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Abstract—Domain adaptation is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly,
models built on a specific data representation become more robust when confronted to data depicting the same classes, but
described by another observation system. Among the many strategies proposed, finding domain-invariant representations has
shown excellent properties, in particular since it allows to train a unique classifier effective in all domains. In this paper, we
propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source
and target domains. We learn a transportation plan matching both PDFs, which constrains labeled samples of the same class
in the source domain to remain close during transport. This way, we exploit at the same time the labeled samples in the source
and the distributions observed in both domains. Experiments on toy and challenging real visual adaptation examples show
the interest of the method, that consistently outperforms state of the art approaches. In addition, numerical experiments show
that our approach leads to better performances on domain invariant deep learning features and can be easily adapted to the
semi-supervised case where few labeled samples are available in the target domain.

Index Terms—Unsupervised Domain Adaptation, Optimal Transport, Transfer Learning, Visual Adaptation, Classification.
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1 INTRODUCTION

MODERN data analytics are based on the avail-
ability of large volumes of data, sensed by a

variety of acquisition devices and at high temporal
frequency. But this large amounts of heterogeneous
data also make the task of learning semantic concepts
more difficult, since the data used for learning a
decision function and those used for inference tend
not to follow the same distribution. Discrepancies
(also known as drift) in data distribution are due
to several reasons and are application-dependent. In
computer vision, this problem is known as the vi-
sual adaptation domain problem, where domain drifts
occur when changing lighting conditions, acquisition
devices, or by considering the presence or absence of
backgrounds. In speech processing, learning from one
speaker and trying to deploy an application targeted
to a wide public may also be hindered by the dif-
ferences in background noise, tone or gender of the
speaker. In remote sensing image analysis, one would
like to leverage from labels defined over one city
image to classify the land occupation of another city.
The drifts observed in the probability density function
(PDF) of remote sensing images are caused by variety
of factors: different corrections for atmospheric scat-
tering, daylight conditions at the hour of acquisition
or even slight changes in the chemical composition of
the materials.

For those reasons, several works have coped with
these drift problems by developing learning methods
able to transfer knowledge from a source domain to
a target domain for which data have different PDFs.
Learning in this PDF discrepancy context is denoted
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as the domain adaptation problem [37]. In this work,
we address the most difficult variant of this problem,
denoted as unsupervised domain adaptation, where
data labels are only available in the source domain.
We tackle this problem by assuming that the effects
of the drifts can be reduced if data undergo a phase
of adaptation (typically, a non-linear mapping) where
both domains look more alike.

Several theoretical works [2], [36], [22] have empha-
sized the role played by the divergence between the
data probability distribution functions of the domains.
These works have led to a principled way of solving
the domain adaptation problem: transform data so as
to make their distributions “closer”, and use the label
information available in the source domain to learn
a classifier in the transformed domain, which can be
applied to the target domain. Our work follows the
same intuition and proposes a transformation of the
source data that fits a least effort principle, i.e. an
effect that is minimal with respect to a transformation
cost or metric. In this sense, the adaptation problem
boils down to: i) finding a transformation of the input
data matching the source and target distributions and
then ii) learning a new classifier from the transformed
source samples. This process is depicted in Figure 1.
In this paper, we advocate a solution for finding this
transformation based on optimal transport.

Optimal Transport (OT) problems have recently
raised interest in several fields, in particular because
OT theory can be used for computing distances
between probability distributions. Those distances,
known under several names in the literature (Wasser-
stein, Monge-Kantorovich or Earth Mover distances)
have important properties: i) They can be evalu-
ated directly on empirical estimates of the distribu-
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Fig. 1: Illustration of the proposed approach for domain adaptation. (left) dataset for training, i.e. source
domain, and testing, i.e. target domain. Note that a classifier estimated on the training examples clearly does
not fit the target data. (middle) a data dependent transportation map Tγ0 is estimated and used to transport
the training samples onto the target domain. Note that this transformation is usually not linear. (right) the
transported labeled samples are used for estimating a classifier in the target domain.

tions without having to smoothen them using non-
parametric or semi-parametric approaches; ii) By ex-
ploiting the geometry of the underlying metric space,
they provide meaningful distances even when the
supports of the distributions do not overlap. Leverag-
ing from these properties, we introduce a novel frame-
work for unsupervised domain adaptation, which
consists in learning an optimal transportation based
on empirical observations. In addition, we propose
several regularization terms that favor learning of
better transformations w.r.t. the adaptation problem.
They can either encode class information contained
in the source domain or promote the preservation
of neighborhood structures. An efficient algorithm is
proposed for solving the resulting regularized op-
timal transport optimization problem. Finally, this
framework can also easily be extended to the semi-
supervised case, where few labels are available in the
target domain, by a simple and elegant modification
in the optimal transport optimization problem.

The remainder of this Section presents related
works, while Section 2 formalizes the problem of un-
supervised domain adaptation and discusses the use
of optimal transport for its resolution. Section 3 intro-
duces optimal transport and its regularized version.
Section 4 presents the proposed regularization terms
tailored to fit the domain adaptation constraints. Sec-
tion 5 discusses algorithms for solving the regular-
ized optimal transport problem efficiently. Section 6
evaluates the relevance of our domain adaptation
framework through both synthetic and real-world
examples.

1.1 Related works
Domain adaptation. Domain adaptation strategies
can be roughly divided in two families, depending
on whether they assume the presence of few labels
in the target domain (semi-supervised DA) or not
(unsupervised DA).

In the first family, methods which have been pro-
posed include searching for projections that are dis-
criminative in both domains by using inner products
between source samples and transformed target sam-
ples [42], [32], [29]. Learning projections, for which
labeled samples of the target domain fall on the
correct side of a large margin classifier trained on
the source data, have also been proposed [27]. Several
works based on extraction of common features under
pairwise constraints have also been introduced as
domain adaptation strategies [26], [52], [47].

The second family tackles the domain adaptation
problem assuming, as in this paper, that no labels are
available in the target domain. Besides works dealing
with sample reweighting [46], many works have con-
sidered finding a common feature representation for
the two (or more) domains. Since the representation,
or latent space, is common to all domains, projected
labeled samples from the source domain can be used
to train a classifier that is general [18], [38]. A common
strategy is to propose methods that aim at finding rep-
resentations in which domains match in some sense.
For instance, adaptation can be performed by match-
ing the means of the domains in the feature space [38],
aligning the domains by their correlations [33] or
by using pairwise constraints [51]. In most of these
works, feature extraction is the key tool for finding
a common latent space that embeds discriminative
information shared by all domains.

Recently, the unsupervised domain adaptation
problem has been revisited by considering strategies
based on a gradual alignment of a feature repre-
sentation. In [24], authors start from the hypothesis
that domain adaptation can be better estimated when
comparing gradual distortions. Therefore, they use
intermediary projections of both domains along the
Grassmannian geodesic connecting the source and
target eigenvectors. In [23], [54], all sets of trans-
formed intermediary domains are obtained by using
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a geodesic-flow kernel. While these methods have
the advantage of providing easily computable out-
of-sample extensions (by projecting unseen samples
onto the latent space eigenvectors), the transformation
defined remains global and is applied in the same way
to the whole target domain. An approach combining
sample reweighting logic with representation trans-
fer is found in [53], where authors extend the sam-
ple re-weighing to reproducing kernel Hilbert space
through the use of surrogate kernels. The transforma-
tion achieved is again a global linear transformation
that helps in aligning domains.

