
Chapter 1

Learning constrained task
similarities in graph-regularized
multi-task learning

Rémi Flamary

Laboratoire Lagrange, UMR 7293, Observatoire de la Côte d’Azur,
Université de Nice Sophia-Antipolis, 06108 Nice, FRANCE

Alain Rakotomamonjy

LITIS EA 4108, Université de Rouen,
76800 Saint Etienne du Rouvray, France

Gilles Gasso

LITIS EA 4108, INSA de Rouen,
76801 Saint Etienne du Rouvray, France

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Similarity based multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Multi-task learning framework . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Similarity-based regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Solving the graph-regularized multi-task learning

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Non-convex proximal algorithm for learning similarities . . . . . . . . 10

1.3.1 Bilevel optimization framework . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Gradient computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Constraints on P and λt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.1 Toy problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.2 Real-world datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2.2 School Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2.3 BCI Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2.4 OCR Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



4 Sunil Template

This chapter addresses the problem of learning constrained task relatedness
in a graph-regularized multi-task learning framework. In such a context, the
weighted adjacency matrix of a graph encodes the knowledge on task simi-
larities and each entry of this matrix can be interpreted as a hyperparameter
of the learning problem. This task relation matrix is learned via a bilevel
optimization procedure where the outer level optimizes a proxy of the gen-
eralization errors over all tasks with respect to the similarity matrix and the
inner level estimates the parameters of the tasks knowing this similarity ma-
trix. Constraints on task similarities are also taken into account in this op-
timization framework and they allow the task similarity matrix to be more
interpretable for instance, by imposing a sparse similarity matrix. Since the
global problem is non-convex, we propose a non-convex proximal algorithm
that provably converges to a stationary point of the problem. Empirical ev-
idence illustrates the approach is competitive compared to existing methods
that also learn task relation and exhibits an enhanced interpretability of the
learned task similarity matrix.

1.1 Introduction

Multi-task learning (MTL) has gained a lot of attention over the past years.
Given a set of different but related tasks, the underlying idea is to jointly learn
these tasks by exploiting their relationships. Such a procedure has proved
useful (in terms of generalization ability) when only few samples are available
for the tasks [5, 1, 26, 21]. One of the most important problems in multi-
task learning is the assessment of task relatedness. Existing approaches seek
task relationship either in input space, feature space [1, 27] or output space
[11]. They consider relation between tasks through dedicated regularizations
or based on Bayesian priors.

To be more concrete, when learning jointly the tasks, regularization ap-
proaches assume that the tasks share a common low-dimensional latent sub-
space or their parameters are close to the average parameter vector [10]. The
links between tasks can also be enforced by imposing a joint sparsity pattern
[22, 1] across tasks. However, such a similarity is globally imposed for all tasks
and may hinder good generalization performance mainly when unrelated tasks
are forced to borrow similar characteristics. Hence, more elaborate approaches
such as pairwise similar tasks [10], clustering of tasks [10, 15, 16] or hierarchi-
cally structured tasks [28, 33] were proposed in order to cope with this issue.
For instance, Widmer et al. [33] supposed the knowledge of a hierarchical tree
modeling task dependency while Xing et al. [28] used agglomerative clustering
to find the tree which is further applied to learn task parameters. Contrarily,
clustering approaches due to [15], [16], [19] or [35] attempt to discover groups
of similar tasks along with the estimation of their parameters. In the same



Learning constrained task similarities in graph-regularized MTL 5

vein, Zhang et al. [34] characterized task relatedness via a covariance matrix.
Their formulation encompasses various existing methods including pairwise
similarity constraints or cluster constraints. Solving for the covariance matrix
turns out to be a problem of learning distance metric between tasks.

Most methods for learning task similarities provide good empirical perfor-
mance, but few of them aim at enhancing the interpretability of the learned
task relations. For instance, Zhang et al. [34] learn a dense task covariance
matrix which depicts relation between tasks. Since this matrix is dense, it is
thus difficult to interpret which task relations are the most relevant for the
learning problem. In this work, we look at learning interpretable task sim-
ilarities in multi-task learning problems. We focus on a popular multi-task
framework denoted as graph-based regularized framework [10]. As formally
defined in the sequel, in this framework, task relations are represented as a
graph whose nodes are the tasks and the weighted edges encode some knowl-
edge over similarities between tasks. This framework has been shown to be of
practical interests [9, 32] and benefits from very efficient algorithms for solving
the related multi-task optimization problems [32].

Our objective and proposal in this chapter is to learn the adjacency matrix
of the task relations graph, jointly with the task decision function parame-
ters, while making the graph the more interpretable as possible. Hence, we
may accept some slight loss in generalization performance if the gain in graph
interpretability is important. This interpretability of the adjacency matrix is
achieved by incorporating in the global learning problem some specific con-
straints over the graph parameters. The constraints we consider in the sequel
are usually sparsity-inducing penalties that enforce tasks to be unrelated.

Our main contribution hereafter is to propose a novel procedure for learn-
ing similarities between tasks in graph-based multi-task learning. As detailed
in the sequel, since in this framework, the relation between a pair of tasks
can be interpreted as a hyper-parameter of the global multi-task model, we
address the problem as a hyper-parameter optimization issue ([2, 6]). Typ-
ically, when few hyper-parameters have to be optimized, a cross-validation
procedure, aiming at optimizing an estimation of the generalization error is
employed in conjuction with a grid-search over the hyper-parameter values
[14, 4]. Since in our framework, the number of hyper-parameters (typically
O(T 2) parameters, for T tasks) to optimize make this approach intractable,
the method we advocate consists of a bilevel approach: at the outer level, a
generalization criterion over all tasks is employed to measure the goodness of
task relatedness parameters and this criterion is thus optimized with respect to
these parameters under some sparsity-inducing constraints. The inner level is
devoted to the optimization of task parameters for a fixed task relation graph.
Due to the non-convexity of the generalization errors with respect to task sim-
ilarity parameters, the overall problem is non-convex. Fortunately, the inner
problem we design is convex and, depending on the loss functions considered,
it may admit a closed-form solution. We solve this bilevel problem through
non-convex proximal approach with guaranteed convergence properties. The



6 Sunil Template

flexibility of the approach allows the use of a broad range of generalization
error proxy that can be adapted to the MTL problem at hand. It also al-
lows easy incorporation of constraints over the task relations such as sparsity,
link or cannot-link constraints in the matrix similarity learning process. As
a consequence, the learned task-similarity matrix is sparse and provides im-
proved interpretability of connections between tasks. The experimental results
on synthetic and real-world problems clearly support this evidence.

