality constraints. The domain or feasible set of
problem P is the set of vectors x fulfilling the constraints, that is{

x ∈ Rn
∣∣ hj(x) = 0, ∀j = 1, . . . , p and gi(x) ≤ 0, ∀i = 1, . . . , q

}
.

In problem (1.2) p = 0, q = n and function gi(x) = −xi. In problem (1.3) p = 1
and q = 0 with function h1(x,xl,xc) = x − xl − xc. Problem (1.4) is said to be
unconstrained since p = q = 0. In problem (1.1) the constraint is formulated as
the inclusion in a convex set, an important notion at which we now give a closer
look.

2.1 Convexity

A convex set can be defined as a set C such that, for any two points x,y ∈ C2,
z ∈ C for every point z = αx + (1− α)y, with 0 ≤ α ≤ 1. An important example
of convex set are polyhedra defined as the solution set of a finite number of linear
inequalities of the form Hx ≤ b for a given matrix H and vector b. Constraints of
problems (1.2) and (1.3), (i.e., respectively x ≥ 0 and x = xl + xc), are defining
convex sets. Together with convex sets, it is useful to define convex functions.

Definition 1. A function F is said to be convex if it lies below its chords, that is

∀x,y ∈ Rn, F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y), with 0 ≤ α ≤ 1. (2.2)

A function is said to be strictly convex when the two inequalities above are strict.

Strict convexity implies that the function has a unique minimum.
An illustration of convex and non-convex sets and functions is shown in Figure

1. There exists strong relationships between convex functions and convex sets.
For instance, if a function f is convex, then the set {x ∈ Rn | f(x) ≤ 0} is convex.
Hence, a convex set can be represented by a family of convex functions associated
with inequalities.

An optimization problem is said to be convex when its objective F and its
feasible set are convex. This happens in particular when its inequality constraint
functions gi are convex while its equality constraint functions hj are affine. In that
sense, problems presented in the previous section are convex when F is convex in
(1.1), L is convex in (1.2), the two norms are convex in (1.3), and L and Ω are
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Fig. 1. Illustration of convexity on sets (left) and functions (right). The convex (up)

and non-convex (down) sets are obtained from the levelset of the 2D functions.

convex in (1.4). In practice proving or verifying that a problem is convex can be
complicated but there exists several rules that can be used. For instance, a positive
weighted sum of convex function is convex and a composition of a positive convex
function by a non-decreasing function is convex. For a comprehensive list of these
rules we refer the reader to [Boyd and Vandenberghe, 2004, Chapter 3].

The importance of convexity in optimization is related to the nature of the
underlying issues summarized hereafter. Let x? denote the optimal solution of
problem P, that is the point having the smallest value of F among all vectors
satisfying the constraints. The problem of finding x? rises different issues such as:

− existence and unicity of the solution x?,
− necessary and sufficient optimality conditions (how to characterize x?),
− computation of x? (the algorithmic issues),
− analysis and reformulation of the problem.

When the optimization problem is convex, existence and unicity of the solution are
generally guaranteed. Furthermore, there exist reliable and efficient algorithms for
solving convex optimization problems.

Finally, all convex optimization problems are not equivalent: there is a hierar-
chy of complexity among them. The simplest classes are the classes of linear (LP)
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and quadratic (QP) programs defined as:

(LP)

{
min
x∈Rn

ctx

with Ax ≤ b
(QP)

{
min
x∈Rn

1
2xtGx + ctx

with Ax ≤ b

A quadratic program (QP) is convex when matrix G is positive definite. A LP is
a particular case of a QP with matrix G = 0. These problems are pretty generic
and there exists mature technology to solve them. For a more general framework
in convex optimization, one can design its optimization problem in order to ensure
convexity using a set of rules called disciplined convex programming (see Grant
et al. [2006]). When the problem is expressed with these rules it can be solved
using a generic optimization toolbox such as CVX [Grant and Boyd, 2014].

2.2 Differentiability

Together with convexity, differentiability is another important notion allowing to
distinguish among the different types of optimization problems. Indeed, necessary
and sufficient optimality conditions are related with Fermat’s rule involving the
gradient when F is differentiable or else the more general notion of sub-differential.

Assume F is differentiable in the sense that all its partial derivatives ∂F
∂xi

exist.
In that case, its gradient can be defined as follows:

Definition 2 (Gradient). The gradient ∇F (x) of a function F at point x is the
vector whose components are the partial derivatives of F .

Example 1. (Least square) Given a p×n design matrix H and a response vector
y, the gradient of the least square cost function F1(x) = 1

2‖Hx− y‖2 is

∇F1(x) = Ht(Hx− y).

Theorem 1. If F is convex and differentiable, then

F (x + h) ≥ F (x) + ∇F (x)th, ∀h ∈ Rn.

This means that the gradient can be used to define a linear lower bound of
the objective function at point x and a descent direction. As a consequence,
the gradient can be used to characterize the global solution of the unconstrained
convex minimization problem with the so-called first order optimality conditions :

x? = argmin
x∈Rn

F (x) ⇔ ∇F (x?) = 0.

The gradient provides an optimality condition and a descent direction with handy
computation rules: sum and chain rule.

When F is non differentiable the gradient no longer exists. In this case one
should use sub-differential instead. Its definition uses the notion of sub-gradient.

Definition 3 (subgradient). A vector d ∈ Rn is a subgradient of a function F at
point x if

F (x + h) ≥ F (x) + dth, ∀h ∈ Rn.
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Fig. 2. Illustration of gradients and subgradient 2D linear approximation for a differen-

tiable (left) and non-differentiable (right) function at 2 points denoted in red. Note that

when the function is differentiable, there exist a unique tangent hyperplane whereas when

it is not differentiable such as point [0, 0] at right there exists an ensemble of hyperplanes

that stay below the function, two of which are reported in blue on the right plot.

In other words a sub-gradient is a vector that defines an hyperplane that stay
below the function for all h (see Figure 2).

Definition 4 (subdifferential). The subdifferential ∂F (x) of a function F at point
x is the set (possibly empty) of all its sub gradients

∂F (x) =
{
g ∈ Rn | F (x + d) ≥ F (x) + gtd, ∀d ∈ Rn

}
.

Example 2. Assuming n = 1 we have:
F2(x) = |x| ∂F2(0) = {g ∈ R | − 1≤g≤1},
F3(x) = max(0, 1− x) ∂F3(1) = {g ∈ R | − 1≤g≤0}.