Our proposition strongly differs from those re-
viewed above, as it defines a local transformation
for each sample in the source domain. In this sense,
the domain adaptation problem can be seen as a
graph matching problem [35], [10], [11] as each source
sample has to be mapped on target samples under the
constraint of marginal distribution preservation.
Optimal Transport and Machine Learning. The op-
timal transport problem has first been introduced
by the French mathematician Gaspard Monge in the
middle of the 19th century as a way to find a mini-
mal effort solution to the transport of a given mass
of dirt into a given hole. The problem reappeared
in the middle of the 20th century in the work of
Kantorovitch [30] and found recently surprising new
developments as a polyvalent tool for several funda-
mental problems [49]. It was applied in a wide panel
of fields, including computational fluid mechanics [3],
color transfer between multiple images or morphing
in the context of image processing [40], [20], [5], inter-
polation schemes in computer graphics [6], and eco-
nomics, via matching and equilibriums problems [12].

Despite the appealing properties and application
success stories, the machine learning community has
considered optimal transport only recently (see, for
instance, works considering the computation of dis-
tances between histograms [15] or label propagation
in graphs [45]); the main reason being the high com-
putational cost induced by the computation of the
optimal transportation plan. However, new comput-
ing strategies have emerged [15], [17], [5] and made
possible the application of OT distances in operational
settings.

2 OPTIMAL TRANSPORT AND APPLICATION
TO DOMAIN ADAPTATION

In this section, we present the general unsupervised
domain adaptation problem and show how it can be
addressed from an optimal transport perspective.

2.1 Problem and theoretical motivations

Let Ω ∈ Rd be an input measurable space of di-
mension d and C the set of possible labels. P(Ω)
denotes the set of all probability measures over Ω. The

standard learning paradigm assumes the existence of
a set of training data Xs = {xsi}

Ns
i=1 associated with

a set of class labels Ys = {ysi }
Ns
i=1, with ysi ∈ C, and

a testing set Xt = {xti}
Nt
i=1 with unknown labels. In

order to infer the set of labels Yt associated with
Xt, one usually relies on an empirical estimate of the
joint probability distribution P(x, y) ∈ P(Ω× C) from
(Xs,Ys), and assumes that Xs and Xt are drawn from
the same distribution P(x) ∈ P(Ω).

2.2 Domain adaptation as a transportation prob-
lem
In domain adaptation problems, one assumes the
existence of two distinct joint probability distributions
Ps(x

s, y) and Pt(x
t, y), respectively related to a source

and a target domains, noted as Ωs and Ωt. In the
following, µs and µt are their respective marginal
distributions over X. We also denote fs and ft the true
labeling functions, i.e. the Bayes decision functions in
each domain.

At least one of the two following assumptions is
generally made by most domain adaptation methods:
• Class imbalance: Label distributions are different

in the two domains (Ps(y) 6= Pt(y)), but the con-
ditional distributions of the samples with respect
to the labels are the same (Ps(x

s|y) = Pt(x
t|y));

• Covariate shift: Conditional distributions of
the labels with respect to the data are equal
(Ps(y|xs) = Pt(y|xt), or equivalently fs = ft =
f ). However, data distributions in the two do-
mains are supposed to be different (Ps(x

s) 6=
Pt(x

t)). For the adaptation techniques to be ef-
fective, this difference needs to be small [2].

In real world applications, the drift occurring between
the source and the target domains generally implies a
change in both marginal and conditional distributions.

In our work, we assume that the domain drift is due
to an unknown, possibly nonlinear transformation of
the input space T : Ωs → Ωt. This transformation
may have a physical interpretation (e.g. change in the
acquisition conditions, sensor drifts, thermal noise,
etc.). It can also be directly caused by the unknown
process that generates the data. Additionnally, we
also suppose that the transformation preserves the
conditional distribution, i.e.

Ps(y|xs) = Pt(y|T(xs)).

This means that the label information is preserved by
the transformation, and the Bayes decision functions
are tied through the equation ft(T(x)) = fs(x).

Another insight can be provided regarding the
transformation T. From a probabilistic point of view,
T transforms the measure µ in its image measure, noted
T#µ, which is another probability measure over Ωt
satisfying

T#µ(x) = µ(T−1(x)), ∀x ∈ Ωt (1)
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T is said to be a transport map or push-forward from
µs to µt if T#µs = µt (as illustrated in Figure 2.a).
Under this assumption, Xt are drawn from the same
PDF as T#µs. This provides a principled way to solve
the adaptation problem:

1) Estimate µs and µt from Xs and Xt (Equation
(6))

2) Find a transport map T from µs to µt
3) Use T to transport labeled samples Xs and train

a classifier from them.
Searching for T in the space of all possible trans-

formations is intractable, and some restrictions need
to be imposed. Here, we propose that T should be
chosen so as to minimize a transportation cost C(T)
expressed as:

C(T) =

∫
Ωs

c(x,T(x))dµ(x), (2)

where the cost function c : Ωs×Ωt → R+ is a distance
function over the metric space Ω. C(T) can be inter-
preted as the energy required to move a probability
mass µ(x) from x to T(x).

The problem of finding such a transportation of
minimal cost has already been investigated in the
literature. For instance, the optimal transportation
problem as defined by Monge is the solution of the
following minimization problem:

T0 = argmin
T

∫
Ωs

c(x,T(x))dµ(x), s.t. T#µs = µt

(3)
The Kantorovitch formulation of the optimal trans-
portation [30] is a convex relaxation of the above
Monge problem. Indeed, let us define Π as the set of
all probabilistic couplings ∈ P(Ωs×Ωt) with marginals
µs and µt. The Kantorovitch problem seeks for a
general coupling γ ∈ Π between Ωs and Ωt:

γ0 = argmin
γ∈Π

∫
Ωs×Ωt

c(xs,xt)dγ(xs,xt) (4)

In this formulation, γ can be understood as a joint
probability measure with marginals µs and µt as
depicted in Figure 2.b. γ0 is also known as transporta-
tion plan [43]. It allows to define the Wasserstein
distance of order p between µs and µt. This distance
is formalized as

Wp(µs, µt)
def
=

(
inf
γ∈Π

∫
Ωs×Ωt

d(xs,xt)pdγ(xs,xt)

) 1
p

= inf
γ∈Π

{(
E

xs∼µs,xt∼µt

d(xs,xt)p
) 1

p

}
(5)

where d is a distance and the corresponding cost func-
tion c(xs,xt) = d(xs,xt)p. The Wasserstein distance
is also known as the Earth Mover Distance in the
computer vision community [41] and it defines a met-
ric over the space of integrable squared probability
measures.