The rest of the chapter is organized as follows: section 1.2 describes the
graph-based multi-task learning setting we are interested in and states how
the task parameters are obtained once the task similarity matrix is fixed. The
learning of this matrix is explained in section 1.3 where we formulate the
bilevel optimization problem and the non-convex proximal algorithm used to
solve it. Finally, empirical comparisons illustrate the compelling performance
of the approach. Especially, these experiments show the ability of our algo-
rithm to unravel the underlying structure (groups or manifold) of the tasks
and emphasize on the interpretability of the results.

1.2 Similarity based multi-task learning

Before describing how task relatedness is learned, we first present the gen-
eral multi-task learning framework we are dealing with, as well as the regu-
larizer we have considered for inducing transfer between tasks.

1.2.1 Multi-task learning framework

Assume we are given T learning tasks to be learned from T different
datasets (xi,1, yi,1)

n1
i=1, · · · , (xi,T , yi,T )

nT
i=1, where any xi,· ∈ Rd and yi,· ∈ R

and nt denotes the t-th dataset size. In the sequel, we will represent the train-
ing examples {xi,t}nt

i=1 in a matrix form as Xt ∈ Rnt×d and the corresponding
labels gathered in vector yt ∈ Rnt . For a given task t, we are looking for a
linear prediction function ft(x) of the form

ft(x) = w�
t x+ bt (1.1)

with wt ∈ Rd and bt ∈ R being the linear function parameters. Basically,
ft(x) depicts the presumable dependencies between a given example x and its
associated label y.

Multi-task methods aim at learning all T decision functions in a simulta-
neous way while imposing some constraints that induce relatedness between
tasks. Hence, most multi-task learning problems can be cast into the following



Learning constrained task similarities in graph-regularized MTL 7

optimization setup:

min
{wt},{bt}

�

t,i

L(ft(xi,t), yi,t) + Ω(w1, · · · ,wT ) (1.2)

where L(ft(x), y) is a loss function measuring discrepancy between the actual
and predicted output related to an example x, Ω a regularizer inducing task
relatedness involving thus all vectors {wt}.

1.2.2 Similarity-based regularization

One typical issue in multi-task learning is the choice of a regularization
term Ω that efficiently helps in improving the generalization performances
of the prediction functions. Indeed, most of the existing MTL regularization
terms are based on a strong prior knowledge about the task relatedness. We
can for instance mention regularizers that enforce similarity of task parameters
{wt} to the average parameter vector 1

T

�
t wt [9, 10], that make classifiers

belong to a low dimensional linear subspace [1]. Other regularizers induce
the classifiers to be agglomerated into clusters [15], or compel tasks to share
a common subset of discriminative kernels [23] or even impose tasks to be
similar according to a pre-defined task networks [17].

Because it encompasses several forms of the above-mentioned regularizers,
we focus on the graph-based regularization term proposed by Evgeniou et al.
[10] that induces pairwise similarity between tasks. This regularizer is defined
as

Ω({wt}Tt=1, {λt},P)=
�

t

λt�wt�22+
�

t,s

ρt,s�wt −ws�22 (1.3)

where λt ∈ R+ \ {0} and P ∈ (R+)T×T a matrix of general term ρt,s (i.e.
P = [ρt,s]

T
t,s=1), are the regularization hyper-parameters. The first term of

this regularizer corresponds to the classical �2-norm regularization (ridge)
while the second one promotes a pairwise task similarity imposed by the ρt,s
parameters. From the graph point of view, the matrix P is the weighted graph
adjacency matrix and it reflects the relationship between tasks as obviously,
a large ρt,s value enforces tasks s and t to be similar while if ρt,s = 0 then
these tasks will likely be unrelated (in the �2-norm sense). We have imposed
P(t, t) = 0 ∀t as these diagonal terms of the matrix have no impact on the cost
function. Furthermore, in order to reduce the number of hyper-parameters in
the model and because it intuitively makes sense, we also have considered
P to be a symmetric matrix. Graph-regularized multi-task learning problems
are denoted as such because the regularizer given in Equation 1.3 can be also
interpreted as the following. Indeed, by defining matrix W = [w1 · · ·wT ], one
can notice that Equation (1.3) equivalently writes

Ω(W, {λt},P) = trace
�
WΓW�� (1.4)

where Γ = Λ+L and Λ is a diagonal matrix with entries λt and L the Laplacian



8 Sunil Template

of the graph with vertices the tasks. Assuming the edges are parameters ρt,s,
the Laplacian matrix writes L = D + P where D is a diagonal matrix with
elements D(t, t) =

�T
s=1 ρt,s.

Our main contribution is to propose a framework for learning this matrix
P of task relatedness and to make this matrix as interpretable as possible
by imposing some constraints on its entries. Because the matrix P can also
be considered as a matrix of hyper-parameters, we introduce here a problem
where these hyper-parameters are learned with respect to a proxy of the gen-
eralization error. This contribution is of importance for obtaining prediction
functions with good generalization capabilities as well as a task similarity ma-
trix that is interpretable. Indeed, using our novel formulation of the problem,
it becomes easy to impose single or group sparsity-inducing constraints over
entries of P.

Before providing the details of how these task relations are learned, we
show in the next paragraph how problem (1.2) can be solved for fixed λt and
matrix P.

