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Résumé : Cette article traite de la sélection de variables pour l’apprentissage si-
multanée de taches de discrimination SVM . Nous formulons ce problème comme
étant un apprentissage multi-taches avec pour terme de régularisation une norme
mixte de type `p − `2 avec p ≤ 1 . Cette dernière permet d’obtenir des mo-
dèles de discrimination pour chaque tâche, utilisant un même sous-ensemble des
variables. Nous proposons tout d’abord un algorithme permettant de résoudre le
problème d’apprentissage lorsque la norme mixte est convexe (p = 1). Ensuite,
à l’aide de la programmation DC, nous traitons le cas non-convexe (p < 1) .
Nous montrons que ce dernier cas peut être résolu par un algorithme itératif où,
à chaque itération, un problème basé sur la norme mixte `1 − `2 est résolu. Nos
expériences montrent l’interêt de la méthode sur quelques problèmes de discri-
minations simultanées.
Mots-clés : Apprentissage multi-tâches, Sélection de variables, méthodes à noyaux

1 Introduction

Multi-Task Learning (MTL) is a statistical learning framework which seeks at lear-
ning different models in a joint manner. The idea behind this paradigm is that, when
the tasks to be learned are similar enough or are related in some sense, it may be ad-
vantageous to take into account these relations between tasks. Several works have ex-
perimentally highlighted the benefit of such a framework (Caruana, 1997). However,
the notion of relatedness between tasks is rather vague and depends on the problem at
hand. For instance, one can consider that models resulting from related tasks should
have similar norms (Evgeniou & Pontil, 2004; Kato et al., 2008). In other works, task
relatedness is represented through a probabilistic model (Yu et al., 2005). Prior know-
ledge on tasks are then translated into an appropriated regularization term or into a
hierarchical Bayesian model that can be handled by a learning algorithm.

In this work, we consider that tasks to be learned share a common subset of features or
kernel representation. This means that while learning the tasks, we jointly look for fea-
tures or kernels that are useful for all tasks. In this context of joint feature selection, for
multiple related tasks several works have already been carried out. For instance, Jebara
(2004) has introduced a maximum entropy discrimination for solving such a problem.
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Some other works cast the problem into a probabilistic framework which uses automa-
tic relevance determination and a hierarchical Bayesian model for selecting the relevant
features (Bi et al., 2008; Xiong et al., 2006). Another trend considers to use a regulari-
zation principle and thus minimizes a regularized empirical risk while the regularization
term favors a common sparsity profile in features for all tasks. Such an approach have
been investigated by Argyriou et al. (2008) and Obozinski et al. (2007). In this latter
work, the authors propose a `1 − `2 regularization term which can be interpreted as a
convex extension of the sparsity-inducing `1 norm in single task learning.

This paper also considers this regularization principle for joint feature selection across
tasks. Our contribution is two fold. First we consider the multi-task learning problem
in a SVM framework with a kernel representation. The proposed algorithms rely on
sparsity-inducing (`p − `2) mixed-norms regularizers which encourage sparse kernel
selection among a prescribed set of kernels. This set of basis kernels can be made large
enough at will, gathering information about the different sources of the input samples.
From this framework, we show that our formulation in the convex case turns into a
multiple kernel learning problem. Therefore, an efficient algorithm is derived based
on off-the-shelf MKL solvers (Rakotomamonjy et al., 2008). At the second stage, we
extend the analysis to a non-convex regularization term in order to gain in sparsity The
difficulty raised by this formulation is tackled via a DC programming (Horst & Thoai,
1999). This leads to an iterative scheme which solves at each iteration, a reweighted
MTL problem.

In the next section, we present the general formulation of the sparse MTL problem
as well as a brief review of closely spirit-related works. Algorithmic developments are
presented in Section 3. Then, some empirical results that illustrate the behavior of our
algorithms are given in Section 4 while some concluding remarks are drawn in Section
5.

2 Multi-Task feature/kernel selection framework

This section introduces our framework for sparse MTL and discusses the connection
with other works.

