
OPTIMAL TRANSPORT FOR DATA FUSION IN REMOTE SENSING
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ABSTRACT
One of the main objective of data fusion is the integration of
several acquisition of the same physical object, in order to
build a new consistent representation that embeds all the in-
formation from the different modalities. In this paper, we pro-
pose the use of optimal transport theory as a powerful mean of
establishing correspondences between the modalities. After
reviewing important properties and computational aspects, we
showcase its application to three remote sensing fusion prob-
lems: domain adaptation, time series averaging and change
detection in LIDAR data.

Index Terms— Optimal transport, domain adaptation,
time series analysis, change detection, LIDAR

1. INTRODUCTION

Data fusion deals with the integration of multiple data sources
into a single coherent and consistent representation that can
be used for several purposes. In the case of remotely sensed
data, these sources can be expressed through different acqui-
sitions [1, 2]: spatial, spectral and temporal data describing
the same physical object or phenomenon. When possible,
those different modalities have to be matched in a common
mathematical and numerical representation. In this work, we
advocate the use of optimal transport (OT) to perform this
matching. Here, the different modalities are expressed as dis-
tributions in their respective spaces, and OT then seeks for
an optimal coupling, i.e. a way of transporting one distri-
bution onto another. This optimality is relative to a cost of
transportation from one space to the other, which can model
specific interactions between the modalities.

OT was firstly proposed to solve mass transportation prob-
lems in the 19th century and reappeared in the middle of the
20th century in the work of Kantorovitch [3], and found re-
cently surprising new developments of several fundamental
problems [4]. It was applied in a wide panel of fields, in-
cluding among others image analysis and processing [5, 6],
computer graphics [7], or machine learning [8].
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We first begin by a short introduction to OT and the as-
sociated computational numerical methods (Section 2). We
then describe three different applications of this framework
in remote sensing data fusion problems (Section 3).

2. A BRIEF INTRODUCTION TO OPTIMAL
TRANSPORT

We aim at matching two distributions µ1 and µ2 that are re-
lated to the same object of interest (but not forcedly regis-
tered). Let X be a space that embeds both distributions. For
example, in the case of two images at different resolutions in a
resolution enhancement problem, X is the spatial coordinates
domain over which the two images were registered. Let c be a
cost function X 2 → R+. This cost can be related to a metric
d over X , such as a Euclidean distance.
Wasserstein distance. Noting Π(µ1, µ2) be the space of
probability distributions over X 2 with prescribed marginals
µ1 and µ2, the p-Wasserstein distance between µ1 and µ2 is
defined as:

Wp(µ1, µ2) =

(
inf

π∈Π(µ1,µ2)

∫
X 2

c(x1,x2)pdπ(x1,x2)

) 1
p

(1)
In the remainder, we will consider the Wasserstein distance
of order 1, simply noted W (µ1, µ2). This distance, also
known as the Earth Mover Distance in computer vision com-
munity [5], allows to compute a distance on the metric space
P(X ). Remarkably, this minimization problem admits a min-
imizer π0 [4], which is called an optimal transportation plan,
and can be intuitively understood as a probabilistic coupling
between µ1 and µ2 which minimizes the expected distance
between the coupled elements.
Discrete case. Whenever µ1 and µ2 are available as em-
pirical distributions (probability masses over Diracs located
in X ), they belong to probability simplices Σn1 and Σn2 of
dimension n1 and n2. Consider the previous examples of
two images at different resolutions. Those images are con-
sidered as empirical probability density functions, defined by
a set of Diracs located at the pixels spatial positions X1 and
X2, with a vector of probability masses m1 and m2. Here,



µ1 = m1
TX1 and µ2 = m2

TX2. This probability mass
per pixel can be defined as the intensity value of the pixel
divided by the sum of all intensities in the image, so that
|m1|1 = |m2|1 = 1. Π(µ1, µ2) is then defined as a set of
matrices of size n1 × n2 with constrained marginals :

P =
{
γ ∈ (R+)n1×n2 | γ1n2 = µ1, γ

T1n1 = µ2

}
(2)

where 1l is a l-dimensional vector of ones. The Wasserstein
metric becomes:

W (µ1, µ2) = min
γ∈P
〈γ,C〉F (3)

where 〈., .〉F is the Frobenius dot product and C ≥ 0 is a cost
matrix of size n1 × n2 which gathers all the costs for trans-
porting the Diracs of µ1 to Diracs of µ2. This problem can be
solved by linear programming, with combinatorial algorithms
such as the simplex methods and its network variants (trans-
port simplex, network simplex, etc.) [9], but is is to be noted
that the number of variables in this problem scales with the
product of the number of bins in the discrete representations
of µ1 and µ2. This makes the original problem computation-
ally costly.
Displacement interpolation. OT can be used not only to
compute distance but also to interpolate between the distribu-
tions. Once the optimal transport matrix γ0 has been found,
we can transform the source elements X1 in an interpolated
version X̂1 :

X̂1 = diag((γ01n1
)−1)γ0X2. (4)

This way, the new expression of the support of the µ1 dis-
tribution is expressed with barycentric coordinates found in
γ0.
Regularized optimal transport. In many situations, we as-
sume a smooth transportation plan between distributions. In
these cases, we can enforce some kind of regularization to
help obtaining a better transportation by including additional
prior in the optimization problem, such as Laplacian [10]), en-
tropy [11], or class-regularization [12] on the transport matrix
. When using a regularization, the optimal transport optimiza-
tion problem can be reformulated as

γ0 = arg min
γ∈P

〈γ,C〉F + λR(γ), (5)

where λ ≥ 0 is a regularization parameter and R(·) is a regu-
larization term encoding prior information on the transporta-
tion matrix. The formulation in [11] also has the advantage of
being computationally efficient since it can be solved using
a multiplicative algorithm, which reduces the computational
cost from a quadratic algorithm to a linear scaling.

Wasserstein barycenters. The space of probability measures
over X equipped with the Wasserstein metric defines a com-
plete metric space, the Wasserstein space. The geometry of

a Wasserstein space embeds implicitly knowledge about the
problem through the particular cost function c. Hence, ge-
ometrical concepts such as means or barycenters are now at
hand and can be used for several purposes. Notably, one can
now try to find a probability measure µ ∈ Σn (with n possibly
different from n1 and n2) of several distributions {µk}k=1...K

in the Wasserstein sense. It is defined as:

µ? = arg min
µ∈ΣN

K∑
k=1

wkW (µ, µk), (6)

wk being user defined weights (barycentric coordinates in the
Wasserstein space simplex, wk = 1/n ∀k defining the mean).
Here again, efficient algorithms have been proposed to tackle
this complex optimization problem [13, 14].

3. APPLICATIONS TO DATA FUSION

We showcase in this section three examples for the use of OT
in fusion problems: domain adaptation, time series analysis
and change detection in LIDAR data.

3.1. Domain adaptation

A landcover classification problem is now considered. As the
quantity of remote sensing data is growing, the requirement
of disposing of labeled information for each image acquired
is impossible to fulfill. As such, one must make the best use
of the labeled information that is available for other similar
scenes. The idea might seem tempting, but re-using labeled
information as such generally leads to catastrophic results:
from one acquisition to the other, the spectra are distorted
by either the acquisition parameters, the atmospheric condi-
tions or by the differences in scale/appearance of the objects
in different geographical regions [15]. The compensation for
such distortions, or shifts is one of the lively areas of machine
learning, domain adaptation [16].

OT is providing a natural solution to this problem, by
allowing to devise a non-linear transformation in the spectral
dimensions of the image that helps in matching both distribu-
tions [17]. This transformation is directly obtained through
the barycentric interpolation presented in Eq. (4). Moreover,
one can also use the class information in one of the domain
to promote a better transportation for instance by using an
appropriate class-based regularization of the coupling ma-
trix [12].

3.2. Remote sensing time series analysis

Because of time warping, the question of comparing and av-
eraging remote sensing time series is still open. For exam-
ple, in vegetation monitoring two time series of a similar cul-
ture can be delayed in time (due to regional climate, seeding
date, ...) even though they represent the same phenomenon.
Therefore estimating a reliable difference between time series
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Fig. 1. Cost functions used for averaging time series While
the first represents a classical Euclidean metric, the second
one is a periodic metric