1.2.3 Solving the graph-regularized multi-task learning
problem

We focus now on solving problem (1.2) with the regularization term defined
as in Equation (1.3). For the sake of clarity, we restrict ourselves to the squared
loss function, denoted as L(f(x), y) = 1

2 (f(x) − y)2, although our algorithm
can be applied to other loss functions such as the Hinge loss. We discuss this
point in the sequel.

Using a quadratic loss function and matrix notation, and based on the
regularization given in Equation (1.3), problem (1.2) reads

min
{wt},{bt}

J({wt}, {bt},P, {λt}) (1.5)

where the objective function is

J(·) = 1

2

�

t

�yt −Xtwt − bt1It�22 +
�

t

λt�wt�22 +
�

t,s

ρt,s�wt −ws�22 (1.6)

with 1It ∈ Rnt being a vector of ones. Note that for λt > 0, ∀t and ρt,s ≥
0, ∀t, s, this problem is strictly convex and admits a unique solution. For fixed
parameters {λt}Tt=1 and P, a closed-form solution of this problem can be
obtained by solving the linear system related to the normal equations. The
gradient of J(·) w.r.t. the prediction function parameters of task k is given
by:

∇wk
J = Qkwk + bkX

�
k 1Ik − 4

�

t

ρt,kwt − ck (1.7)

where I is the identity matrix, Qk = X�
k Xk + (2λk + 4pk) I ∈ Rd×d,



Learning constrained task similarities in graph-regularized MTL 9

ck = X�
k yk ∈ Rd and finally pk =

�
t ρt,k. Similarly, the gradient of J(·)

w.r.t. the bias term bk takes the form

∇bkJ = 1I�k Xkwk + nkbk − 1I�k yk (1.8)

From the gradients (1.7) and (1.8) and the resulting optimality conditions,
solution of problem (1.5) is obtained by solving the system :

Aβ = c (1.9)

where β =
�
w̃�

1 · · · w̃�
T

�� ∈ R(d+1)·T is the vector containing all

the prediction function parameters with w̃k =
�
w�

k bk
�� ∈ Rd+1, c =

�
c̃�1 · · · c̃�T

�� ∈ R(d+1)·T with c̃k =
�
c�k 1I�k yk

��
and A ∈ R(d+1)·T×(d+1)·T is

a matrix of the form:

A =




Q̃1 −4ρ1,2Ĩ . . . −4ρ1,T Ĩ

−4ρ2,1Ĩ Q̃2 . . . −4ρ2,T Ĩ
...

...
. . .

...

−4ρT,1Ĩ −4ρT,2Ĩ . . . Q̃T


 (1.10)

involving the matrices

Q̃k =

�
Qk X�

k 1I

1I�Xk nk

�
, and Ĩ =

�
I 0
0 0

�

Notice that for λt > 0∀t, the matrix A is full-rank regardless of the matrices
{Xt} and thus the linear system (1.9) has a unique solution which provides the
optimal parameters of all prediction functions {ft}Tt=1. Note that depending
on the number of tasks and the dimensionality of the training examples this
matrix A can be pretty large. In such a case, it can be beneficial to take ad-
vantage of the sparse structure of A for the linear system (1.9) resolution. For
instance, a Gauss-Seidel procedure, which consists in optimizing alternatingly
over the parameters of a given task, can be considered.

For optimizing the task similarity matrix P, the linear system Aβ = c
will be of paramount importance since it defines an implicit function that
relates the optimal task parameters {wt, bt}Tt=1 to the entries of P. Indeed,
the bilevel approach we apply to determine P (see equations 1.12 and 1.13)
in the next section requires the gradient of the estimated generalization error
measure in function of P. Owing to this equation we will be able to compute
this gradient via the explicit expression of the gradient of β with respect to P.
Consequently, while we have stated that other loss functions can be considered
in our approach, the solution of the graph-regularizer multi-task learning has
to satisfy a linear system of the form Aβ = c. For instance, the Hinge loss
function satisfies this property if the learned problem is solved in the dual
[18, 31, 9].



10 Sunil Template

1.3 Non-convex proximal algorithm for learning similar-
ities

The multi-task approach with fixed hyperparameters described in the
above section is interesting in itself. However, it may be limited by the large
number of regularization parameters to be chosen, namely all the {λt}Tt=1 and
the matrix of task similarities P. When there exists a strong prior knowledge
concerning task similarities, the P matrix might be pre-defined beforehand.
When no prior information is available, P can be learned from training data
as done by Zhang et al. [34]. In addition, when one’s objective is also to gain
some insights over the structure of the tasks and how they are related, then
constraints on task similarities have to be imposed. In what follows, we de-
scribe our algorithm for learning the matrix P as well as the regularization
parameters {λt} in the context of graph-regularized multi-task learning.

1.3.1 Bilevel optimization framework

We learn the matrix task similarity P as well as the regularization param-
eters {λt}Tt=1 by considering them as hyper-parameters and by minimizing an
estimate of a generalization error denoted as E(·). This estimate E is naturally
a function of all decision function parameters β. For addressing this problem,
we consider a bilevel optimization problem similar to the one of Bennett et
al. [3]: the outer level of the problem consists in minimizing E with respect
to P and all {λt}Tt=1 and the inner level aims at learning all decision function
parameters β.

While several choices of E can be considered, for the sake of clarity, we
have set E(·) to be a validation error of the form :

E(β�) =

T�

t=1

�

i

Lv(ỹi,t, x̃
�
i,tw

�
t + b�t ) (1.11)

where β� is a vector including the optimal decision function parameters w�
t

and b�t for all tasks t = 1, . . . , T . The sets {x̃i,t, ỹi,t}Tt=1 refer to some valida-
tion examples and Lv(·, ·) is a twice differentiable loss function that measures
the discrepancy between the real and predicted output associated to an in-
put example. Two kinds of loss have been considered in this work, one more
adapted to regression tasks Lv(y, ŷ) = (y − ŷ)2 and another one, more suited
to classification tasks which is a non-convex sigmoid function that smoothly
approximates the 0 − 1 loss function Lv(y, ŷ) = 1

1+eκyŷ with κ > 0. Note
that, at the expense of introducing some cumbersome notations, it is straight-
forward to modify equation (1.11), so that generalization error estimate is a
leave-one-out error or a k-fold cross-validation error.