Convexity of F implies that it has at least one supporting hyperplane at every
point of Rn, that is ∂F (x) 6= ∅. Furthermore, If F is differentiable, ∇F (x) is the
unique subgradient of F at x that is

∂F (x) =
{
∇F (x)

}
.

Finally, the subdifferential characterizes the global solution of a convex problem
since in that case (Fermat’s Theorem)

x? = argmin
x∈Rn

F (x) ⇔ 0 ∈ ∂F (x?). (2.3)

2.3 Different types of optimization problems

When F is nondifferentiable and non convex, the sub-differential non longer exists.
Its non convex generalization is known as the Clarke subdifferential [Clarke, 1990].
When F is differentiable and non convex, the Fermat’s rule becomes only necessary
and characterizes a local minimum. The analysis of an optimization problem and
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Fig. 3. Examples of different type of penalty functions involved in machine learning

optimization problems ilustrated on the right [for more examples see Antoniadis et al.,

2011, and references therein].

the choice of an algorithm to solve it depend on its convexity, its differentiability
and whether it is constrained or not.

In the following, we discuss more in detail three different optimization problems
with potential applications in astronomy. The unconstrained convex optimiza-
tion case, the constrained convex optimization where Fermat’s rule generalises to
Karush-Kuhn-Tucker (KKT) conditions and non differentiable optimization in-
volving convex and non convex specific situations.

Example 3. Examples of these different situations can be found considering dif-
ferent regularization functions Ω involved in problem (1.4). Very often, this penalty
term can be expressed as the sum of single variable functions as follows

Ω(x) =

n∑
i=1

ω(xi). (2.4)

Figure 3 presents some examples of such regularization terms and their form.

Note that, even in the non convex and non differentiable cases, these functions
show some regularity as illustrated figure 3.

3 Unconstrained convex and differentiable optimization

3.1 The theory of unconstrained convex optimization

Consider the following unconstrained optimization problem

min
x∈Rn

F (x), (3.1)

with F convex. We have seen in the previous section that the Fermat’ s rule
provides a simple characterization of the minimizers of a function as the zeros of
its subdifferential or of its gradient when F is differentiable.
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Definition 5 (Gradient descent). A general setting to solve such a minimization
problem amounts at considering the following sequence

x(k+1) = x(k) + ρ(k)d(k), (3.2)

where d(k) ∈ Rn is a descent direction such that ∇F (x(k))td(k) < 0 and ρ(k) ∈ R+

the associated stepsize. A natural choice for the descent direction is, when it exists,
the opposite of the gradient d(k) = −∇F (x(k)). For a good choice of ρ(k) and d(k)

this sequence converges towards x? the solution of the problem. The conditions for
convergence are discussed more in details in Bertsekas [1999], Nocedal and Wright
[2006]

The choice of the stepsize ρ(k) at each iteration can be seen as a “line search”
since it boils down to finding a real value along the fixed descent direction d(k) (a
line) that provides a sufficient descent. A typical line search method, known as
Armijo line search [Nocedal and Wright, 2006, Algorithm 3.1], initializes ρ with a
given step and decrease this step by multiplying it until a descent condition is met.
Convergence is proven for line search methods that ensures sufficient decrease of
the cost function [Nocedal and Wright, 2006, Chapter 3].

Interestingly one can see the gradient descent method as the iterative solving
of a local approximation of a function. To illustrate that, we define the following.

Definition 6. A function F is gradient Lispchitz if there exists a constant LF
such that

‖∇F1(x + d)−∇F1(x)‖ ≤ LF ‖d‖, ∀d ∈ Rn,∀x ∈ Rn. (3.3)

The constant LF is called the Lipschitz constant of ∇F .

Example 4. The least square cost function F1(x) is gradient Lispchitz with con-
stant LF = ‖HtH‖. Indeed ∇F1(x + d) = Ht(Hx− y) + HtHd, so that

∇F1(x + d)−∇F1(x) = HtHd,

and
‖∇F1(x + d)−∇F1(x)‖ ≤ ‖HtH‖‖d‖ = LF ‖d‖.

Note that if F is gradient Lispchitz, we have the following second order ma-
jorization of function F around x, also called descent Lemma:

F (x + d) ≤ F (x) + ∇F (x)td +
LF
2
‖d‖2, ∀d ∈ Rn,∀x ∈ Rn. (3.4)

For a proof and more details, see [Bertsekas, 1999, Prop. A.24].
If one wants to find a direction d(k) that minimizes the quadratic approximation

above, one computes its gradient w.r.t. d(k) with gives ∇F (x(k)) + LFd(k). It
can be set to 0 by choosing d(k) = − 1

LF
∇F (x(k)). This procedure allows us to

find the gradient descent direction but also gives us a maximum value for the step
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size ρ(k) ≤ 1
LF

that ensures an objective value decrease at each iteration, hence
convergence.

Now let’s assume that F is two times differentiable, in this case it is possible
to define its Hessian.

Definition 7 (Hessian). The Hessian ∇2F (x) of a function F at point x is the

n × n matrix valued function whose components are ∇2
ijF (x) = ∂2F

∂xi∂xj
(x) the

second order partial derivatives of F .

Example 5. The Hessian of F1 the least square cost function of example 1 is

∇2F1(x) = HtH.

Note that F is convex if and only if ∀x ∈ Rn, ∇2F (x) is a positive definite
matrix. Using the gradient and the Hessian (when they exist) it is possible to use
the local second order Taylor expansion of function F defined by

F (x + d) = F (x) + dt∇F (x) + 1
2dt∇2F (x)d + o(‖d‖2). (3.5)

Again this approximation of the function can be used to find a descent direction
for a (second order) descent algorithm called the Newton method.

Definition 8 (Newton method). The Newton method consist in minimizing at
each iteration the quadratic Taylor expansion (3.5) around x(k). The optimal

direction is d(k) = −(∇2F )
−1

(x(k))∇F (x(k)). The resulting algorithm is called
the Newton method. It fits the general formula (3.2) with ρ(k) equal one.

Example 6. Gradient and Newton iterations for the least square problem
x(k+1) = x(k) − ρ(k)Ht(Hx(k) − y), Gradient
x(k+1) = x(k) − (HtH)−1Ht(Hx(k) − y). Newton
In this particular case, when starting with x = 0, the Newton method converges

in one iteration.

The second order Taylor approximation is a far better approximation than
the Lispschitz approximation (3.3) which implies a better convergence speed for
Newton methods. Nevertheless it requires the inversion of a n × n matrix at
each iteration which can be untractable for large n. A comparison of gradient and
Newton descent on a simple 2D minimization problem is illustrated Figure 4.