2.1 Framework

Suppose we are given T classification tasks to be achieved from T different datasets
{xi,1, yi,1}n1

i , · · · , {xi,T , yi,T }
nT
i , where any xi,· ∈ X and yi,· ∈ {+1,−1} and ni

denotes the ith dataset size. For a given task t, we are looking for a decision function of
the form :

ft(x) =
M∑
k=1

ft,k(x) + bt ∀t ∈ {1, · · · , T} (1)

where any function f·,k belongs to a Reproducing Kernel Hilbert Space (RKHS)Hk of
kernel Kk, bt is the bias term and M is the number of basis kernels provided. Note that
depending on the input space X ,Hk can be of different forms. For instance, if X = Rd,
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Hk can be a subset based on a single or several dimensions of Rd. Hk can be also an
infinite dimension space.

The objective of this work is to learn the decision function ft of each task under
the constraints that all these functions share a common sparse profile of their kernel
representation. Hence, the pursued hope is to build a learning algorithm able to yield
many vanishing functions ft,k for all t.

For achieving this goal, we cast our problem as the following optimization problem :

min
f1,··· ,fT

C ·
∑
t,i

L(ft(xi,t), yi,t) + Ω(f1, · · · , fT )

where L(ft(x), y) is a loss function, Ω a sparsity-inducing penalty function involving
all ft and C a trade-off parameter that balances both antagonist objectives.

2.2 Joint sparsity-inducing penalty
For a single task empirical minimization problem, sparse models are usually induced

by the use of a `1-norm regularizer (Tibshirani, 1995). For a Multi-Task Learning pro-
blem, this approach can be properly generalized by the use of appropriate norm. For
instance, Obozinski et al. (2007) propose a regularizer of the form

Ω(f1, · · · , fT ) =
M∑
k=1

(
T∑
t=1

‖ft,k‖2Hk

)1/2

which is equivalent to a `1-norm for a single linear task. This regularizer can be gene-
ralized by

Ωp,q(f1, · · · , fT ) =
M∑
k=1

(
T∑
t=1

‖ft,k‖qHk

)p/q
(2)

where typically p ≤ 1 and q ≥ 1. For this regularizer, a `q norm is applied to the vector
of all task norms in Hk and then a `p pseudo-norm is applied to the resulting vector.
The `q norm in the regularizer controls the weights of each task for the space Hk and
how this kernel representation will be shared across tasks. For instance, large value of
q (like q = ∞) means that as soon as ‖ft,k‖Hk

is non-zero, another task t′ can have
a non-zero norm for ft′,k without increasing significantly the regularizer Ωp,q . The `p
pseudo-norm controls the sparsity of the kernel representation for all tasks.

Such a regularizer has already been proposed for single task learning for achieving
composite absolute penalization (Zhao et al., to appear) or for composite kernel learning
(Szafranski et al., 2008).

However, in the context of multi-task learning, some particular cases of the mixed-
norm Ωp,q have been considered. Obozinski et al. (2007) use p = 1 and q = 2 while
Liu et al. (2009) and Quattoni et al. (2008) propose the use of p = 1 and q = ∞. For
all these works, the authors have focused on convex situations since Ωp,q is known to
be convex whenever p, q ≥ 1 and non-convex for p < 1 and q ≥ 1.

Recently, several works on sparse single learning models have stressed the need of
non-convex penalties for achieving better sparsity. For instance, Knight & Fu (2000)
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suggested the use of the so-called Bridge penalty which simply consists in replacing
the `1 norm with a `p norm with p < 1. In our multi-task learning framework, this can
be naturally generalized by using the regularizer given in Equation (2) with p < 1.

2.3 Relation with other works

Before delving into the details of algorithms for solving the `p−`2 regularized sparse
MTL, let us relate the proposed approach to the recent similar methods.

As far as we know, the first works which proposed mixed-norms for joint-sparsity
inducing regularizer come from the signal processing community (Cotter et al., 2005;
Tropp, 2006). These works have investigated the use of `1 − `2 and `1 − `∞ penalties
together with least-squares loss function for sparse signal approximations.