In the remainder, we consider the squared `2 Eu-
clidean distance as a cost function, c(x,y) = ‖x− y‖22
for computing optimal transportation. As a conse-
quence, we evaluate distances between measures ac-
cording to the squared Wasserstein distance W 2

2 asso-
ciated with the Euclidean distance d(x,y) = ‖x−y‖2.
The main rationale for this choice is that it experimen-
tally provided the best result on average (as shown in
the supplementary material). Nevertheless, other cost
functions better suited to the nature of specific data
can be considered, depending on the application at
hand and the data representation, as discussed more
in details in Section 3.4.

3 REGULARIZED DISCRETE OPTIMAL
TRANSPORT

This section discusses the problem of optimal trans-
port for domain adaptation. In the first part, we in-
troduce the OT optimization problem on discrete em-
pirical distributions. Then, we discuss a regularized
variant of this discrete optimal transport problem.
Finally, we address the question of how the result-
ing probabilistic coupling can be used for mapping
samples from source to target domain.

3.1 Discrete optimal transport
When µs and µt are only accessible through discrete
samples, the corresponding empirical distributions
can be written as

µs =

ns∑
i=1

psi δxs
i
, µt =

nt∑
i=1

ptiδxt
i

(6)

where δxi
is the Dirac function at location xi ∈ Rd.

psi and pti are probability masses associated to the
i-th sample and belong to the probability simplex,
i.e.

∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 1. It is straightforward to

adapt the Kantorovich formulation of optimal trans-
port problem to the discrete case. We denote B the set
of probabilistic couplings between the two empirical
distributions defined as:

B =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt

}
(7)

where 1d is a d-dimensional vector of ones. The
Kantorovitch formulation of the optimal transport [30]
reads:

γ0 = argmin
γ∈B

〈γ,C〉F (8)

where 〈., .〉F is the Frobenius dot product and C ≥
0 is the cost function matrix, whose term C(i, j) =
c(xsi ,x

t
j) denotes the cost to move a probability mass

from xsi to xtj . As previously detailed, this cost was
chosen as the squared Euclidean distance between the
two locations, i.e. C(i, j) = ||xsi − xtj ||22.

Note that when ns = nt = n and ∀i, j psi =
ptj = 1/n, γ0 is simply a permutation matrix. In this
case, the optimal transport problem boils down to
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an optimal assignment problem. In the general case,
it can be shown that γ0 is a sparse matrix with at
most ns + nt − 1 non zero entries, equating the rank
of the constraint matrix expressing the two marginal
constraints.

Problem (8) is a linear program and can be solved
with combinatorial algorithms such as the simplex
methods and its network variants (successive shortest
path algorithms, Hungarian or relaxation algorithms).
Yet, the computational complexity was shown to be
O((ns + nt)nsntlog(ns + nt)) [1, p. 472, Th. 12.2] at
best, which dampens the utility of the method when
handling large datasets. However, the regularization
scheme recently proposed by Cuturi [15] presented in
the next section, allows a very fast computation of a
transportation plan.

3.2 Regularized optimal transport
Regularization is a classical approach used for pre-
venting overfitting when few samples are available for
learning. It can also be used for inducing some prop-
erties on the solution. In the following, we discuss
a regularization term recently introduced for optimal
transport problem.

Cuturi [15] proposed to regularize the expression
of the optimal transport problem by the entropy of
the probabilistic coupling. The resulting information-
theoretic regularized version of the transport γλ0 is the
solution of the minimization problem:

γλ0 = argmin
γ∈B

〈γ,C〉F + λΩs(γ), (9)

where Ωs(γ) =
∑
i,j γ(i, j) log γ(i, j) computes the

negentropy of γ. The intuition behind this form of
regularization is the following: since most elements
of γ0 should be zero with high probability, one
can look for a smoother version of the transport,
thus lowering its sparsity, by increasing its entropy.
As a result, the optimal transport γλ0 will have a
denser coupling between the distributions. Ωs(·) can
also be interpreted as a Kullback-Leibler divergence
KL(γ‖γu) between the joint probability γ and a
uniform joint probability γu(i, j) = 1

nsnt
. Indeed, by

expanding this KL divergence, we have KL(γ‖γu) =
log nsnt+

∑
i,j γ(i, j) log γ(i, j). The first term is a con-

stant w.r.t. γ, which means that we can equivalently
use KL(γ‖γu) or Ωs(γ) =

∑
i,j γ(i, j) log γ(i, j) in

Equation (9).
Hence, as the parameter λ weighting the entropy-

based regularization increases, the sparsity of γλ0
decreases and source points tend to distribute their
probability masses toward more target points. When
λ becomes very large (λ → ∞), the OT solution of
Equation (9) converges toward γλ0 (i, j)→ 1

nsnt
,∀i, j.

Another appealing outcome of the regularized OT
formulation given in Equation (9) is the derivation
of a computationally efficient algorithm based on
Sinkhorn-Knopp’s scaling matrix approach [31]. This

efficient algorithm will also be a key element in our
methodology presented in Section 4.

3.3 OT-based mapping of the samples
In the context of domain adaptation, once the proba-
bilistic coupling γ0 has been computed, source sam-
ples have to be transported in the target domain. For
this purpose, one can interpolate the two distribu-
tions µs and µt by following the geodesics of the
Wasserstein metric [49, Chapter 7], parameterized by
t ∈ [0, 1]. This defines a new distribution µ̂ such that:

µ̂ = argmin
µ

(1− t)W2(µs, µ)2 + tW2(µt, µ)2. (10)

Still following Villani’s book, one can show that for a
squared `2 cost, this distribution boils down to:

µ̂ =
∑
i,j

γ0(i, j)δ(1−t)xs
i+txt

j
. (11)

Since our goal is to transport the source samples onto
the target distribution, we are mainly interested in the
case t = 1. For this value of t, the novel distribution
µ̂ is a distribution with the same support of µt, since
Equation (11) reduces to

µ̂ =
∑
j

p̂tjδxt
j
. (12)

with p̂tj =
∑
i γ0(i, j). The weights p̂tj can be seen as

the sum of probability mass coming from all samples
{xsi} that is transferred to sample xtj . Alternatively,
γ0(i, j) also tells us how much probability mass of xsi
is transferred to xtj . We can exploit this information
to compute a transformation of the source samples.
This transformation can be conveniently expressed
with respect to the target samples as the following
barycentric mapping:

x̂si = argmin
x∈Rd

∑
j

γ0(i, j)c(x,xtj). (13)

where xsi is a given source sample and x̂si is its
corresponding image. When the cost function is the
squared `2 distance, this barycenter corresponds to
a weighted average and the sample is mapped into
the convex hull of the target samples. For all source
samples, this barycentric mapping can therefore be
expressed as:

X̂s = Tγ0
(Xs) = diag(γ01nt

)−1γ0Xt. (14)

The inverse mapping from the target to the source
domain can also be easily computed from γT0 . In-
terestingly, one can show [17, Eq. 8] that this trans-
formation is a first order approximation of the true
ns Wasserstein barycenters of the target distributions.
Also note that when marginals µs and µt are uniform,
one can easily derive the barycentric mapping as a
linear expression:

X̂s = nsγ0Xt and X̂t = ntγ
>
0 Xs (15)
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for the source and target samples.
Finally, remark that if γ0(i, j) = 1

nsnt
,∀i, j, then each

transported source point converges toward the center
of mass of the target distribution that is 1

nt

∑
j xtj . This

occurs when λ→∞ in Equation (9).