Now that E(·) has been formally defined, we are in position to state the



Learning constrained task similarities in graph-regularized MTL 11

bilevel optimization we are interested in. Indeed, since the vector β depends on
the matrix P and the hyper-parameters λt, the bilevel optimization problem
can be expressed as:

min
θ

E(β∗(θ)) + Ωθ(θ) (1.12)

with β∗(θ) = argmin
β

J(θ,β) (1.13)

with θ =
�
λ1, . . . ,λT , {ρi,j}Ti=1,j>i

��
, a vector of size D = T + T (T−1)

2 (con-

sidering symmetry of P and P(t, t) = 0, ∀t), J(·) the objective function defined
in Equation (1.6) and Ωθ being a regularizer over the parameters θ. Typically,
Ωθ is related to the projection onto some convex and closed subset Θ of RD

that defines some constraints over the vector θ. The bilevel problem (1.12) has
a particular structure in that the inner problem (1.13), which is actually prob-
lem (1.5), is strictly convex for λt > 0, condition that is guaranteed by some
specific choice of Θ. This strict convexity is of primary importance since it al-
lows us to compute the unique β∗ for a given θ. In general cases, this problem
(1.12) is non-convex, but its structure suggests that a non-convex proximal
splitting can be of interest. Indeed, since E(·) is supposed to be twice differen-
tiable and Ωθ a non-smooth function, a non-convex forward-backward splitting
algorithm, such as the one proposed by [29], can be successfully lifted to our
purpose especially if the proximal operator of Ωθ can be simply computed.
For a proper convex function, this proximal operator is defined as [8]:

PΩθ
(θ̂) = argmin

θ

1

2
�θ − θ̂�22 + Ωθ(θ)

Hence, if Ωθ is defined as the indicator over a convex set Θ, the proximal
operator boils down to be a projection onto the set Θ.

According to Sra [29], the non-convex proximal algorithm we use for solv-
ing (1.12) is based on the following simple iterative scheme:

θk+1 = PΩθ

�
θk − ηk∇θE(β∗(θk))

�
(1.14)

where PΩθ
is the proximal operator of Ωθ, ηk a step size which should satisfy

ηk ≤ 1
L , L being the Lipschitz constant of ∇θE and β∗(θk) denotes the vector

of all optimal decision function parameters given the fixed matrix P and {λt}
as defined by θk.

Convergence of this iterative scheme to a stationary point of problem (1.12)
can be formally stated according to the following proposition:

Proposition 1 For compact sets Θ that guarantee λt > 0, ∀t and for any
loss functions Lv that are continuous and twice differentiable on Θ, E(β(θ)) is
continuous and gradient Lipschitz on Θ. Hence, the sequence of {θ(k)} obtained
using iteration given by Equation (1.14) converges towards a stationary point
of problem (1.12).



12 Sunil Template

Proof 1 (Sketch) The proof proceeds by showing that E(·) is itself continuous
and gradient Lipschitz and then by directly applying Theorem 2 in Sra [29]. For

showing smoothness of E(·) with respect to θ, we compute ∂2E
∂θk∂θs

and show that
each of these components of the Hessian is continuous with respect to θ. Once
continuity has been shown, we use arguments on compactness of Θ to prove
that absolute value of all these components are bounded. This implies that the
Frobenius norm of the Hessian is bounded and so is the largest eigenvalue of
the Hessian. Hence, we can state that E(·) is indeed gradient Lipschitz and
this concludes the proof. Details about continuity and differentiability of E(·)
as well as Hessian entries computation are given in the appendix.

1.3.2 Gradient computation

Like all gradient proximal splitting algorithms, our approach needs the
gradient of the objective function E(·). Next paragraphs explain how it can
be efficiently computed.

At first, we apply the chain rule of differentiation [7] in order to obtain the
gradient of E(·) with respect to θ. This leads to the general expression of the
partial derivatives of E(·) :

∂E(β(θ))

∂θk
=

(d+1)×T�

s=1

∂E(β(θ))

∂βs(θ)

∂βs(θ)

∂θk
= ∇βE(β)�β̇k (1.15)

with β̇k a vector containing the partial derivatives {∂βs

∂θk
}. These latter partial

derivatives can be obtained through the implicit function defined by Equa-
tion(1.9) relating the optimal values of β to the parameters θ. Differentiating
(1.9) with respect to θk leads to

Aβ̇k + Ȧkβ = ċk

with Ȧk and ċk being respectively the matrix and vector of component-wise
derivative of A and c with respect to θk (detailed expression of the matrix
Ȧk is given in the appendix). By rearranging the equation and taking into
account the fact that ċk = 0, we have

β̇k = −A−1(Ȧkβ) (1.16)

Note that for small-size problems, computing this gradient can be relatively
cheap since the inverse matrix A−1 may be obtained as a by-product of the
resolution of problem (1.9). However, if A−1 has not been pre-computed,

obtaining the complete gradient of E(·) requires to solve D = T 2+T
2 linear

systems of size (d + 1) · T and this can rapidly become intractable. In order
to render the problem tractable, a simple trick proposed in Keerthi et al. [18]
can also be used here. Indeed, by plugging back Equation (1.16) in (1.15),



Learning constrained task similarities in graph-regularized MTL 13

∂E
∂θk

can be reformulated as:

∂E(β(θ))
∂θk

= ∇βE(β)�A−1(−Ȧkβ)

= d�(−Ȧkβ)
(1.17)

with d being the solution of the linear system:

A�d = ∇βE(β) (1.18)

that does not depend on the variable θk used for differentiation. Hence, ac-

cording to this formulation of the partial derivative ∂E(β(θ))
∂θk

, only a single

linear system has to be solved for computing the full gradient of E(·) with
respect to θ.