is a critical problem. To this end the well-known Dynamic
Time Warping (DTW) approach has been develop and widely
used to extract best possible alignments between time series
and to compare them on the basis of such alignments. How-
ever, DTW is not a metric in the sense that it does not respect
the triangular inequality . Hence computing averages under
DTW is not trivial, though more or less heuristic approaches
exist [18]. In this application, we exploit optimal transport to
compute averages of EVI (Enhanced Vegetation Index) times
series over two years (2005-2006) issued from MODIS im-
ages on the Amazon forest (Figs. 2a and 2c, corresponding
to time series of forests with unimodal and bimodal cycles of
growth and decay, respectively).
The series are normalized so that they sum to one. Thus they
can be considered as probability measure in the time domain.
Then, the Wasserstetin barycenter is computed using Eq. 6
with the iterative Bregman projection technique [14]. Be-
cause of the specific periodic nature of the observation (col-
lection of measurements lasting 2 years), a different cost func-
tion can be used, which embeds a periodicity notion: trans-
porting masses occurring at the same moment of the year does
not cost anything as illustrated in Fig. 1.

Extracted barycenters for L2 (mean), L1 (median) and
Wasserstein distance with euclidean and periodic metric are
depicted in Figs. 2b and 2d. From these series, one observes
that L2-based averages are noisy because of existing time de-
lays between series of the same class, yielding unsatisfactory
means. Using Wassersteinbarycenters, the corresponding av-
erages are more in accordance with phenological cycles, but
still suffer of a lack of consistency at both ends of the time
series and during the second growth cycle in 2d. The periodic
Wasserstein mean enables to remove these flaws in the av-
eraging and provide very meaningful averages, showing the
potential of optimal transport to interpret remote sensing time
series.

3.3. Change detection in LiDAR data

In this application, we aim at monitoring changes affecting
the coastal cliff face to understand the ongoing erosion pro-

0 5 10 15 20 25 30 35 40 45
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
Original time series

0 5 10 15 20 25 30 35 40 45
0.016

0.018

0.020

0.022

0.024

0.026

0.028
Means under different metrics

L2 mean

L1 median

Wasserstein mean

Wasserstein mean (periodic metric)

0 5 10 15 20 25 30 35 40 45
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
Original time series

0 5 10 15 20 25 30 35 40 45
0.010

0.015

0.020

0.025

0.030

0.035

0.040
Means under different metrics

L2 mean

L1 median

Wasserstein mean

Wasserstein mean (periodic metric)

Fig. 2. Average of EVI time series on 2005-2006 years. (a)-
(c): raw time series ; (b-d): averages based onL2, Wasstertein
and periodic Wasstertein

cess . To this end, terrestrial laser scanning (LiDAR) mea-
surements are regularly performed in order to assess into de-
tail the morphological structures of cliffs. However at the mo-
ment, changes are extracted using differences of Digital El-
evation Models computed from the 3D point clouds LiDAR
point cloud [19]. This is obviously not optimal, since it re-
quires an interpolation step that could disturb areas especially
those affected by local rockfalls, where the higher resolution
of the LiDAR scan would be the most beneficial.

Here we rather propose to use an optimal transport di-
rectly on the LiDAR point cloud to highlight changes. In or-
der to do so, we simply compute a displacement interpolation
of the first cloud (acquired on a chalk cliff of upper Normandy
(France) on Oct., 7th 2010, Fig. 3a) on the second (acquired
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Fig. 3. Change detection in LiDAR data. (a)-(b) : the two
scans; (c) : magnitude of the changes detected.

on July, 6th, 2011 over the same region, Fig. 3b). Note that
this operation does not require to have the same number of
points nor any kind of landmarks. The quantity of changes is
simply given, for each of the original point, by the magnitude
of change, |X1 − X̂1|2. Results are shown in Fig. 3, where
the two 3D point clouds are represented in the top panel, and
the magnitude of changes are depicted in the bottom panel.
The lower right part of the area has strongly been affected by
rockfalls, which is consistent with on site observations and
with the study in [19]. However here, the important precision
in quantifying altered areas using optimal transport makes this
approach a very good alternative for future studies in LiDAR
change detection.

4. CONCLUSION

In this work, we presented Optimal Transport as a way of
performing data fusion for remote sensing image processing
problems. We shown the potential of Optimal Transport in
three challenging applications: domain adaptation, time se-
ries averaging and LiDAR change detection. In all applica-
tion Optimal Transport emerged as a valid alternative to cur-
rent approaches to process non-registered, complex and lo-
cally evolving data.
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[13] M. Cuturi and G. Peyré, “A Smoothed Dual Approach for Variational
Wasserstein Problems,” SIAM J. Imaging Sciences, Dec. 2015.

[14] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré, “Iter-
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