3.4 Discussing optimal transport for domain
adaptation
We discuss here the requirements and conditions of
applicability of the proposed method.
Guarantees of recovery of the correct transforma-
tion. Our goal for achieving domain adaptation is
to uncover the transformation that occurred between
source and target distributions. While the family of
transformation that an OT formulation can recover is
wide, we provide a proof that, for some simple affine
transformations of discrete distributions, our OT so-
lution is able to match source and target examples
exactly.

Theorem 3.1: Let µs and µt be two discrete distribu-
tions with n Diracs as defined in Equation (6). If the
following conditions hold

1) The source samples in µs are xsi ∈ Rd,∀i ∈
1, . . . , n such that xsi 6= xsj if i 6= j .

2) All weights in the source and target distributions
are 1

n .
3) The target samples are defined as xti = Axsi + b

i.e. an affine tranformation of the source samples.
4) b ∈ Rd and A ∈ S+ is a strictly positive definite

matrix.
5) The cost function is c(xs,xt) = ‖xs − xt‖22.

then the solution T0 of the optimal transport problem
(8) is so that T0(xsi ) = Axsi + b = xti ∀i ∈ 1, . . . , n.

In this case, we retrieve the exact affine
transformation on the discrete samples, which means
that the label information are fully preserved during
transportation. Therefore, one can train a classifier on
the mapped samples with no generalization loss. We
provide a simple demonstration in the supplementary
material.

Choosing the cost function. In this work, we have
mainly considered a `2-based cost function. Let us
now discuss the implication of using a different cost
function in our framework. A number of norm-based
distances have been investigated by mathematicians
[49, p 972]. Other types of metrics can also be con-
sidered, such as Riemannian distances over a man-
ifold [49, Part II], or learnt metrics [16]. Concave
cost functions are also of particular use in real life
problems [21]. Each different cost function will lead
to a different OT plan γ0, but the cost itself does not
impact the OT optimization problem, i.e. the solver
is independent from the cost function. Nonetheless,
since c(·, ·) defines the Wasserstein geodesic, the in-
terpolation between domains defined in Equation
(10) leads to a different trajectory (potentially non-
unique). Equation (11), which corresponds to c(·, ·), is

a squared `2 distance, so it does not hold anymore.
Nevertheless, the solution of (10) for t = 1 does
not depend on the cost c and one can still use the
proposed barycentric mapping (13). For instance if the
cost function is based on the `1 norm, the transported
samples will be estimated using a component-wise
weighted median. Unfortunately, for more complex
cost functions, the barycentric mapping might be
complex to estimate.

4 CLASS-REGULARIZATION FOR DOMAIN
ADAPTATION

In this section we explore regularization terms that
preserve label information and sample neighborhood
during transportation. Finally, we discuss the semi-
supervised case and show that label information in
the target domain can be effectively included in he
proposed model.

4.1 Regularizing the transport with class labels
Optimal transport, as it has been presented in the
previous section, does not use any class informa-
tion. However, and even if our goal is unsupervised
domain adaptation, class labels are available in the
source domain. This information is typically used only
during the decision function learning stage, which
follows the adaptation step. Our proposition is to take
advantage of the label information for estimating a
better transport. More precisely, we aim at penalizing
couplings that match source samples with different
labels to same target samples.

To this end, we propose to add a new term to the
regularized optimal transport, leading to the follow-
ing optimization problem:

min
γ∈B

〈γ,C〉F + λΩs(γ) + ηΩc(γ), (16)

where η ≥ 0 and Ωc(·) is a class-based regularization
term.

In this work, we propose and study two choices
for this regularizer Ωc(·). The first is based on group
sparsity and promotes a probabilistic coupling γ0

where a given target sample receives masses from
source samples which have same labels. The second
is based on graph Laplacian regularization and pro-
motes a locally smooth and class-regular structure in
the source transported samples.

4.1.1 Regularization with group-sparsity
With the first regularizer, our objective is to exploit la-
bel information in the optimal transport computation.
We suppose that all samples in the source domain
have labels. The main intuition underlying the use
of this group-sparse regularizer is that we would like
each target sample to receive masses only from source
samples that have the same label. As a consequence,
we expect that a given target sample will be involved
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xs

µt(T(xs))µs(x
s)

T(xs)⌦s ⌦t

(a)

⌦t

⌦s

(b) (c)

Fig. 2: Illustration of the optimal transport problem. (a) Monge problem over 2D domains. T is a push-forward
from Ωs to Ωt. (b) Kantorovich relaxation over 1D domains: γ can be seen as a joint probability distribution
with marginals µs and µt. (c) Illustration of the solution of the Kantorovich relaxation computed between two
ellipsoidal distributions in 2D. The grey line between two points indicate a non-zero coupling between them.

in the representation of transported source samples as
defined in Equation (14), but only for samples from
the source domain of the same class. This behaviour
can be induced by means of a group-sparse penalty
on the columns of γ.

This approach has been introduced in our prelimi-
nary work [14]. In that paper, we proposed a `p − `1
regularization term with p < 1 (mainly for algorithmic
reasons). When applying a majoration-minimization
technique on the `p−`1 norm, the problem can be cast
as problem (9) and can be solved using the efficient
Sinkhorn-Knopp algorithm at each iteration. How-
ever, this regularization term with p < 1 is non-convex
and thus the proposed algorithm is guaranteed to
converge only to local stationary points.

In this paper, we retain the convexity of the un-
derlying problem and use the convex group-lasso
regularizer `1− `2 instead. This regularizer is defined
as

Ωc(γ) =
∑
j

∑
cl

||γ(Icl, j)||2, (17)

where || · ||2 denotes the `2 norm and Icl contains the
indices of rows in γ related to source domain samples
of class cl. Hence, γ(Icl, j) is a vector containing
coefficients of the jth column of γ associated to class
cl. Since the jth column of γ is related to the jth target
sample, this regularizer will induce the desired sparse
representation in the target sample. Among other
benefits, the convexity of the corresponding problem
allows to use an efficient generic optimization scheme,
presented in Section 5.

Ideally, with this regularizer we expect that the
masses corresponding to each group of labels are
matching samples of the source and target domains
exclusively. Hence, for the domain adaptation prob-
lem to have a relevant solution, the distributions
of labels are expected to be preserved in both the
source and target distributions. We thus need to have
Ps(y) = Pt(y). This assumption, which is a classical
assumption in the field of learning, is nevertheless a

mild requirement since, in practice, small deviations
of proportions do not prevent the method from work-
ing (see reference [48] for experimental results on this
particular issue).