Note that there exists a family of optimization methods called quasi-Newton
that jointly benefits from the better approximation provided by Newton method
and from an efficient update in the gradient descent. The principle of these meth-
ods is to estimate sequentially the Hessian matrix or its inverse using efficient
rank-1 updates. One of those approaches avoids the storage of an n × n matrix
and leads to the the popular implementation named Limited-Memory BFGS (after
Broyden, Fletcher, Goldfarb and Shanno, see Liu and Nocedal [1989] for details).
This approach is considered among the most efficient way to solve differentiable
optimization problems and is available in most optimization softwares.
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Fig. 4. Illustration of gradient descent and Newton methods on a simple 2D logistic

regression loss. We also show the iteration number along some samples to illustrate the

difference in convergence speed.

Finally, when dealing with large scale optimization problem, the computation
of the full gradient may be untractable. In that case, a stochastic gradient descent
should be considered [for more details see for instance Bottou, 2004]. The practical
choice of a method depends on a trade off between the computational cost of a
single iteration and the convergence speed of the method [see for instance Bubeck,
2015, and included references].

3.2 Advanced example: logistic regression

The binary logistic regression is a popular two class classification method and
a nice example of unconstrained optimization [for more details see for instance
Hastie et al., 2005]. Given a p× n design matrix H and a p dimensional vector of
labels y ∈ {0, 1}p, logistic regression amounts to solve the following unconstrained
optimization problem

min
x∈Rn

F`(x) =

p∑
i=1

(
−yi(Hx)i + log

(
1 + exp(Hx)i

))
, (3.6)

with (Hx)i the ith component for vector Hx. This logistic cost function can be
interpreted as the negative log likelihood of a Bernoulli sample {yi, i = 1, p} with
parameter pi(x) = exp((Hx)i)/(1 + exp((Hx)i)). Problem (3.6) aim at finding
the parameter x for the probability above that maximize the likelihood on the
training data (H,y). Once parameter x is estimated the prediction of the class of
a new observation h is done with a simple likelihood ratio test:

1

Λ(H̃k) = H̃kx ≷ threshold,
0

(3.7)

where the default value of the threshold is 0.
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Algorithm 1 The Newton method for the logistic regression

Data: H,y training data
Result: x model parameters
while not converged do

p← expHx

1 + expHx
a component wise division

Wii ← pi(1− pi), i = 1, n defined equation (3.8)
z← Hx + W−1 (y − p)

x← (HtWH)
−1

HtW z
end

Since this objective function is the composition of two times differentiable
functions, its gradient and Hessian matrix both exist and are

∇F`(x) = Ht(p− y)

∇2F`(x) = HtWH,
(3.8)

with pi = exp(Hx)i/(1 + exp(Hx)i) and W a diagonal matrix of general term
Wii = pi(1− pi), i = 1, n.

Given the gradient and the Hessian matrix, Newton iterations build the fol-
lowing sequence

x(k+1) = x(k) − (HtWH)−1Ht(p− y).

The value of x(k+1) can also be obtained from x(k) solving a reweighted least
square problem [for more details see Hastie et al., 2005]. Indeed,

x(k) − (HtWH)−1Ht(p− y) = (HtWH)−1
(
(HtWH)x(k) −Ht(p− y)

)
= (HtWH)−1HtWz,

with z = Hx(k) + W−1(y − p). Algorithm 1, where the division is considered
elementwise, is implementing this solution.

4 Constrained convex and differentiable optimization

4.1 The theory of constrained convex and differentiable optimization

In the general case of constrained optimization (problem (P) in (2.1)), neces-
sary and sufficient optimality conditions are given through the Karush, Kuhn and
Tucker (KKT) conditions defined as follows:

Definition 9 (Karush, Kuhn and Tucker (KKT) conditions). Vectors (x ∈ Rn,λ ∈
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Rp,µ ∈ Rq) are verifying the KKT condition of problem P if:

stationarity ∇F (x) +

p∑
j=1

λj∇hj(x) +

q∑
i=1

µi∇gi(x) = 0

primal admissibility hj(x) = 0 j = 1, . . . , p
gi(x) ≤ 0 i = 1, . . . , q

dual admissibility µi ≥ 0 i = 1, . . . , q
complementarity µigi(x) = 0 i = 1, . . . , q.

λj and µi are called the Lagrange multipliers of problem P.

Variables x are also called primal variables and λ,µ dual variables. The in-
tuition behind this optimality condition again lies within Fermat’s Theorem since
optimality is obtained again when the gradient of an objective function is can-
celed (stationarity). If one cannot find a solution that cancels ∇F then one must
find a solution where the constraints will cancel the gradient as illustrated in the
following example.

Example 7 (Simple KKT conditions). The following 1-dimensional optimization
problem

min
x≥0

1

2
(x+ 1)2

whose solution is obviously x? = 0 leads to the following KKT conditions

stationarity (x+ 1)− µ = 0
primal admissibility −x ≤ 0
dual admissibility µ ≥ 0
complementarity µx = 0

we can see that at the optimality, x is on the positivity constraint, which means
that the gradient has to be canceled by µ = 1. The complementarity condition
impose that only x or µ are active at the same time which means that µ 6= 0 only
if x is on the constraint.

Example 8 (Constrained least square). Consider the following particular case of
problem (1.2) with a least square loss{

min
x∈Rn

1
2‖Hx− y‖2

with 0 ≤ xi, i = 1, . . . , n

The KKT of this problem are

stationarity Ht(Hx− y)− µ = 0
primal admissibility −x ≤ 0
dual admissibility µ ≥ 0
complementarity diag(µ)x = 0
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Theorem 2. [Theorem 12.1 in Nocedal and Wright, 2006] A vector x? is the solu-
tion of a convex problem P, that is the global minima if there exists, under linear in-
dependence constraint qualification, Lagrange multipliers {λ?j}j=1,...,p, {µ?i }i=1,...,q

such that
(
x?, {λ?j}j=1,...,p, {µ?i }i=1,...,q

)
fulfill the KKT conditions.

In the non convex case, these conditions characterize a stationary point. To
compute the stationary condition, it is handy to introduce the Lagrangian function
associated with problem P.

Definition 10. The Lagrangian L of problem P is the following function:

L(x,λ,µ) = F (x) +

p∑
j=1

λjhj(x) +

q∑
i=1

µigi(x) (4.1)

The Lagrangian facilitates the calculus of the stationarity condition of Defini-
tion 9 since it is given by ∇L(x?,λ,µ) = 0. Also, the solution of the optimization
problem is the Lagrangian saddle point and is given by

max
λ,µ

min
x
L(x,λ,µ).