1.3.3 Constraints on P and λt

Let us now discuss the choice of the regularizer Ωθ. Typically, Ωθ is defined
as the indicator function over a set Θ, formally

Ωθ(θ) = IΘ(θ) =

�
0 if θ ∈ Θ
∞ otherwise

where the set Θ defines some constraints we want to impose on the matrix
similarity P and the hyper-parameters {λt}Tt=1.

This set Θ can be defined as the intersection of several constraints and it
typically translates some prior knowledge we have over the task relatedness.
If no knowledge on task similarities are given, the simplest set one may choose
is

Θ =

�
ρt,s : 0 ≤ ρt,s ≤ M, ∀t, s
λt : mλ ≤ λt ≤ M, ∀t (1.19)

with 0 < mλ and M being some lower and upper bounds. The small quantity
mλ ensures that a minimal smoothness constraint is enforced on all task pa-
rameters {wt}Tt=1. The set defined by (1.19) imposes the λt to be strictly pos-
itive as required for convergence of the algorithm and it lets the algorithm fix
all task similarity parameters. While rather simple, this choice already proves
to provide good multi-task performance as well as excellent interpretability
of the task similarity since it induces sparsity of the matrix P because neg-
ative correlations of pairwise tasks are ignored by our regularizer defined in
Equation (1.3). Ignoring these negative correlations can surely induce a lack
of information transfer between tasks and thus may induce slight loss of gen-
eralization performance. However, this is inherently due to the graph-based
regularization framework and cannot be alleviated by our learning algorithm.

If some tasks are known to be respectively unrelated, strongly related and
with unknown relatedness, the following set Θ can be considered instead

Θ =





ρt,s : ρt,s = 0, for non-similar tasks
ρt,s : mρ ≤ ρt,s ≤ M, for must-be-similar tasks
ρt,s : 0 ≤ ρt,s ≤ M, for all other pairwise tasks
λt : mλ ≤ λ ≤ M, ∀t

(1.20)



14 Sunil Template

Note that in this set, we have lower-bounded some task similarities withmρ�0
for tasks that are known to be related since this will indeed force the param-
eters of these related tasks to be close.

In order to enhance interpretability, sparsity of matrix P can be further in-
creased by considering in the regularization term an �1 regularizer in addition
to the projection on the set Θ. In such a case, we may have

ΩΘ−�1(θ) = λθ

T (T−1)
2�

k=1

|θk|+ IΘ(θ) (1.21)

where IΘ(θ) stands for the indicator function of the set Θ. From simple alge-
bras, one can show that for the above-given convex sets Θ, the proximal oper-
ator of ΩΘ−�1 consists in a component-wise application of a soft-thresholding
operator S(θ) = sign(θ)(|θ|− λθ)+ followed by a projection on the set Θ with
the function (z)+ = max(0, z).

According to the iterative scheme, it is easy to consider other kinds of
constraints on the matrix task similarities as long as their proximal operators
are simple to obtain. For instance, we could have dropped the positivity con-
straints on ρt,s and instead impose positive definiteness constraint on the task
covariance matrix Γ defined in Equation 1.4. In this context, the proximal
operator on the set of positive definite matrices would have been in play. We
could have also combined sparsity constraints on components of P in addition
to the positive definiteness of Γ, resulting in a more involved but computable
proximal operator. However, these constraints would considerably increase the
computational burden of the overall optimization scheme as the related prox-
imals involve spectral decomposition of Γ and we have not considered them
in this work.

1.3.4 Computational complexity

The global algorithm for learning task similarities and regularization pa-
rameters is presented in Algorithm 1. It is difficult to evaluate the number
of iterations needed before convergence. We can note however that for each
iteration of the algorithm, the main computational bulk resides in solving the
MTL problem for fixed task-similarity matrix P. In our case, this consists in
solving (1.9) and the linear system needed for obtaining d. A plain implemen-
tation of these two linear systems would lead to a global complexity of the
order of O

�
(d+ 1)3T 3

�
. Nonetheless, we believe that the specific structure of

A can be exploited for achieving better complexity or specific efficient algo-
rithms for graph-based regularized multi-task learning can be developed. Such
an algorithm already exists for Hinge loss function and it can be adapted to
the square loss. From another perspective block iterative methods as Gauss-
Seidel methods can be implemented for solving the linear system (1.9). But
this implementation study is left to future works.



Learning constrained task similarities in graph-regularized MTL 15

Algorithm 1 Non-convex Proximal Splitting for Learning Task Similarities

1: k ← 0
2: initialize θ0 ∈ Θ
3: choose step size η ≤ 1

L (or do backtracking)
4: repeat
5: % steps for computing ∇θE
6: compute β(θk) by solving (1.9)
7: compute ∇βE
8: d ← solution of A�d = ∇βE
9: for all k do

10: compute Ȧk

11: ∂E
∂θk

← −d�Ȧkβ
12: end for
13: % proximal step
14: θk+1 ← PΘ(θ

k − η∇θE)
15: until convergence criterion is met

1.4 Numerical experiments

The approach we propose for learning the task similarity matrix P as
well as the model hyper-parameters λt has been tested on several numerical
problems including toy examples and three real-world problems.

Besides reporting regression and classification performance, we also pro-
vide results on the interpretability of the task relations learned by our algo-
rithm. Indeed, the similarity matrix P can be understood as an adjacency
matrix of the task relation graph. Hence, it can be nicely plotted and its
sparsity pattern analyzed.

Note that for all experiments we have considered the loss function of the
inner level is the quadratic loss function, thus J(·) is exactly the one given in
Equation (1.6). While one may argue that such a loss function is inadequate for
classification problems, Rifkin et al [25] and Suykens and co-authors[30, 13, 12]
however stated that it is still competitive in many of these problems.