4.1.2 Laplacian regularization

This regularization term aims at preserving the data
structure – approximated by a graph – during trans-
port [20], [13]. Intuitively, we would like similar sam-
ples in the source domain to also be similar after
transportation. Hence, denote as x̂si the transported
source sample xsi , with x̂si being linearly dependent
on the transportation matrix γ through Equation (14).
Now, given a positive symmetric similarity matrix Ss

of samples in the source domain, our regularization
term is defined as

Ωc(γ) =
1

N2
s

∑
i,j

Ss(i, j)‖x̂si − x̂sj‖22, (18)

where Ss(i, j) ≥ 0 are the coefficients of matrix
Ss ∈ RNs×Ns that encodes similarity between pairs
of source sample. In order to further preserve class
structures, we can sparsify similarities for samples of
different classes. In practice, we thus impose Ss(i, j) =
0 if ysi 6= ysj .

The above equation can be simplified when the
marginal distributions are uniform. In that case, trans-
ported source samples can be computed according to
Equation (15). Hence, Ωc(γ) boils down to

Ωc(γ) = Tr(X>t γ
>LsγXt), (19)

where Ls = diag(Ss1) − Ss is the Laplacian of the
graph Ss. The regularizer is therefore quadratic w.r.t.
γ.

The regularization terms (18) or (19) are defined
based on the transported source samples. When a
similarity information is also available in the target
samples, for instance, through a similarity matrix
St, we can take advantage of this knowledge and a
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symmetric Laplacian regularization of the form

Ωc(γ) = (1− α)Tr(X>t γ
>LsγXt) + αTr(X>s γLtγ

>Xs)
(20)

can be used instead. In the above equation Lt =
diag(St1) − St is the Laplacian of the graph in the
target domain and 0 ≤ α ≤ 1 is a trade-off param-
eter that weights the importance of each part of the
regularization term. Note that, unlike the matrix Ss,
the similarity matrix St cannot be sparsified according
to the class structure, since labels are generally not
available for the target domain.

A regularization term similar to Ωc(γ) has been
proposed in [20] for histogram adaptation between
images. However, the authors focused on displace-
ments (x̂si − xsi ) instead of on preserving the class
structure of the transported samples.

4.2 Regularizing for semi-supervised domain
adaptation
In semi-supervised domain adaptation, few labelled
samples are available in the target domain [50]. Again,
such an important information can be exploited by
means of a novel regularization term to be integrated
in the original optimal transport formulation. This
regularization term is designed such that samples
in the target domain should only be matched with
samples in the source domain that have the same
labels. It can be expressed as:

Ωsemi(γ) = 〈γ,M〉 (21)

where M is a ns × nt cost matrix, with M(i, j) = 0
whenever ysi = ytj (or j is a sample with unknown
label) and +∞ otherwise. This term has the benefit
to be parameter free. It boils down to changing the
original cost function C, defined in Equation (8), by
adding an infinite cost to undesired matches. Smooth
versions of this regularization can be devised, for
instance, by using a probabilistic confidence of target
sample xtj to belong to class ytj . Though appealing,
we have not explored this latter option in this work.
It is also noticeable that the Laplacian strategy in
Equation (20) can also leverage on these class labels
in the target domain through the definition of matrix
St .

5 GENERALIZED CONDITIONAL GRADIENT
FOR SOLVING REGULARIZED OT PROBLEMS

In this section, we discuss an efficient algorithm for
solving optimization problem (16), that can be used
with any of the proposed regularizers.

Firstly, we characterize the existence of a solution
to the problem. We remark that regularizers given
in Equations (17) and (18) are continuous, thus the
objective function is continuous. Moreover, since the
constraint set B is a convex, closed and bounded

(hence compact) subset of Rd, the objective function
reaches its minimum on B. In addition, if the regular-
izer is strictly convex that minimum is unique. This
occurs for instance, for the Laplacian regularization in
Equation (18).

Now, let us discuss algorithms for computing opti-
mal transport solution of problem (16). For solving
a similar problem with a Laplacian regularization
term, Ferradans et al. [20] used a conditional gradient
(CG) algorithm [4]. This approach is appealing and
could be extended to our problem. It is an iterative
scheme that guarantees any iterate to belong to B,
meaning that any of those iterates is a transportation
plan. At each of these iterations, in order to find a
feasible search direction, a CG algorithm looks for a
minimizer of the objective function’s linear approx-
imation . Hence, at each iteration it solves a Linear
Program (LP) that is presumably easier to handle than
the original regularized optimal transport problem.
Nevertheless, and despite existence of efficient LP
solvers such as CPLEX or MOSEK, the dimensionality
of the LP problem makes this LP problem hardly
tractable, since it involves ns × nt variables.

In this work, we aim for a more scalable algorithm.
To this end, we consider an approach based on a gen-
eralization of the conditional gradient algorithm [7]
denoted as generalized conditional gradient (GCG).

The framework of the GCG algorithm addresses the
general case of constrained minimization of composite
functions defined as

min
γ∈B

f(γ) + g(γ), (22)

where f(·) is a differentiable and possibly non-convex
function; g(·) is a convex, possibly non-differentiable
function; B denotes any convex and compact subset
of Rn. As illustrated in Algorithm 1, all the steps
of the GCG algorithm are exactly the same as those
used for CG, except for the search direction part (Line
3). The difference is that GCG linearizes only part
f(·) of the composite objective function, instead of
the full objective function. This approach is justified
when the resulting nonlinear optimization problem
can be efficiently solved. The GCG algorithm has been
shown by Bredies et al. [8] to converge towards a sta-
tionary point of Problem (22). In our case, since g(γ)
is differentiable, stronger convergence results can be
provided (see supplementary material for a discussion
on convergence rate and duality gap monitoring).

More specifically, for problem (16) we can set

f(γ) = 〈γ,C〉F + ηΩc(γ) and g(γ) = λΩs(γ).

Supposing now that Ωc(γ) is differentiable, step 3 of
Algorithm 1 boils down to

γ? = argmin
γ∈B

〈
γ,C + η∇Ωc(γ

k)
〉
F

+ λΩs(γ)

Interestingly, this problem is an entropy-regularized
optimal transport problem similar to Problem (9) and
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Algorithm 1 Generalized Conditional Gradient

1: Initialize k = 0 and γ0 ∈ P
2: repeat
3: With G ∈ ∇f(γk), solve

γ? = argmin
γ∈B

〈γ,G〉F + g(γ)

4: Find the optimal step αk

αk = argmin
0≤α≤1

f(γk + α∆γ) + g(γk + α∆γ)

with ∆γ = γ∗ − γk

5: γk+1 ← γk + αk∆γ, set k ← k + 1
6: until Convergence

can be efficiently solved using the Sinkhorn-Knopp
scaling matrix approach.

In our optimal transport problem, Ωc(γ) is instan-
tiated by the Laplacian or the group-lasso regular-
ization term. The former is differentiable whereas
the group-lasso is not when there exists a class cl
and an index j for which γ(Icl, j) is a vector of 0.
However, one can note that if the iterate γk is so
that γk(Icl, j) 6= 0 ∀cl,∀j, then the same property
holds for γk+1. This is due to the exponentiation
occurring in the Sinkhorn-Knopp algorithm used for
the entropy-regularized optimal transport problem.
This means that if we initialize γ0 so that γ0(Icl, j) 6=
0, then Ωc(γ

k) is always differentiable. Hence, our
GCG algorithm can also be applied to the group-lasso
regularization, despite its non-differentiability in 0.