Example 9 (Lagrangian of the constrained least square from Example 8).

L(x,µ) = 1
2‖Hx− y‖2 − µtx

Example 10 (Lagrangian formulation of example 1.4). Consider the following
convex constrained optimization problem with the notations of example (1.4) and
a given k > 0 {

min
x∈Rn

L(x)

with Ω(x) ≤ k,
(4.2)

with both functions L and Ω convex. The Lagrangian of this problem is

L(x, µ) = L(x) + µ
(
Ω(x)− k

)
,

that is, for a given k it exists a µ solution of the problem so that this problem
is equivalent to solve (1.4), called the Lagrangian formulation of problem (4.2).
Applying the same reasoning, the problem{

min
x∈Rn

Ω(x)

with L(x) ≤ `,
(4.3)

and the two other formulations (4.2) and (1.4) are equivalent. Note that this
equivalence is due to the convex nature of the problem.

The Lagrange dual objective function Q is defined from the Lagrangian

Q(λ,µ) = inf
x∈Rn

L(x,λ,µ)

= inf
x∈Rn

F (x) +

p∑
j=1

λjhj(x) +

q∑
i=1

µigi(x)

and the dual problem defined below.
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Definition 11 (Dual problem). The dual problem of P is

D =

{
max

λ∈Rp,µ∈Rq
Q(λ,µ)

with µj ≥ 0, j = 1, . . . , q

Example 11 (Constrained least square from Example 8).

Q(µ) = inf
x

1
2‖Hx− y‖2 − µtx

The gradient of the Lagrangian w.r.t. x is Ht(Hx − y) − µ which gives us x? =
(HtH)−1(µ+ Hty). When injected in the Lagrangian, we can find that

Q(µ) = − 1
2 (Hty + µ)(HtH)−1(Hty + µ)

and the dual problem is{
min
µ∈Rq

1
2µ

t(HtH)−1µ+ ytH(HtH)−1µ

with µj ≥ 0, j = 1, . . . , q,

which is also a QP with positivity constraints. Note that thanks to the stationarity
condition in example (8) µ = Ht(Hx− y), so that the dual can be also expressed
using the primal variables as{

max
x∈Rn

− 1
2xtHtHx

with Ht(Hx− y) ≥ 0.

Theorem 3 (Duality gap, 12.12, 12.13 and 12.14 Nocedal & Wright pp 346).
If F, g and h are convex and continuously differentiable, under some constraint
qualification conditions the cost of the dual solution is the same as the cost of the
primal solution.

For any feasible point x we have Q(λ,µ) ≤ F (x) so that 0 ≤ F (x)−Q(λ,µ).
This difference between the primal and dual cost functions is called the duality
gap and is always positive.

4.2 Advanced example: support vector data description

As an example of constrained optimization problem we propose to solve the min-
imum enclosing ball problem introduced in Tax and Duin [2004] as support vector
data description (SVDD). The name support vector refers to the fact that the
boundary between classes will lean on some specific vectors of the training data
set. Given p points {hi ∈ Rn, i = 1, . . . , p} this problem consists in finding the n
dimensional ball of centre c with minimum radius R that contains all the points
hi. The SVDD problem can be expressed as follows:{

min
R∈R,c∈Rn

R2

with ‖hi − c‖2 ≤ R2, i = 1, . . . , p.
(4.4)
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Fig. 5. Illustration of SVDD for a linear kernel (left) and a Gaussian kernel (right) on

the same dataset. The red curve show the minimum enclosing ball.

The associated Lagrangian is:

L(c, ρ,µ) =
1

2
‖c‖2 − ρ−

p∑
i=1

µi
(
cthi − ρ−

1

2
‖hi‖2

)
,

with the KKT conditions:

stationarity
c−

p∑
i=1

µihi = 0

1−
p∑
i=1

µi = 0

primal admissibility cthi ≥ ρ+ 1
2‖hi‖

2 i = 1, . . . , p
dual admissibility µi ≥ 0 i = 1, . . . , p
complementarity µi

(
cthi − ρ− 1

2‖hi‖
2
)

= 0 i = 1, . . . , p.

Complementarity tells us that there are two groups of points: the support vectors
lying on the circle (for which ‖hi − c‖2 = R2) and the insiders for which µi = 0.
Stationarity brings the relationship so-called the representer theorem:

c =

p∑
i=1

µihi. (4.5)

Some tedious calculus bring us the dual formulation of the SVDD as the following
QP with G = HHt the Gram matrix of general term Gij = htihj ,

min
µ∈Rp

µtGµ− µt diag(G)

with etµ = 1
and 0 ≤ µi i = 1, . . . , n.

(4.6)

Pros and cons of these primal and dual formulations are summarized table 1.
Figure 5 (left) illustrates a 2d SVDD.
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Table 1. Pros and cons of the SVDD primal and dual formulation

Primal (4.4) Dual (4.6)
n+ 1 unknown p unknown
p constraints n box constraints
can be recast as a QP build G the p× p pairwise influ-

ence Gram matrix
perfect when n < p to be used when n > p

In Astronomy, this problem is for instance encountered in minimax detection of
spectral profiles [Suleiman et al., 2014]. In this application, we are given a library
of spectral profiles {hi ∈ Rn, i = 1, . . . , p}. One wishes to design a profile that has
the largest minimal correlation with all profiles. This optimal profile is precisely
the center c of the minimum enclosing ball.

SVDD (4.4) allows to model a set of observations by a circle surrounding the
data. Two pitfalls prevents SVDD to model properly a real set of observations:
it tolerates no error and it is limited to circle. We will see now how to adapt the
initial SVDD model to address these two issues respectively by introducing slack
variables and kernel.

It is possible to relax model (4.4) and deal with potential errors by introducing
slack variables ξi, i = 1, . . . , p associated with each observation defined as

for all hi

{
no error: ‖hi − c‖2 ≤ R2 ⇒ ξi = 0
error: ‖hi − c‖2 > R2 ⇒ ξi = ‖hi − c‖2 −R2.

Introducing these slack variable in the initial SVDD setting (4.4) is generalized
by, for a given parameter C > 0

min
R∈R,c∈Rn,ξ∈Rp

R2 + C

n∑
i=1

ξi

with ‖hi − c‖2 ≤ R2 + ξi i = 1, . . . , p
0 ≤ ξi i = 1, . . . , p.