1.4.1 Toy problems

The toy problems we consider here aim at only proving that our algorithm
can learn the intrinsic structure of the tasks and how they are related. We
show that even for the simple constraints Θ (1.19) we have imposed on θ, our
approach is able to learn different task-relation structures such as clusters of
tasks or tasks living in a non-linear manifold. The problem is built as follows:
given a vector w̄� = [1, 2], a rotation of angle γt is applied to w̄ so as to
obtain the actual linear model parameters w̄t for task t. Examples {xi,t} are



16 Sunil Template

−0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

wt(1)

w
t(2

)

Vectors wt and the adjacency matrix P. Sparsity rate of P :0.23

 

 

P matrix
wt for γ=0

wt for γ = π/2

−0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

wt(1)

w
t(2

)

Vectors wt and the adjacency matrix P. Sparsity rate of P :0.10

 

 

P matrix
wt for γ=0

wt for γ = π/2

−0.4 −0.2 0 0.2 0.4 0.6
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

wt(1)

w
t(2

)

Vectors wt and the adjacency matrix P. Sparsity rate of P :1.00

 

 

P matrix
wt for γ=0

wt for γ = π/2

FIGURE 1.1: Learned weight vectors {wt} and adjacency graph P for the
clustered tasks toy problem. The graphs plot these 2D vectors learned for each
tasks and the adjacency graph inferred by our approach is materialized as lines
between the vectors. The task parameters are theoretically split in two clusters
with either γt = 0 or γt = π/2. Results obtained by our algorithm using (left)
ΩΘ (middle) ΩΘ−�1 and (right) Metric-MTL (method due to Zhang et al.
[34]). For the latter method, the links depict non-zero entries in the inverse
covariance task matrix. Sparsity rate refers to the proportion of non-zeros
entries of the learned similarity matrix.

drawn from a 2-dimensional zero-mean and unit variance normal distribution
and the corresponding yi,t are obtained according to the equation

yi,t = x�
i,tw̄t + �i,t

where �i,t ∼ N (0, 0.5) is some additive noise added to the output. .
Two specific synthetic problems illustrate our points. In the first one, tasks

are structured in two clusters by randomly applying a rotation of γt = 0 or
γt = π/2. Hence, our algorithm should be able to recover this clustered struc-
ture. For the other example, we apply a rotation whose angle γt is uniformly
drawn from [0,π]. Hence, tasks are supposed to be similar only to few neigh-
bours and the adjacency matrix should reflect these local similarities of tasks.
For each of these problems, 40 tasks were built and 20 examples for the learn-
ing set and 20 examples for the validation set are randomly drawn. We have
reported example of the qualitative results obtained using ΩΘ as the indicator
of the set given in Equation (1.19) as well as ΩΘ−�1 with mλ = 0.1, M = 1000
and λθ = 0.05. We also report the obtained results while applying the ap-
proach of Zhang et al. [34], named hereafter Metric-MTL and based on the
estimation of a dense task covariance matrix.

Figure 1.1 provides an example of results that can be obtained by our
approach as well as the competitor’s one on the clustered tasks toy problem.
We note that our algorithm using ΩΘ is able to nicely infer the tasks relation



Learning constrained task similarities in graph-regularized MTL 17

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

wt(1)

w
t(2

)

Vectors wt and the adjacency matrix P. Sparsity rate of P :0.14

 

 

P matrix
wt

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

wt(1)

w
t(2

)

Vectors wt and the adjacency matrix P. Sparsity rate of P :0.08

 

 

P matrix
wt

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

wt(1)

w
t(2

)

Vectors wt and the adjacency matrix P. Sparsity rate of P :1.00

 

 

P matrix
wt

FIGURE 1.2: Learned weight vectors {wt} and adjacency graph P for the
manifold-based tasks toy problem. The graphs plot these 2D vectors learned for
each tasks and the adjacency graph inferred by our approach is materialized as
lines between the vectors. The task parameters theoretically lie on a manifold.
Results obtained by our algorithm using (left) ΩΘ (middle) ΩΘ−�1 and (right)
Metric-MTL. For the latter method, the links depict non-zero entries in the
inverse covariance task matrix. The sparsity rate is the proportion of non-zeros
entries of the similarity matrix.

since only 23% of the adjacency matrixP entries are non-zero and among those
coefficients, 98% corresponds to links between tasks from the same cluster.
When a sparsity-inducing regularizer is further added to the constraints, the
adjacency matrix is more sparse and links between tasks from different clusters
disappear.

For the manifold-based tasks problem, results are depicted in Figure 1.2.
Again, we can clearly see that our approach using both types of constraints is
able to learn the underlying task structure. Indeed, we can note that, when us-
ing only ΩΘ, ratio of non-zero coefficients in the adjacency matrix is about 14%
which shows that pairwise relationships were found. In addition, as desired,
links between tasks mainly exist between neighbour tasks, providing thus evi-
dence that the manifold structure of the task has been recovered. Using ΩΘ−�1

as a regularizer gives a similar result although with a more aggressive sparsity
pattern.

These two examples illustrate that our approach is able to learn complex
relationship between tasks such as non-linear manifold and that the proposed
constraints induce sparsity in the similarity matrix and thus enhance inter-
pretability on the task relations. In comparison, looking at the rightmost plots
of Figures 1.1 and 1.2, we can see that Metric-MTL is also able to recover
the complex geometrical relationship between tasks but these relationships
are completely hidden by the dense structure of the learned similarity matrix.
Note that for this problem involving 40 tasks and a total number of 1600 train-



18 Sunil Template

ing/validation examples, the optimization is of the order of 10 seconds on a
recent Intel processor with non-optimized Matlab source code. Our approach
can then estimate an optimal P matrix in a reasonable amount of time. This
could not have been performed using a classical cross-validation procedure on
the corresponding 580 ρt,s parameters.

1.4.2 Real-world datasets

The approach we proposed has also been experimented on several real-
world datasets. The results we have achieved are presented hereafter detailing
the experimental set-up.

1.4.2.1 Experimental set-up

Several multi-task learning algorithms have been compared in terms of per-
formance as well as in term of interpretability of the learned task relationships
if the latter is applicable.

The baseline approach, denoted as “Ridge Indep.” is an ensemble of ridge
regression problems trained independently on each task. MTL approaches
that learn task relations have also been considered. This includes the Metric-
MTL of Zhang et al. [34] and clustered multi-task learning (Cluster-MTL in
the remainder) an approach proposed by Jacob et al. [15] where task similar-
ities are also learned through the inference of the underlying metric between
tasks.