6 NUMERICAL EXPERIMENTS

In this section, we study the behavior of four dif-
ferent versions of optimal transport applied to DA
problem. In the rest of the section, OT-exact is the
original transport problem (8), OT-IT the Information
theoretic regularized one (9), and the two proposed
class-based regularized ones are denoted OT-GL and
OT-Laplace, corresponding respectively to the group-
lasso (Equation (17)) and Laplacian (Equation (18))
regularization terms. We also present some results
with our previous class-label based regularizer built
upon an `p − `1 norm: OT-LpL1 [14].

6.1 Two moons: simulated problem with control-
lable complexity
In the first experiment, we consider the same toy
example as in [22]. The simulated dataset consists
of two domains: for the source, the standard two
entangled moons data, where each moon is associated
to a specific class (See Figure 3(a)). The target domain
is built by applying a rotation to the two moons,
which allows to consider an adaptation problem with
an increasing difficulty as a function of the rotation
angle. This example is notably interesting because

Target rotation angle 10◦ 20◦ 30◦ 40◦ 50◦ 70◦ 90◦

SVM (no adapt.) 0 0.104 0.24 0.312 0.4 0.764 0.828
DASVM [9] 0 0 0.259 0.284 0.334 0.747 0.82
PBDA [22] 0 0.094 0.103 0.225 0.412 0.626 0.687
OT-exact 0 0.028 0.065 0.109 0.206 0.394 0.507

OT-IT 0 0.007 0.054 0.102 0.221 0.398 0.508
OT-GL 0 0 0 0.013 0.196 0.378 0.508

OT-Laplace 0 0 0.004 0.062 0.201 0.402 0.524

TABLE 1: Mean error rate over 10 realizations for the
two moons simulated example.

the corresponding problem is clearly non-linear, and
because the input dimensionality is small, 2, which
leads to poor performances when applying methods
based on subspace alignment (e.g. [23], [34]).

We follow the same experimental protocol as in [22],
thus allowing for a direct comparison with the state-
of-the-art results presented therein. The source do-
main is composed of two moons of 150 samples each.
The target domain is also sampled from these two
shapes, with the same number of examples. Then, the
generalization capability of our method is tested over
a set of 1000 samples that follow the same distribution
as the target domain. The experiments are conducted
10 times, and we consider the mean classification error
as comparison criterion. As a classifier, we used a
SVM with a Gaussian kernel, whose parameters were
set by 5-fold cross-validation. We compare the adap-
tation results with two state-of-the-art methods: the
DA-SVM approach [9] and the more recent PBDA [22],
which has proved to provide competitive results over
this dataset.

Results are reported in Table 1. Our first observation
is that all the methods based on optimal transport
behave better than the state-of-the-art methods, in
particular for low rotation angles, where results indi-
cate that the geometrical structure is better preserved
through the adaptation by optimal transport. Also, for
large angle (e.g. 90◦), the final score is also signifi-
cantly better than other state-of-the-art method, but
falls down to a 0.5 error rate, which is natural since in
this configuration a transformation of −90◦, implying
an inversion of labels, would have led to similar em-
pirical distributions. This clearly shows the capacity of
our method to handle large domain transformations.
Adding the class-label information into the regulariza-
tion also clearly helps for the mid-range angle values,
where the adaptation shows nearly optimal results up
to angles < 40◦. For the strongest deformation (> 70◦

rotation), no clear winner among the OT methods can
be found. We think that, regardless of the amount and
type of regularization chosen, the classification of test
samples becomes too much tributary of the training
samples. These ones mostly come from the denser part
of µs and as a consequence, the less dense parts of this
PDF are not satisfactorily transported. This behavior
can be seen in Figure 3d.
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(a) source domain (b) rotation=20◦ (c) rotation=40◦ (d) rotation=90◦

Fig. 3: Illustration of the classification decision boundary produced by OT-Laplace over the two moons example
for increasing rotation angles. The source domain is represented as coloured points. The target domain is
depicted as points in grey (best viewed with colors).

6.2 Visual adaptation datasets
We now evaluate our method on three challenging
real world vision adaptation tasks, which have at-
tracted a lot of interest in recent computer vision lit-
erature [39]. We start by presenting the datasets, then
the experimental protocol, and finish by providing
and discussing the results obtained.

6.2.1 Datasets
Three types of image recognition problems are con-
sidered: digits, faces and miscellaneous objects recog-
nition. This choice of datasets was already featured
in [34]. A summary of the properties of each domain
considered in the three problems is provided in Ta-
ble 2. An illustration of some examples of the different
domains for a particular class is shown in Figure 4.
Digit recognition. As source and target domains, we
use the two digits datasets USPS and MNIST, that
share 10 classes of digits (single digits 0 − 9). We
randomly sampled 1, 800 and 2, 000 images from each
original dataset. The MNIST images are resized to the
same resolution as that of USPS (16 × 16). The grey
levels of all images are then normalized to obtain a
final common feature space for both domains.
Face recognition. In the face recognition experiment,
we use the PIE ("Pose, Illumination, Expression")
dataset, which contains 32 × 32 images of 68 indi-
viduals taken under various pose, illumination and
expressions conditions. The 4 experimental domains
are constructed by selecting 4 distinct poses: PIE05
(C05, left pose), PIE07 (C07, upward pose), PIE09
(C09, downward pose) and PIE29 (C29, right pose).
This allows to define 12 different adaptation problems
with increasing difficulty (the most challenging being
the adaptation from right to left poses). Let us note
that each domain has a strong variability for each
class due to illumination and expression variations.
Object recognition. We used the Caltech-Office
dataset [42], [24], [23], [54], [39]. The dataset contains
images coming from four different domains: Ama-
zon (online merchant), the Caltech-256 image collec-

Problem Domains Dataset # Samples # Features # Classes Abbr.

Digits USPS USPS 1800 256 10 U
MNIST MNIST 2000 256 10 M

Faces

PIE05 PIE 3332 1024 68 P1
PIE07 PIE 1629 1024 68 P2
PIE09 PIE 1632 1024 68 P3
PIE29 PIE 1632 1024 68 P4

Objects

Calltech Calltech 1123 800|4096 10 C
Amazon Office 958 800|4096 10 A
Webcam Office 295 800|4096 10 W

DSLR Office 157 800|4096 10 D

TABLE 2: Summary of the domains used in the visual
adaptation experiment

tion [25], Webcam (images taken from a webcam) and
DSLR (images taken from a high resolution digital
SLR camera). The variability of the different domains
come from several factors: presence/absence of back-
ground, lightning conditions, noise, etc. We consider
two feature sets:
• SURF descriptors as described in [42], used to

transform each image into a 800 bins histogram.
These histograms are subsequently normalized
and reduced to standard scores.