(4.7)

This problem amounts to the initial SVDD (4.4) when C → ∞. The generalized
SVDD is associated with the dual

min
µ∈Rp

µtGµ− µt diag(G)

with etµ = 1
and 0 ≤ µi ≤ C i = 1, . . . , p.

(4.8)

Note that the introduction of the slack variables only adds a box constraint on the
dual.

An efficient way to introduce non linearities to go beyond the SVDD circular
model, consists in using kernels functions as features. The results of kernelized
SVDD is illustrated in Figure 8 (right) where we can see that, thanks to the



20 Title : will be set by the publisher

kernel, the red circle model is distorted to provide a better fit to the data. A
kernel in this framework is a positive function of two variables. Popular kernels
are the Gaussian kernel kg with bandwidth σ > 0 and kp the polynomial kernel of
order d:

kg(h,h
′) = exp

(
−‖h− h′‖2

σ

)
, kp(h,h

′) = (1 + hth′)d. (4.9)

Associated with each kernel, a norm ‖ · ‖H can be defined and used to define the
following kernelized version of the SVDD [for more details on kernel machines see
Smola and Schölkopf, 1998]:

min
R∈R,c∈H,ξ∈Rp

R2 + C

n∑
i=1

ξi

with ‖k(h,hi)− c(h)‖2H ≤ R2 + ξi i = 1, . . . , p
0 ≤ ξi i = 1, . . . , p.

(4.10)

Kernelized SVDD (4.10) are almost the same as SVDD (4.8). The only difference
is that the notion of minimum enclosing ball is taken according to the norm ‖ · ‖H
associated with the kernel. Nevertheless, it turns out that the introduction of
this new norm does not change much of the model since the dual of this problem
remains the same as (4.8) but with Gij = k(hi,hj). In that case, the primal
problem is of infinite dimension and thus intractable while the dual problem is
still of dimension p. After solving the dual, the dual variables µi, i = 1, . . . , p and
ρ are known, the representer theorem 4.5 becomes c(h) =

∑n
i=1 µik(h,hi) and the

function defining the enclosing ball of the SVDD is given by

‖k(h, .)− c(.)‖2H −R2 = ‖k(h, .)‖2H − 2〈k(h, .), c(.)〉H + ‖c(.)‖2H −R2

= −2c(h) + k(h,h)− ρ

= −2

n∑
i=1

µik(h,hi) + k(h,h)− ρ.

5 Nondifferentiable unconstrained optimization

5.1 The proximal algorithm for non-differentiable optimization

There exists different ways of dealing with non differentiability. We can use sub-
differentials, convex relaxations or proximal algorithms [Combettes and Pesquet,
2011, Parikh and Boyd, 2014]. In this section we investigate the case where the
objective function is a composite function F (x) = L(x) + λΩ(x) as in problem
(1.4) with L a differentiable loss and Ω a non-differentiable penalty function. This
kind of problem is common in signal processing and statistical learning. It is of
particular interest for sparsity promoting optimization i.e. when we want the so-
lution vector x to have few non-zero components. The introduction has provided
several examples in radio image reconstruction that use sparsity. See Bach et al.
[2011] for more details about sparsity and group sparsity.
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In order to solve the non-differentiable optimization problem, proximal meth-
ods rely (again) on the minimization of a simple majorization of the function. If
we suppose that the function L(x) is Lipschitz gradient then at iteration k we have

F (x) ≤ L(x(k)) + ∇L(x(k))t(x− x(k)) +
1

2ρ
‖x− x(k)‖2 + λΩ(x), (5.1)

when ρ ≤ 1
LL

with LL the Lipschitz constant of function L(x). This majorization
can be minimized easily when the penalty function Ω(x) is simple (separable for
instance). Minimizing the majorization above can be reformulated as

min
x

1

2
‖x− u‖2 + λρΩ(x),

with u = x(k) − µ∇L(x(k)). The expression above is a proximity operator as
defined below.

Definition 12 (Proximity operator). The Proximity operator of a function Ω is:

proxΩ : Rn −→ Rn

x 7−→ proxΩ(x) = arg min
u∈Rn

Ω(u) + 1
2‖u− x‖2.

As discussed above this operator is a key step when minimizing the composite
function, which leads to the following optimization algorithm.

Definition 13 (Proximal gradient descent). A general setting to solve the mini-
mization problem (1.4) consists in the following iterations

xk+1 = proxρ(k)λΩ

(
xk − ρ(k)∇L(xk)

)
.

This approach is also known as proximal splitting and Forward Backward splitting
in the signal processing community. It can be generalized to an arbitrary number
of composite functions [Combettes and Pesquet, 2011].

The gradient step ρ can be fixed a priori from the Lipschitz constant or found
at each iteration to ensure both convergence speed and reduction of the cost func-
tion. The efficiency in terms of convergence speed of the proximal gradient method
depends on the penalty function Ω(x). In particular when Ω(x) is componentwise
separable, as it is Equation (2.4), the proximity operator is easy to compute. The
following example shows several simple proximity operators for different compo-
nentwise separable penalty functions and Figure 6 plot the 1-dimensional operator
ω(x) with λ = 1.

Example 12 (Common proximity operators).
Ω(x) = 0 proxΩ(x) = x identity
Ω(x) = λ‖x‖22 proxΩ(x) = 1

1+λx scaling

Ω(x) = λ‖x‖1 proxΩ(x) = sign(x) max(0, |x| − λ) soft shrinkage

Ω(x) = λ‖x‖1/21/2 [Xu et al., 2012, Equation 11] bridge or power family

Ω(x) = 1IC(x) proxΩ(x) = argmin
u∈C

1
2‖u− x‖2 hard shrinkage projection.
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Fig. 6. Illustration of several penalty functions (left) and their proximity operator (right).

The set C for the indicator function is set to [−1, 1].

Note that the last function in Example 12 is an indicator function that is +∞
for all x outside the set C. This illustrates the fact that one can use this framework
even for constrained optimization, in this case the operator is a projection and the
algorithm reverts to projected gradient descent.

The algorithm defined in Definition 13 has be shown to converge to the global
minimum of the objective function under some mild assumption on the step ρ.
In practice in order to have a better convergence speed some have recommended
to use the Barzilai-Borwein rule that aim at estimating locally the curvature of
the function [Barzilai and Borwein, 1988, Wright et al., 2009, Gong et al., 2013].
Note that there exists a family of accelerated proximal gradients that have been
introduced by Nesterov et al. [2007]. Those accelerated methods use an inertial
descent direction and can reach a given value of the objective function in

√
n

iterations instead of n for classical gradient descent [Beck and Teboulle, 2009].
There has also been recently a vivid interest in primal-dual approaches that can
be seen as proximal methods but rely on both primal and dual problems to find
quickly a solution for convex optimization, see [Komodakis and Pesquet, 2015] for
a good introduction.