Due to its convexity, the penalty `1−`2 has attracted many interests for jointly sparse
multi-task learning. Indeed the seminal works of Argyriou et al. (2008) and Obozinski
et al. (2007) have opened the road to regularized sparse MTL. These two works differ
in their algorithmic approach : while Argyriou et al. proposed an alternating minimiza-
tion approach, Obozinski et al. used an homotopy method for solving the problem. In
both cases, their algorithms consider a smooth loss function. Several probabilistic ap-
proaches actually boil down to be equivalent to the use of `1− `2 penalty (Xiong et al.,
2006; Bi et al., 2008) and thus they simply provided a probabilistic interpretation of
the work of Obozinski et al. More recently, Liu et al. (2009) and Quattoni et al. (2008)
considered solving the multi-task learning by using a `1 − `∞ regularization. While
Liu et al. provided algorithms for smooth loss functions, Quattoni et al. considered the
Hinge loss and derived a linear programming method for solving the resulting problem.

Our work differs from the previously mentioned in several ways. At first, we consider
a kernel selection framework which is general enough to include feature selection or
grouped-feature selection as a special case (Bach, 2008). Then, instead of considering
smooth and differentiable loss functions, we use a hinge loss cost function as Quattoni
et al. (2008). However, in the latter work, the features are extracted from an unsuper-
vised KPCA projection of the labeled data onto the space spanned by some available
unlabeled samples followed by a multi-task learning with a linear SVM and the men-
tioned `1 − `∞ penalty.

According to us, the approach proposed hereafter is more general and explores the
possibility of combining many different kernels. Furthermore, we benefit from the ef-
ficiency of SVM algorithm and multiple kernel learning tools upon which we built our
convex MTL solver. Finally, we go beyond the convex cases and consider the use of a
larger class of sparsity-inducing regularisation term which includes the `1− `2 norm as
a special case. The DC procedure allows to solve the problem as an iterative reweighted
MTL problem.

3 Algorithms for jointly sparse multi-task SVM

In this section, we propose some algorithms for solving the sparse multi-task SVM
problem when using Ωp,q as a regularizer with p ≤ 1 and q = 2. At first, we consider



Apprentissage multi-tâches parcimonieux

the convex problem with p = 1 and then we introduce an algorithm which solves the
problem when p < 1. In the sequel, we use the following notation for more clarity :

‖f·,k‖ =

(
T∑
t=1

‖ft,k‖2Hk

)1/2

3.1 The `1 − `2 case
The optimization problem related to the sparse multi-task SVM can be posed as fol-

lows :

min
f1,··· ,fT

C
∑
t,i

H(ft(xi,t), yi,t) +
M∑
k=1

‖f·,k‖

where H(ft(x), y) = max(0, 1 − yft(x)) is the Hinge loss function and C the usual
SVM parameter. This optimization problem is clearly convex but non-smooth because
of the Hinge loss and the regularizer. However, the algorithmic difficulties are essen-
tially due to the non-differentiability of ‖f·,k‖ at 0. Similarly to recent works on MKL,
we use a variational form of Ω1,2 which makes this latter differentiable at the expense
of adding new variables to the optimization problem (Rakotomamonjy et al., 2008) :

min
f1,··· ,fT ,d

C
∑
t,iH(ft(xi,t), yi,t) +

∑
k
‖f·,k‖2
dk

s.t
∑
k dk = 1, dk ≥ 0 ∀k

Here and in what follows, we take the convention that u0 = 0 if u = 0 and∞ otherwise.
After, expanding ‖f·,k‖2 and re-arranging the sums, we note that for a fixed d (vector
with entries dk), each task can be trained independently as made explicit through the
following equivalent optimization problem :

min
d

J(d) =
∑
t Jt(d)

s.t
∑
k dk = 1, dk ≥ 0 ∀k

(3)

with

Jt(d) = min
ft

C
∑
i

H(ft(xi,t), yi,t) +
∑
k

‖ft,k‖2

dk
(4)

This latter formulation shows how our sparse multi-task SVM problem is strongly re-
lated to the MKL problem. At first, we remark that the Equations (3-4) boil down to
be the MKL problem when only a single task is considered. When several tasks are in
play, the vector d makes explicit that they are linked through their shared sparse kernel
representation.