• two DeCAF deep learning features sets [19]: these
features are extracted as the sparse activation of
the neurons from the fully connected 6th and
7th layers of a convolutional network trained
on imageNet and then fine tuned on the visual
recognition tasks considered here. As such, they
form vectors with 4096 dimensions.

6.2.2 Experimental setup
Following [23], the classification is conducted using
a 1-Nearest Neighbor (1NN) classifier, which has the
advantage of being parameter free. In all experiments,
1NN is trained with the adapted source data, and
evaluated over the target data to provide a classifi-
cation accuracy score. We compare our optimal trans-
port solutions to the following baseline methods that
are particularly well adapted for image classification:
• 1NN is the original classifier without adaptation

and constitutes a baseline for all experiments;
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Fig. 4: Examples from the datasets used in the visual
adaptation experiment. 5 random samples from one
class are given for all the considered domains.

• PCA, which consists in applying a projection
on the first principal components of the joint
source/target distribution (estimated from the
concatenation of source and target samples);

• GFK, Geodesic Flow Kernel [23];
• TSL, Transfer Subspace Learning [44], which op-

erates by minimizing the Bregman divergence
between the domains embedded in lower dimen-
sional spaces;

• JDA, Joint Distribution Adaptation [34], which
extends the Transfer Component Analysis algo-
rithm [38];

In unsupervised DA no target labels are available.
As a consequence, it is impossible to consider a cross-
validation step for the hyper-parameters of the differ-
ent methods. However, and in order to compare the
methods fairly, we follow the following protocol. For
each source domain, a random selection of 20 samples
per class (with the only exception of 8 for the DSLR
dataset) is adopted. Then the target domain is equiv-
alently partitioned in a validation and test sets. The
validation set is used to obtain the best accuracy in the
range of the possible hyper-parameters. The accuracy,
measured as the percent of correct classification over
all the classes, is then evaluated on the testing set,
with the best selected hyper-parameters. This strategy
normally prevents overfitting on the testing set. The
experimentation is conducted 10 times, and the mean
accuracy over all these realizations is reported.

We considered the following parameter range :
for subspace learning methods (PCA,TSL, GFK, and
JDA) we considered reduced k-dimensional spaces
with k ∈ {10, 20, . . . , 70}. A linear kernel was cho-
sen for all the methods with a kernel formula-
tion. For the all methods requiring a regularization
parameter, the best value was searched in λ =
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. The λ and η param-
eters of our different regularizers (Equation (16)), are
validated using the same search interval. In the case
of the Laplacian regularization (OT-Laplace), St is
a binary matrix which encodes a nearest neighbors
graph with a 8-connectivity. For the source domain,

Ss is filtered such that connections between elements
of different classes are pruned. Finally, we set the α
value Equation (20) to 0.5.

6.2.3 Results on unsupervised domain adaptation

Results of the experiment are reported in Table 3
where the best performing method for each domain
adaptation problem is highlighted in bold. On av-
erage, all the OT-based domain adaptation methods
perform better than the baseline methods, except in
the case of the PIE dataset, where JDA outperforms
the OT-based methods in 7 out of 12 domain pairs.
A possible explanation is that the dataset contains a
lot of classes (68), and the EM-like step of JDA, which
allows to take into account the current results of classi-
fication on the target, is clearly leading to a benefit. We
notice that TSL, which is based on a similar principle
of distribution divergence minimization, almost never
outperforms our regularized strategies, except on pair
A→C. Among the different optimal transport strate-
gies, OT-Exact leads to the lowest performances. OT-
IT, the entropy regularized version of the transport, is
substantially better than OT-Exact, but is still inferior
to the class-based regularized strategies proposed in
this paper. The best performing strategies are clearly
OT-GL and OT-Laplace with a slight advantage for
OT-GL. OT-LpL1, which is based on a similar regu-
larization strategy as OT-GL, but with a different opti-
mization scheme, has globally inferior performances,
except on some pairs of domains (e.g. C→A ) where
it achieves better scores. On both digits and objects
recognition tasks, OT-GL significantly outperforms
the baseline methods.

In the next experiment (Table 4), we use the same
experimental protocol on different features produced
by the DeCAF deep learning architecture [19]. We
report the results of the experiment conducted on the
Office-Caltech dataset, with the OT-IT and OT-GL
regularization strategies. For comparison purposes,
JDA is also considered for this adaptation task. The
results show that, even though the deep learning
features yield naturally a strong improvement over
the classical SURF features, the proposed OT meth-
ods are still capable of improving significantly the
performances of the final classification (up to more
than 20 points in some case, e.g. D→A or A→W). This
clearly shows how OT has the capacity to handle non-
stationarity in the distributions that the deep architec-
ture has difficulty handling. We also note that using
the features from the 7th layer instead of the 6th does
not bring a strong improvement in the classification
accuracy, suggesting that part of the work of the 7th
layer is already performed by the optimal transport.

6.2.4 Semi-supervised domain adaptation

In this last experiment, we assume that few labels are
available in the target domain. We thus benchmark
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TABLE 3: Overall recognition accuracies in % obtained over all domains pairs using the SURF features.
Maximum values for each pair is indicated in bold font.

Domains 1NN PCA GFK TSL JDA OT-exact OT-IT OT-Laplace OT-LpLq OT-GL

U→M 39.00 37.83 44.16 40.66 54.52 50.67 53.66 57.42 60.15 57.85
M→U 58.33 48.05 60.96 53.79 60.09 49.26 64.73 64.72 68.07 69.96
mean 48.66 42.94 52.56 47.22 57.30 49.96 59.20 61.07 64.11 63.90

P1→P2 23.79 32.61 22.83 34.29 67.15 52.27 57.73 58.92 59.28 59.41
P1→P3 23.50 38.96 23.24 33.53 56.96 51.36 57.43 57.62 58.49 58.73
P1→P4 15.69 30.82 16.73 26.85 40.44 40.53 47.21 47.54 47.29 48.36
P2→P1 24.27 35.69 24.18 33.73 63.73 56.05 60.21 62.74 62.61 61.91
P2→P3 44.45 40.87 44.03 38.35 68.42 59.15 63.24 64.29 62.71 64.36
P2→P4 25.86 29.83 25.49 26.21 49.85 46.73 51.48 53.52 50.42 52.68
P3→P1 20.95 32.01 20.79 39.79 60.88 54.24 57.50 57.87 58.96 57.91
P3→P2 40.17 38.09 40.70 39.17 65.07 59.08 63.61 65.75 64.04 64.67
P3→P4 26.16 36.65 25.91 36.88 52.44 48.25 52.33 54.02 52.81 52.83
P4→P1 18.14 29.82 20.11 40.81 46.91 43.21 45.15 45.67 46.51 45.73
P4→P2 24.37 29.47 23.34 37.50 55.12 46.76 50.71 52.50 50.90 51.31
P4→P3 27.30 39.74 26.42 46.14 53.33 48.05 52.10 52.71 51.37 52.60
mean 26.22 34.55 26.15 36.10 56.69 50.47 54.89 56.10 55.45 55.88
C→A 20.54 35.17 35.29 45.25 40.73 30.54 37.75 38.96 48.21 44.17
C→W 18.94 28.48 31.72 37.35 33.44 23.77 31.32 31.13 38.61 38.94
C→D 19.62 33.75 35.62 39.25 39.75 26.62 34.50 36.88 39.62 44.50
A→C 22.25 32.78 32.87 38.46 33.99 29.43 31.65 33.12 35.99 34.57
A→W 23.51 29.34 32.05 35.70 36.03 25.56 30.40 30.33 35.63 37.02
A→D 20.38 26.88 30.12 32.62 32.62 25.50 27.88 27.75 36.38 38.88
W→C 19.29 26.95 27.75 29.02 31.81 25.87 31.63 31.37 33.44 35.98
W→A 23.19 28.92 33.35 34.94 31.48 27.40 37.79 37.17 37.33 39.35
W→D 53.62 79.75 79.25 80.50 84.25 76.50 80.00 80.62 81.38 84.00
D→C 23.97 29.72 29.50 31.03 29.84 27.30 29.88 31.10 31.65 32.38
D→A 27.10 30.67 32.98 36.67 32.85 29.08 32.77 33.06 37.06 37.17
D→W 51.26 71.79 69.67 77.48 80.00 65.70 72.52 76.16 74.97 81.06
mean 28.47 37.98 39.21 42.97 44.34 36.69 42.30 43.20 46.42 47.70