Finally we discuss the proximal methods when the functions are not convex.
Theoretical results have shown, under some mild conditions on the objective func-
tion, that the proximal algorithm converges to a stationary point of the opti-
mization problem, that is in this case a local optimum [Attouch et al., 2010]. In
practice, majorization (5.1) do not rely on the convexity of the problem and the
proximal algorithm leads to a decrease of the cost at each iteration [Gong et al.,
2013]. This approach is of particular interest when the penalty Ω(x) can be effi-
ciently computed, for instance in the MCP case presented below section 5.2.2 or
when the penalty function is the `p pseudo-norm with p = 1

2 (proximity operator
illustrated in Figure 6).
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5.2 Advanced examples: sparse estimation

5.2.1 The sparse least squares

An example of convex nondifferential optimization problem is sparse least square
also known as the Lasso [Tibshirani, 1996]. It aims at minimizing the sum of the
square error and a L1 norm penalization term that is, given a design matrix H, a
response vector y and a parameter µ > 0

min
x∈Rn

1
2‖Hx− y‖2 + µ

n∑
i=1

|xi|. (5.2)

This objective function is a composite function with L(x) = 1
2‖Hx− y‖2 and

Ω(x) =
∑n
i=1 |xi| the L1 norm of the unknown variables. Using the second-order

approximation (5.1) at each iteration, the associated proximal operator can be
written as the sum of independent componentwise terms since

proxΩ(x) = argmin
u∈Rn

n∑
i=1

|ui|+ 1
2‖u− x‖2

= argmin
u∈Rn

n∑
i=1

(
|ui|+ 1

2 (ui − xi)2
)
.

Because of the absolute value this is not differentiable. Its subdifferential is (see
example 2)

∂(|ui|+ 1
2 (ui − xi)2) =

{
sign(ui) + ui − xi if ui 6= 0

g + ui − xi with − 1 ≤ g ≤ 1 if ui = 0,

so that

0 ∈ ∂(|ui|+ 1
2 (ui − xi)2) ⇔ ui =

{
sign(ui)(|xi| − 1) if |xi| > 1

0 if |xi| ≤ 1.

Putting all that together with definition 13 lead to the proximal gradient descent
algorithm for the Lasso given in Algorithm 3.

The optimality condition given above illustrates why L1 regularization promote
sparsity. Indeed, when the function to be optimized is non differentiable in zero,
the condition for having a zero component ui is not an equality but an inclusion,
that is the possibility to cancel the gradient with any vector from a set. This
inclusion is easier to achieve than an exact equality since it only requires that a
component xi is smaller than a threshold for the solution ui to be exactly equal
to zero as illustrated Figure 6 (right). This also illustrates that each iteration is
the result of a proximal operator which often leads to sparse vectors. This can
dramatically increase the speed of computation of the gradient (in particular of
Hx) when using sparse vector encoding.
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Algorithm 2 The proximal gradient descent algorithm for the Lasso

Data: H,y training data
Result: x,ypred
ρ← 1/‖HtH‖ stepsize initialization
while not converged do

x← x− ρHt(Hx− y) gradient forward step
x← sign(x) max(0, |x| − ρµ) proximal backward step

end

5.2.2 Trading convexity for generalization: the sparse logistic regression

Another example of nondifferential but this time non convex optimization prob-
lem is the one associated with the non convex minimax concave penalty (MCP)
penalized logistic regression. The idea of the MCP logistic regression consists in
minimizing together with the logistic loss defined in (3.6) a MCP penalty term pro-
moting generalization performances as well as sparsity through variable selection.
This MCP penalty can be seen as an improvement over the Lasso L1 norm penal-
ization used equation in (5.2), that can cause significant bias toward 0 for large
regression coefficients. On the opposite, it can be shown that the MCP regression
model has the so-called oracle property, meaning that, in the asymptotic sense, it
performs as well as if the analyst had known in advance which coefficients were zero
and which were nonzero [Breheny and Huang, 2011]. The resulting optimization
problem has the general form of (1.4) and can be written as

min
x∈Rn

p∑
i=1

(
−yi(Hx)i + log

(
1 + exp(Hx)i

))
+

n∑
i=1

Ωµ,γ(|xi|), (5.3)

where Ωµ,γ is the non convex MCP function defined by, for a given couple (λ ≥
0, γ ≥ 1) of hyper parameters:

Ωµ,γ(t) =


µt− t2

2γ
if t ≤ γµ

γµ2

2
else.

Parameter µ controls the tradeoff between the loss function and penalty, while
parameter γ controls the shape of the penalty as shown figure 7. The solution
of the MCP logistic regression has nice statistical properties but the resulting
optimization is challenging due to the non-convexity and non-differentiability of
the penalty term.

To deal with these difficulties, the MCP penalty can be decomposed as the
difference of two functions so that problem (5.3) can be written as follows:

min
x∈Rn

p∑
i=1

(
−yi(Hx)i + log

(
1 + exp((Hx)i)

))
− µ

n∑
j=1

hµ,γ(|xj |)︸ ︷︷ ︸
Fm(x)

+ µ‖x‖1, (5.4)
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Fig. 7. Left: Function Ωµ,γ(t) (blue) for µ = 1 and γ = 3, its derivative (red), the

associated inverse of the Huber loss (black) and its derivative (green). Right: the MCP

penalty level set for µ = γ = 2.

with

hµ,γ(t) =

{
t2

2γµ
1I{t≤γµ} +

(
t− γµ

2

)
1I{t>γµ}

}
,

the Huber penalty function with parameter γµ, illustrated figure 7.
In this optimization problem the loss function is the sum of Fm(x) a non convex

but differentiable function with a L1 norm convex but nondifferentiable. One way
to handle this non differentiability is to apply the proximal projection of the L1

norm on the gradient of Fm. The gradient of Fm is (see the green curve figure 7)

∇βFm(x) = Ht(p− y)−

{
sign(xj)µ if |xj | > µγ
xj
γ

else.

The proximal operator of the L1 penalty function is

prox(u) =

{
0 if |u| ≤ µ
sign(u)(|u| − µ) else.

The whole proximal gradient procedure is summarized algorithm 3. For a well
chosen stepsize ρ ≤ 1

σ2
M

, σM being the largest singula value of the design matrix

H, this algorithm converges towards a local minima of problem (5.3). Indeed, due
to the nonconvexity of the problem, global convergence cannot be proven while
using a proximal algorithm.