For solving this optimization problem, we build on the gradient-based MKL algo-
rithm (Rakotomamonjy et al., 2008). This MKL algorithm can be straightforwardly
extended to our problem by noting that the minimization problem (4) yields the objec-
tive value of a SVM problem with kernel K =

∑
k dkKk. Indeed the minimization

with respects to ft in (4) is equivalent to the minimization over the functions ft,k,∀k
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Algorithm 1 `1 − `2 sparse MTL solver
d1
k = 1

M for k = 1, · · · ,M .
for n = 1, 2, · · · do

Solve each SVM task with K =
∑M
k=1 dkKk.

Compute ∂J
∂dk

for k = 1, · · · ,M as given in Equation (6).
Compute descent directionDn and optimal step γn such that dn+1 ← dn+γnDn.
if stopping criterion then

break
end if

end for

and bt according to the expression (1) of the tth decision function. For instance, the
optimality condition w.r.t. ft,k is :

ft,k(·) = dk
∑
i

αi,tyi,tKk(xi,t, ·)

where the αi,t are the Lagrange multipliers related to the classical SVM constraints
embedded in the hinge loss. The same algebra for the bias bt yields

∑
i αi,tyi,t = 0.

Therefore, it comes up the dual problem corresponding to (4) turns into

min
αi,t

1
2

∑
i,j αi,tαj,tyi,tyj,t

∑
k dkKk(xi,t, xj,t)−

∑
i αi,t

s.t αi,tyi,t = 0, and 0 ≤ αi,t ≤ C ∀i
(5)

Then since the objective function of the sparse multi-task learning given in Equation
(3) is just a sum of single task SVM objective value, its gradient is simply :

∇dk
J(d) = −1

2

∑
t

∑
i,j

α?i,tα
?
j,tyi,tyj,tKk(xi,t, xj,t) (6)

where the α? are the optimal alpha’s that minimize Equation (5). Equations (5) and
(6) provide the ingredients to apply the recipes of SimpleMKL algorithm to the sparse
multi-task learning (we refer the reader to the aforementioned paper for more details
about the machinery of MKL). The different steps of our `1− `2 MTL solver are briefly
summarized in Algorithm 1.

Regarding convergence and complexity of this algorithm, we can state that they are
strongly related to the ones of gradient-descent based MKL. Hence, we can just remind
that convergence towards the problem global minimum is ensured if each SVM task is
exactly solved (e.g with 0 duality gap) which means that the gradient in Equation (6)
is exact. The algorithm 1 complexity is then of the same order of SimpleMKL ones.
Indeed, the main difference is that T SVM tasks have to be solved and that the gradient
computation involves the T tasks.

3.2 The `p − `2 (with p < 1 ) case
Now that we are able to solve the sparse MTL problem using a `1 − `2 mixed norms,

we propose an algorithm which solves the non-convex case where `p − `2 (with p < 1



Apprentissage multi-tâches parcimonieux

−5 0 5
−1

0

1

2

3

4

5

theta

 

 

L
1

L
p

−g
cav

FIG. 1 – Difference of convex functions representation for an `p quasi-norm (here p =
0.5).

). For this novel situation, let rewrite the regularization term as :

Ωp,2 =
M∑
k=1

g(‖f·,k‖) (7)

where the upper level penalty function is g(u) = up, u > 0 with p < 1. Clearly, this
function is non-convex. To address this issue, we investigate the use of DC program-
ming (Horst & Thoai, 1999) which is a general framework for optimizing non-convex
objective functions that can be expressed as a difference of convex functions (or a sum
of a convex and concave functions i.e. minθ J(θ) = minθ Jvex(θ)+Jcav(θ)). The trick
of the DC algorithm is broadly used in machine learning (see for e.g. (Sriperumbudur
et al., 2007) for recent publication). For situations where the concave function is dif-
ferentiable, the DC algorithm is an iterative procedure where at the ith iteration, one
optimizes the problem :