For a fair comparison between our approach, named “CoGraph-MTL” (for
Constrained Graph-regularized MTL) and the other methods, we selected
competitor hyper-parameters by maximizing their performance on the val-
idation set. Note that our bilevel approach also uses the validation set for
selecting hyper-parameters but they are optimized through our non-convex
proximal method in the outer level.

Depending on the datasets, a squared function E�2(·, ·) or a sigmoid func-
tion Esig(·, ·) with κ = 1 is used as the outer loss function Lv(·, ·). In addition,
for all problems, unless specified, we have used ΩΘ as defined in Equation
(1.19) with mλ = 1 and M = 1000 as well as ΩΘ−�1 (see Equation 1.21) with
λθ = 0.05 for constraining our graph-regularized MTL method to be sparser.

For each dataset, 10 random splits have been generated and averaged per-
formance measure, Mean Square Error or Area Under the ROC curve (AUC),
on the test set was reported. We also performed a signed rank Wilcoxon test
to evaluated the statistical difference in performance between the two variants
of our method and the best performing competitor.

1.4.2.2 School Dataset

We have also tested our approach on the well known school dataset that is
available online and consists in predicting the examination score of students
from different schools in London. This problem can be addressed as a multi-



Learning constrained task similarities in graph-regularized MTL 19

tasks

ta
s
k
s

Cluster−MTL

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 2

2.1

2.2

2.3

2.4

2.5

tasks

ta
s
k
s

Metric−MTL

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 −1

0

1

2

3

4

5

x 10
5

tasks

ta
s
k
s

CoGraph−MTL

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

1

2

3

4

5

6

7

8

9

10

tasks

ta
s
k
s

CoGraph−MTL with l_1 penalty

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

1

2

3

4

5

6

7

8

9

10

FIGURE 1.3: Example of task similarity matrices on the School dataset.
(top-left) Clustered MTL. (top-right) Metric-MTL inverse covariance task ma-
trix. (bottom-left) our CoGraph MTL with ΩΘ (bottom-right) our CoGraph
MTL with ΩΘ−�1 .

task problem since differences between schools have to be taken into account
for instance by learning a prediction function per school. We refer the reader
to Argyriou et al. [1] for a more complete description of the data and focus
instead on the feature extraction we used. In their work, they have shown
that the tasks might share a common linear subspace. Hence, we took this
knowledge into account and performed a PCA on the whole dataset and kept
the 10 principal components out of 27 features. We learned the prediction
function of the 50 tasks having the largest number of examples. For each task,
we have an average number of ≈ 170 samples and we randomly selected 50 of
them for the training set, 50 for the validation set and the remaining ones for
the test set.

Mean Square Error (MSE) obtained for all the described methods are re-
ported in Table 1.1, as well as the sparsity of resulting task similarity matrices.
We can note that the two variants of our approach achieve the lowest predic-
tion error and they are statistically better than the competitor according to
a Wilcoxon sign-rank test.

Learned similarity matrices are depicted in Figure 1.3. We can remark that



20 Sunil Template

TABLE 1.1: Mean square error on the School dataset. p-value of a Wilcoxon
signrank test with respect to the performance of the best competitor as well
as the sparsity of the resulting task relation matrix are also reported.

Method MSE p-value Sparsity (%)
Ridge Indep 118.27±2.97 - -
Cluster MTL 110.78±2.62 - 100.0
Metric MTL 108.27±2.51 - 100.0
CoGraphMTL 107.31±2.24 0.002 56.6
CoGraphMTL ΩΘ−l1 107.32±2.24 0.002 55.8

the matrices retrieved by the Cluster-MTL and Metric-MTL are rather dense
and present a very similar structure: large diagonal terms and nearly-constant
off diagonal components. According to these matrices, we may conclude that
examination scores of one given school are related to those of all other schools.
The matrices learned by our method have also a similar structure but their
entries are more sparse. Hence, we can understand that a given school is
related only to few other ones. A deeper understanding of these similarities
may then be carried out if some more information, like geographical or social
one, was available about all the schools.

1.4.2.3 BCI Dataset

In this BCI problem, our objective is to recognize the presence of an Event-
Related Potential (ERP) in a recorded signal during the use of a virtual key-
board. The dataset has been recorded by the Neuroimaging Laboratory of
Universidad Autnoma Metropolitana (UAM, Mexico) [20] on 30 subjects per-
forming P300 spelling tasks on a 6×6 virtual keyboard. We consider each
subject as a task and learn all classifiers simultaneously. For each subject, we
approximately have 4000 single trial samples, that have been pre-processed
according to the following steps: first a low pass filtering is applied to the 10
channels signal followed by a decimation, we kept a 1s time window (6 tem-
poral samples) following the stimulus as features leading to trials containing
60 features [24]. Finally for each data split, we selected randomly for each
task 100 trials for the training set, 100 trials for the validation set and the
remaining samples for the test set. Note that for P300 classification, since the
datasets are highly imbalanced, we decided to use the Area Under the ROC
Curve as a measure of performance. For this classification task, we have used
a sigmoid function as the outer loss function.

We note in Table 1.2 that all multi-task learning approaches provided sta-
tistically similar performance measures and they all perform far better than
a method which learns each task independently to all others. Interestingly,
the two variants of our method output similarity matrices that are consid-
erably sparse. Hence, for each subject, instead of considering that all other



Learning constrained task similarities in graph-regularized MTL 21

tasks

ta
s
k
s

Cluster−MTL

 

 

5 10 15 20 25 30

5

10

15

20

25

30

3.34

3.35

3.36

3.37

3.38

3.39

3.4

3.41

3.42

3.43

tasks

ta
s
k
s

Metric−MTL

 

 

5 10 15 20 25 30

5

10

15

20

25

30

−1

−0.5

0

0.5

1

x 10
5

tasks

ta
s
k
s

CoGraph−MTL

 

 

5 10 15 20 25 30

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tasks

ta
s
k
s

CoGraph−MTL with l
1
 penalty

 

 

5 10 15 20 25 30

5

10

15

20

25

30 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 1.4: Example of task similarity matrices on the BCI dataset. (top-
left) Clustered MTL. (top-right) Metric-MTL inverse covariance task matrix.
(bottom-left) our CoGraph MTL with ΩΘ (bottom-right) our CoGraph MTL
with ΩΘ−�1 .

subjects were similar to that one, they were able to retrieve some few others
that provide sufficient information for transfer learning. Figure 1.4 provides
some examples of learned task relation matrix for the different algorithms.
We can see there how our method is able to extract relevant and interpretable
information from the data. Indeed, the task relation matrices retrieved by our
two variants are very sparse. It is thus possible to find which BCI users are
related.