6 Optimization in practice

6.1 Classification of RR Lyrae

An example where optimization problems occur in astronomy is when dealing
with supervised binary classification. To illustrate the problem, we consider a RR
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Algorithm 3 The L1 proximal algorithm for the MCP penalized logistic regression

Data: H,y training data, Htest, test data
Result: x,ypred
ρ← 1/‖HtH‖ stepsize initialization
while not converged do

p← expHx

1 + expHx
element-by-element division

x← x− ρ
(
Ht(p− y)− sign(x) min(µ, |x|γ )

)
x← sign(x) max(0, |x| − ρµ)

end

Lyrae dataset taken from astroML [datasets based on Stripe 82 data in Ivezić et al.,
2014]. This sample contains 92658 stars flagged as nonvariable and 483 RR-Lyrae
observed in n = 4 dimensions namely the u− g, g− r, r− i and i− z colors build
upon the u, g, r, i, z−band photometry [for details see Ivezić et al., 2005]. The
task here is to design a classifier capable of predicting whether or not a new four
dimensional vector observation comes from the observation of a nonvariable star
or a RR-Lyrae. Specific difficulties of this task are the volume and the unbalanced
structure of the training data together with the nonlinear nature of the problem
(illustrated figure 8).

The unbalanced nature of the data suggest to gauge the quality of a learned
model using the completeness, contamination and F1 measures instead of the clas-
sical classification error rate. Indeed, classifying all data as a background object,
i.e. star, would lead to a seemingly good classification error, 0.5% in this case,
but this is of no practical interest. Instead, the completeness, contamination and
F1 measures are relevant because they do not take into account the fraction of
background well classified as background, also called the true negative rate. The
completeness is defined as the fraction of point classified as RR-Lyrae instances
that are relevant, while efficiency is the fraction of relevant instances that are re-
trieved. More formally, if TP denotes the number of true positives (well classified
RR-Lyrae) FP the number of false positives (the number of stars classified as RR-
Lyrae) and FN the number of false negatives (the number of RR-Lyrae classified
as stars), these measures are defined by

completeness =
TP

TP + FN
efficiency =

TP

TP + FP
.

In machine learning, these two terms are referred as precision and recall. A popular
quality measure that combine efficiency and completeness is the F1 score, defined
as their harmonic mean:

F1 = 2
completeness × efficency

completeness + efficency
.

Given these measures, we propose to solve the supervised classification task
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Fig. 8. Kernelized SVDD (right) and kernelized logistic regression (left) on two dimen-

sional Stripe 82 data, trained only with RR-Lyrae using a gaussian kernel with C = 1/80

and σ = 4/3 on centered and reduced data.

with the use of the logistic regression together with kernels to deal with non
linearities. However, the excessive amount of available data and its unbalanced
nature require a reduction of the dataset. To this end, two mechanisms are intro-
duced: preprocessing to reduce the training set through eliminating almost surely
unrelevant data from the too large star class and the use of a sparsity penalty
term such as the MCP introduced in (5.3).

Finally, post processing is used to improve the resulting model by removing
possible bias. To met all these requirements we propose the following three-step
procedure:

1. pre processing to reduce the training set through eliminating unrelevant data,
2. classification with sparse kernelized logistic regression,
3. post processing to polish the resulting model.

The preprocessing is performed by using the kernelized version of SVDD QP
program (4.8) trained on the 483 data points labeled RR-Lyrae. As often, a
Gaussian kernel described in equation (4.9) is used with a bandwith of 4/3 and
a C = 1/80. The results in two dimensions are illustrated figure 8 on the left
side. Then, the resulting SVDD model is used on the 92658 background objects
to select a fraction (2000) of nonvariable stars likely to be close to the decision
function.

This selected data is then used in a second phase to train a kernelized version
of the MCP penalized version of the logistic regression (algorithm 3 with µ = 2
and γ = 4) that could not have processed the whole dataset. The results in two
dimensions, illustrated on the right side of figure 8, show a tighter decision frontier
(red curve). This method provides interesting results together with a new list of
the data point selected to build the classification rule.

It turns out that the resulting model can be improved by a post process consist-
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Fig. 9. ROC curve (left), completeness-efficiency curve (center) and F1 (left) for the

four color RR Lyrae data using the classification algorithm 4. The kernelized logistic

regression achieves , for the blue spot, a completeness of 0.77 for an efficency of 0.75

leading to a F1 score of 0.76.

ing on the training of a non penalized kernel logistic regression (algorithm 1) on the
selected data that is 323 points in our case. The whole procedure is summarized
algorithm 4.

The global performances of the proposed approach are presented figure 9 fol-
lowing the same protocol as astroML6. Our best model, represented by a blue
spot figure 9, reach a maximum F1 score of 0.76 improving on 0.72 the best F1

reported in astroML by using a Gaussian mixture-model. In this figure, three
plots are proposed to visualize the performances of our method. On the left, the
receiver operating characteristic, or ROC curve represents the true positive rate
(TP) against the false positive rate (FP) at various decision threshold settings (see
equation (3.7) for precision on the use of the threshold). Note that unlike most
of the results reported in astroML [Ivezić et al., 2014, figure 9.17 page 396] our
method fail at reaching a TP of one. However, results on the completeness vs. ef-
ficiency plot (in the center panel) indicates that our approach clearly outperforms
results reported in astroML in the interesting zone of compromise, around the blue
spot. The third plot on the right reports the sensitivity of the F1 measure to the
decision threshold.

In front of such a real problem with real data, the practitioner always asks
himself about the classifier he should use. Very often the answer will to combine
methods, including pre and post processing.

6.2 MUSE spectrum denoising

In this section we apply non-differentiable optimization to spectrum denoising. To
this end we propose to use sparse least square as already proposed in Bourguignon
et al. [2012, 2010]. To keep this application example simple, we focus below on 1-
dimensional spectra. In reality, MUSE instrument has a 3D PSF that smoothes out

6http://www.astroml.org/book_figures/chapter9/fig_ROC_curve.html
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Algorithm 4 Classification algorithm and associated optimization methods

Data: H,y training data, Htest, test data
Result: x,ypred
µ← KSVDD(HRR−Lyrae, yRR−Lyrae) , QP in the dual
pos← select(Hstar, µ),
pos← Sparse KLogisticRegression(H(pos, :), y), proximal gradient
. x← KLogisticRegression(H(pos, :), y), Newton
ypred ← Htestx

the spectrum and makes the reconstruction more difficult (and computationally
intensive) than in the 1D case, as discussed in the references above.