θ(i+1) = min
θ
Jvex(θ) + 〈∇θJcav(θ(i)), θ − θ(i)〉

until convergence. For our multi-task problem, we propose a decomposition that enables
us to use the `1 − `2 MTL solver. Indeed, we suggest the following decomposition :

g(u) = gvex(u) + gcav(u) = u− (u− up)

which leads to

Jvex = C
∑
t,iH(ft(xi,t), yi,t) +

∑
k ‖f·,k‖

Jcav =
∑
k(−‖f·,k‖+ ‖f·,k‖p)

An illustration of such a decomposition in one dimension case is given in Figure 1 for
u = |θ|. Notice that here, we are interested only on the positive part on these curves.
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Now according to this decomposition, we have :

∇ft,k
Jcav =

(
−1 + p‖f·,k‖p−1

)
∇ft,k

‖f·,k‖

where the derivative ∇ft,k
‖f·,k‖ = ft,k(·)

‖f·,k‖ is easily derived. Therefore, at each DC

iteration, after tedious algebras and owing to the first-order approximation
〈f(i)

t,k,ft,k〉

‖f(i)
t,k‖

=

‖ft,k‖, we show that :

min
f1,··· ,fT

C
∑
t,i

H(ft(xi,t), yi,t) +
∑
k

p
‖f·,k‖
‖f (i)
·,k ‖1−p

This latter equation demonstrates that, in order to solve the non-convex `p − `2 case
using a DC programming approach, one needs to solve iteratively a weighted `1 − `2
multi-task problem

min
f1,··· ,fT

C
∑
t,i

H(ft(xi,t), yi,t) +
M∑
k=1

βk‖f·,k‖ (8)

where βk are some fixed coefficients, which in our case would depend on the iteration
and are defined at the ith iteration as :

βk =
p

‖f (i)
·,k ‖1−p

, ∀ k = 1, · · · ,M (9)

This definition of the βk requires implicitly the positivity of ‖f·,k‖. To ensure this condi-
tion, a small term ε is added to ‖f·,k‖ in (7). Hence, this involves to consider rather
βk = p

ε+‖f(i)
·,k‖1−p

. This trick suggested as well by Candès et al. (2008) avoids numeri-

cal instabilities.
Now, the equivalent optimization problem with smooth regularization is simply :

min
f1,··· ,fT ,d

C
∑
t,iH(ft(xi,t), yi,t) +

∑
k β

2
k
‖f·,k‖2
dk

s.t
∑
k dk = 1, dk ≥ 0 ∀k

(10)

Note that the optimality conditions of this problem with respects to ft,k is simply given
by the expression ft,k(·) = dk

β2
k

∑
i αi,tyi,tKk(xi,t, ·).

Consequently, at each DC iteration, we have to solve a weighted sparse MTL pro-
blem, where the weights are applied to the basis kernels. Hence, Equation (10) can
be solved using the `1 − `2 algorithm just by replacing the kernel Kk(x, x′) with
1
β2

k
Kk(x, x′).

Details of the `p− `2 problem solver are given in Algorithm 2. About its complexity,
we can state that since the `p− `2 algorithm is based on iter iterations of the `1− `2 al-
gorithm (after appropriate rescaling of the kernels), its complexity can be approximated
as iter times the `1 − `2 algorithm complexity. However, in order to speed-up conver-
gence for `p − `2, warm-starting the `1 − `2 with results from previous iteration can be
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Algorithm 2 `p − `2 sparse MTL solver
βk = 1 for k = 1, · · · ,M
Compute Kk kernel matrices for all tasks
repeat
Kβ
k ←

Kk

β2
k

for all k

Solve `1 − `2 MTL problem with kernels Kβ
k

Update βk using Equation (9)
until convergence of the β’s
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FIG. 2 – Performance comparisons between `1 − `2 and `p − `2 penalty for different
experimental situations. For each experimental situations, we have kept fixed all except
one of parameters : number of training examples n, number of relevant variables r,
problem dimension d and number of tasks T . top-left) varying n. top-right) varying r.
bottom-left) varying d bottom-right) varying T .

beneficial. Indeed, one may expect for instance, that many of the vanishing coefficients
dk at a given iteration will stay at zero at the next iteration.