TABLE 4: Results of adaptation by optimal transport
using DeCAF features.

Layer 6 Layer 7

Domains DeCAF JDA OT-IT OT-GL DeCAF JDA OT-IT OT-GL

C→A 79.25 88.04 88.69 92.08 85.27 89.63 91.56 92.15
C→W 48.61 79.60 75.17 84.17 65.23 79.80 82.19 83.84
C→D 62.75 84.12 83.38 87.25 75.38 85.00 85.00 85.38
A→C 64.66 81.28 81.65 85.51 72.80 82.59 84.22 87.16
A→W 51.39 80.33 78.94 83.05 63.64 83.05 81.52 84.50
A→D 60.38 86.25 85.88 85.00 75.25 85.50 86.62 85.25
W→C 58.17 81.97 74.80 81.45 69.17 79.84 81.74 83.71
W→A 61.15 90.19 80.96 90.62 72.96 90.94 88.31 91.98
W→D 97.50 98.88 95.62 96.25 98.50 98.88 98.38 91.38
D→C 52.13 81.13 77.71 84.11 65.23 81.21 82.02 84.93
D→A 60.71 91.31 87.15 92.31 75.46 91.92 92.15 92.92
D→W 85.70 97.48 93.77 96.29 92.25 97.02 96.62 94.17
mean 65.20 86.72 83.64 88.18 75.93 87.11 87.53 88.11

our semi-supervised approach on SURF features ex-
tracted from the Office-Caltech dataset. We consider
that only 3 labeled samples per class are at our
disposal in the target domain. In order to disentangle
the benefits of the labeled target samples brought by
our optimal transport strategies from those brought
by the classifier, we make a distinction between two
cases: in the first one, denoted as “Unsupervised +
labels”, we consider that the label target samples are
available only at the learning stage, after an unsu-
pervised domain adaptation with optimal transport.
In the second case, denoted as “semi-supervised”,
labels in the target domain are used to compute a new
transportation plan, through the use of the proposed

TABLE 5: Results of semi-supervised adaptation with
optimal transport using the SURF features.

s

Unsupervised + labels Semi-supervised

Domains OT-IT OT-GL OT-IT OT-GL MMDT [28]

C→A 37.0 ± 0.5 41.4 ± 0.5 46.9 ± 3.4 47.9 ± 3.1 49.4 ± 0.8
C→W 28.5 ± 0.7 37.4 ± 1.1 64.8 ± 3.0 65.0 ± 3.1 63.8 ± 1.1
C→D 35.1 ± 1.7 44.0 ± 1.9 59.3 ± 2.5 61.0 ± 2.1 56.5 ± 0.9
A→C 32.3 ± 0.1 36.7 ± 0.2 36.0 ± 1.3 37.1 ± 1.1 36.4 ± 0.8
A→W 29.5 ± 0.8 37.8 ± 1.1 63.7 ± 2.4 64.6 ± 1.9 64.6 ± 1.2
A→D 36.9 ± 1.5 46.2 ± 2.0 57.6 ± 2.5 59.1 ± 2.3 56.7 ± 1.3
W→C 35.8 ± 0.2 36.5 ± 0.2 38.4 ± 1.5 38.8 ± 1.2 32.2 ± 0.8
W→A 39.6 ± 0.3 41.9 ± 0.4 47.2 ± 2.5 47.3 ± 2.5 47.7± 0.9
W→D 77.1 ± 1.8 80.2 ± 1.6 79.0 ± 2.8 79.4 ± 2.8 67.0 ± 1.1
D→C 32.7 ± 0.3 34.7 ± 0.3 35.5 ± 2.1 36.8 ± 1.5 34.1 ± 1.5
D→A 34.7 ± 0.3 37.7 ± 0.3 45.8 ± 2.6 46.3 ± 2.5 46.9 ± 1.0
D→W 81.9 ± 0.6 84.5 ± 0.4 83.9 ± 1.4 84.0 ± 1.5 74.1 ± 0.8
mean 41.8 46.6 54.8 55.6 52.5

semi-supervised regularization term in Equation (21)).
Results are reported in Table 5. They clearly show

the benefits of the proposed semi-supervised regu-
larization term in the definition of the transportation
plan. A comparison with the state-of-the-art method
of Hoffman and colleagues [28] is also reported, and
shows the competitiveness of our approach.

7 CONCLUSION

In this paper, we described a new framework based on
optimal transport to solve the unsupervised domain
adaptation problem. We proposed two regulariza-
tion schemes to encode class-structure in the source
domain during the estimation of the transportation
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plan, thus enforcing the intuition that samples of
the same class must undergo similar transformation.
We extended this OT regularized framework to the
semi-supervised domain adaptation case, i.e. the case
where few labels are available in the target domain.
Regarding the computational aspects, we suggested
to use a modified version of the conditional gradi-
ent algorithm, the generalized conditional gradient
splitting, which enables the method to scale up to
real-world datasets. Finally, we applied the proposed
methods on both synthetic and real world datasets.
Results show that the optimal transportation domain
adaptation schemes frequently outperform the com-
peting state-of-the-art methods.

We believe that the framework presented in this pa-
per will lead to a paradigm shift for the domain adap-
tation problem. Estimating a transport is much more
general than finding a common subspace, but comes
with the problem of finding a proper regularization
term. The proposed class-based or Laplacian regular-
izers show very good performances, but we believe
that other types of regularizer should be investigated.
Indeed, whenever the transformation is induced by
a physical process, one may want the transport map
to enforce physical constraints. This can be included
with dedicated regularization terms. We also plan to
extend our optimal transport framework to the multi-
domain adaptation problem, where the problem of
matching several distributions can be cast as a multi-
marginal optimal transport problem.
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