The illustration below uses simulated but realistic data of MUSE. These data
were used by MUSE consortium for various tests before MUSE was operational
and and mimic very accurately real data like, for instance, in Bacon, R. et al.
[2015]. The noisy observation is obtained by adding Gaussian noise with a mag-
nitude leading to a 20dB signal to noise ratio (SNR). MUSE spectra cover 3600
wavelengths over an interval from 465 to 930 nm (visible light). The spectra used
in this experiment are shown in the top part of Figure 10 along with their noisy
observations.

In this application we will use a simple version of the optimization problem
(1.3). We choose to use a `2 as data fitting term, which is commonly used due to its
simplicity and the fact that its minimization corresponds to likelihood maximiza-
tion for a signal corrupted with additive Gaussian noise. The signal is estimated
by minimizing

min
x

1

2
‖y −Dx‖2 + λ

∑
k

ω(|xk|), (6.1)

where D is a dictionary of elementary spectral shapes elements and ω(•) = • for
the `1 regularization and ω(•) = (•)p for the `p regularization with p = 1

2 . As
discussed in section 5.2.1 the regularization term is non-differentiable in 0 and will
promote sparsity in x. We use a proximal gradient7 descent as discussed in section
5 to solve problem (6.1). In this application we use an over-complete dictionary
of 27683 elements which is larger than the size of y. The dictionary is created
similarly as in Bourguignon et al. [2010] and consists in a mixture of impulses,
steps and low frequency variations. Sparsity here comes to the rescue because
limiting the number of activated dictionary elements should allow a reconstruction
of the spectrum that has a structure close to the true spectrum. This will always
be true if the dictionnary is adapted to the considered signals, and this is the case
here because the dictionary was specifically designed for astrophysical spectra. In
contrast, the noise is essentially unstructured and would require a large number of
dictionary elements to be reconstructed. Consequently, the noise is ‘filtered-out’

7The Octave/Matlab optimization toolbox is available at https://github.com/rflamary/

nonconvex-optimization
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Fig. 10. Example or spectrum denoising for two MUSE simulated spectra. (top) noisy

observations and true spectrum, (middle) reconstruction using the `1 regularization (bot-

tom) reconstruction using the `p regularization. For each approach we report the relative

reconstruction error err and the number of selected atoms ns.

by the sparse synthesis process.

The reconstructed spectra ŷ = Dx̂ (with x̂ the solution of the optimisation
problem) for both `1 (middle) and `p (bottom) regularization are given in the four
lower panels of Figure 10. For each approach we report, for the best value of λ in
(6.1), the relative error computed from the euclidean norm of the reconstruction
error divided by the norm of the true spectrum. Note that both regularizations
lead to similar relative errors but the `p regularization needs a lower number of
dictionary elements ns to achieve the same performance. The `p (0 ≤ p < 1)
regularization is indeed more aggressive in term of sparsity than `1 (as illustrated
in Figure 6, right panel, compare green and red curves), but its shrinkage to zero
is less strong as the magnitude of the components increase. In contrast, the `1
shrinkage is always the same. For instance, we can see in Figure 6 that a component
of x = 2 will be shrinked to 1 with `1 penalization and to ≈ 1.7 with `p. Note that
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Fig. 11. Regularization path for the two simulated spectra for `1 (top) and `p (bottom)

regularization. The true spectrum is reported in red superposed with the reconstruction

with the best reconstruction error.

as discussed in Bourguignon et al. [2010] one can also perform a non regularized
least square estimation on the components selected by `1 to diminish its bias.

The results reported in Figure 10 corresponds to the best performance for each
regularization parameter. In order to find the best value for the parameter λ we
computed what is called an approximate regularization path, i.e. the solution of
the optimization problem for a number of values of λ logarithmically sampled from
10−1 to 10−3. The restored spectra for several vaules of λ are reported in Figures
11 for both spectra and regularizations. For all methods one can see that for very
large regularization parameters the spectrum is represented only by its average
value and progressively acquires a more complex shape as λ decreases. When λ
is small, one can also see for both approaches that the reconstructed spectrum
becomes noisy because the noise is also reconstructed. Finally, we can see in
Figure 11 that the magnitude of the reconstructed spectrum changes abruptly
along λ with `p regularization whereas the variation is more smooth with `1. Also,
`1 regularization requires a smaller value of λ (and more selected features) at its
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optimal reconstruction error than `p. Both effects are related to their different
types of shrinkage, as discussed above.

7 Conclusion

This article is only a short introduction to optimization and only scratches the
surface of this very active field. At the same time, as pointed out by Parmee
and Hajela [2012], numerical optimization is now a mature technology, that is,
fast, robust, and capable of solving problems with up to millions of variables, that
can be used in many aspects of astronomy. The development of an optimization
application should be performed according to the following steps. First formalize
the problem by identifying the variables, the objective function and the constraints.
Then restate and identify the nature of the problem (convex, differentiable, LP,
QP, . . . ) to facilitate the use of state-of-the-art open-source optimization software
tools such as CVX, SeDuMi, GLPK (for LP), openOpt (in python), Optaplanner
(in java) or commercial ones such as Gurobi, Cplex, Mosek or Xpress to name a
few8. Last, but not least, evaluate the solution provided and improve the model
if necessary.

At this point it may be useful to provide the reader who wants more in-depth
information with a list of specific references.

Convex optimization (with or without constraints) is a well investigated domain
and we refer the reader to Boyd and Vandenberghe [2004] for a very pedagogical
introduction, and to the books of Bertsekas [1999] and Nocedal and Wright [2006]
for a different insight on convex optimization. The book Bubeck [2015], avail-
able on the author’s website, also discusses conditional gradient and stochastic
optimization often used in large scale problems.

Non-differentiable optimization using proximal algorithms has been treated ex-
tensively in Combettes and Pesquet [2011] and more recently in Parikh and Boyd
[2014]. For a more detailed study of algorithms with sparsity inducing regular-
ization we recommend Bach et al. [2011]. Finally, the convergence and theory
of proximal (and monotone) operators is discussed in Bauschke and Combettes
[2011].

No doubt that the future of optimization will also provide tools to efficiently
handle new classes of problems not treated here, such as mixed integer programs.
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Ž. Ivezić, A. K. Vivas, R. H. Lupton, and R. Zinn. The selection of rr lyrae stars
using single-epoch data. The Astronomical Journal, 129(2):1096, 2005.
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