The local convergence of Algorithm 2 is guaranteed. Indeed, the DC programming
approach proceeds by surrogating the concave part of the objective function with its
affine majorization at each iteration. Therefore, the minimized function decreases until
a guaranteed convergence to at least a local minimum (Horst & Thoai, 1999).
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TAB. 1 – Average AUC performances of 4 different algorithms on the BCI datasets.
The number of variables that have been kept in the decision function is also given.

Algorithms AUC # variables
MTL1 85.72 ± 1.8 192 ± 11
MTL0.5 86.37 ± 1.3 43 ± 6
FullMKL 86.17 ± 1.8 214 ± 12
SepMKL 84.15 ± 1.8 272 ± 13

4 Numerical experiments

4.1 Results on BCI datasets

Here we illustrate the usefulness of sparse Multi-Task learning on a Brain-Computer
Interface problem. Indeed, sparse MTL can be very relevant to BCI because of the need
of channel/variable selection and because of the data non-stationarity with respects to
different subjects or even with respects to different acquisition sessions for a single
subject.

The dataset we use is the training set of P300 Speller dataset from BCI 2003 com-
petition and we treat the problem as a single trial classification of EEG signals. Such
a dataset is composed of 11 acquisition sessions for which a subject has been asked to
spell words of 3 to 5 characters. For each session, 540 to 900 EEG signals (180 for a
character) have been acquired and paired with a positive or negative stimuli responses.
After preprocessing as in Rakotomamonjy et al. (2005), the signal becomes a vector of
dimension 896 (14 time frames for each of the 64 channels).

Here, sparse MTL is particularly relevant because channel selection is known to
enhance BCI classification performance and furthermore, we believe that MTL can
help handling inter-session variabilities. For instance, for the same problem, Rakoto-
mamonjy et al. (2005) use an ensemble of linear SVMs where each SVM has been
trained independently and using only examples belonging to the same acquisition ses-
sions. Here, we train these SVMs using our sparse MTL approach and thus we impose
that all linear SVMs share the same sparsity profile.

The experimental protocol is then the following. We have considered only 4 acqui-
sition sessions, thus 4 tasks. For these sessions, we have randomly picked 180 training
examples and used the remaining as testing examples. C has been fixed to 10 which is
small enough for achieving good sparsity. This overall procedure has been repeated 10
times.

Table 1 summarizes the average performance of 4 different algorithms : a MKL SVM
trained on all training examples (FullMKL), an ensemble of MKL SVM (SepMKL)
where each SVM has been trained according to data from a single session (this approach
is equivalent to the state-of-the art method) , our sparse `p − `2 MTL with respectively
p = 1 and p = 0.5. Algorithm performance has been evaluated according to AUC
obtained by feeding the test set to all SVMs and by summing all obtained scores. The
final score is then used for computing AUC.
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Interpreting these results tells us that performance of the 4 algorithms are equivalent
with a slight advantage for sparse MTL with p = 0.5. Interestingly, taking into account
a relation between tasks allows slightly better performances than training tasks inde-
pendently. The most interesting point for our sparse MTL approach is the performance
we achieve using only about 5% of the variables. For real-time application of BCI, such
a dimensionality reduction is of primary importance.

5 Conclusion
In this paper, we investigated the use of mixed-norms for Multi-Task SVM with joint

sparsity constraint. After having proposed a class of penalty function based on a `p− `2
norm, we first derive an algorithm which addresses the convex optimization problem
when p = 1. For the case p < 1, we fitted the optimization problem into the DC
programming framework, and proposed an iterative reweighted version of the `1 − `2
algorithm. One interesting point of the algorithms we propose is that they can both take
advantage of any progress made in SVM and MKL efficiency. Experimental results
brought evidence that `p−`2 penalties lead to enhanced performance and better sparsity
especially in situations where a large number of variables are in play.

Future works aim at proposing a generic algorithm that can handle the general situa-
tion of `p − `q norm and at theoretically analyzing the consistency of our reweighted
algorithm.
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