1.4.2.4 OCR Dataset

Finally we evaluate our approach on an OCR classification problem. We
used the same OCR dataset as in the works of [22]. Here, the aim is to learn
a binary classifier for each writer so as to take into account writer variability.
The main difficulty in this dataset is that we have only a few examples but
still want to learn robust classifiers

We focus here on two binary classification problems : “e” vs “c” and “a”
vs “g” for twenty different writers. We want to learn simultaneously these



22 Sunil Template

TABLE 1.2: Area under the ROC Curve (AUC) on the BCI dataset. p-
value of a Wilcoxon signrank test with respect to the performance of the best
competitor as well as the sparsity of the resulting task relation matrix are also
reported.

Method AUC p-value Sparsity (%)
Ridge Indep 0.65±0.01 - -
Cluster MTL 0.78±0.00 - 100.0
Metric MTL 0.78±0.01 - 100.0

CoGraphMTL 0.78±0.00 0.625 6.9
CoGraphMTL ΩΘ−l1 0.77±0.00 0.232 6.4

TABLE 1.3: Area under the ROC Curve (AUC) on the OCR dataset. p-
value of a Wilcoxon signrank test with respect to the performance of the best
competitor as well as the sparsity of the resulting task relation matrix are also
reported.

Method AUC p-value Sparsity
Ridge Indep 0.94±0.01 - -
Cluster MTL 0.96±0.01 - 100.0
Metric MTL 0.98±0.01 - 100.0
CoGraphMTL 0.96±0.01 0.002 11.1
CoGraphMTL ΩΘ−l1 0.95±0.01 0.002 9.8
CoGraphMTL ΩΘG

0.97±0.01 0.375 51.7

40 classification tasks. The data is a raw bitmap of size 8× 16 that was pre-
processed as follows. We performed PCA on the raw data and kept 20 principal
components. We randomly select 8 samples for the training set, 4 samples for
the validation set and the remaining for the test set. Moreover, in order to
prove how easy it is to add prior information in our approach, we integrated
group knowledge in the learning problem by imposing specific constraints
on θ, denoted as ΩΘG

. Indeed, we force a link between tasks from the same
binary classification problem by imposing 0.01 ≤ ρt,k ≤ 1000 (which is rather
a weak constraint).

Performance of the different methods can be seen in Table 1.3. We remark
that our method using ΩΘG

achieves equivalent performance than Metric-
MTL whereas the two other variants of our method are slightly but sig-
nificantly worse than the best performing competitor. Indeed, adding prior
knowledge helps in learning robust classifiers.

We should however emphasize that the Metric-MTL approach is not able
to retrieve the correct relation between tasks as shown in Figure 1.5. Indeed,
the learned similarity matrix tells us that for Metric-MTL all the tasks are re-



Learning constrained task similarities in graph-regularized MTL 23

lated. Cluster-MTL is able to infer that they form two specific clusters of tasks
in the problem. Our methods are also capable of detecting these clusters and
in addition yield sparse similarity matrices as very few relations between tasks
from two different clusters were uncovered. Remark that even though some
must-link constraints have been imposed when using ΩΘG

as a regularizer,
some hyper-parameters have been still optimized by our algorithm.

1.5 Conclusion

We have proposed a novel framework for learning task similarities in
multi-task learning problems. Unlike other previous works on this topic, we
learn these similarities so as to optimize a proxy on the generalization errors
of all tasks. For this purpose, we introduce a bilevel optimization problem
which involves both the minimization of the generalization error and the opti-
mization of the task parameters. The global optimization is solved by means of
non-convex proximal splitting algorithm which is simple to implement and can
easily be extended to situations where different constraints on task similarities
have to be imposed.

Experimental results on toy problems clearly show that the method we
propose can help in learning complex structures of task similarities. On real-
world problems, our method clearly achieves performances similar to other
multi-task learning algorithms which learn tasks similarities while providing
task similarity matrices that are far more interpretable.

Acknowledgments

This work has been partly supported by the French ANR Agency Grant
ANR-11-JS02-0010 Lemon.

Appendix

Continuity and differentiability of E with respect to θk
First, note that β∗ is implicitly defined by the linear system Aβ = c.

Hence, we have
β = A−1c



24 Sunil Template

Existence and unicity of β is guaranteed by invertibility of A since we have
imposed that λt > 0, ∀t. Hence, since A and c are both continuous and dif-
ferentiable with respect to θk, so is A−1 and each component of β. Using
similar arguments, we can show that each component of β̇k = −A−1(Ȧkβ) is
continuous.

Continuity and differentiability of E(·) is easily obtained since E is built
from differentiability-preserving operations over differentiable functions.

Hessian computation In order to prove the gradient Lipschitz property
of E, we show that the Hessian of the function E(β(θ)) is bounded. The
Hessian is a matrix of general term:

∂E(β(θ))

∂θk∂θs
=

∂

∂θs

�
d�(ċk − Ȧkβ)

�
(1.22)

= −
�
∂d�

∂θs
(Ȧkβ) + d�Ȧk

∂β

∂θs

�
(1.23)

where we used the fact that c does not depend on θ so ċk = 0 and Ȧk is
a constant matrix whose component are equal to 0 when differentiated. By
using the definition of d in Equation 1.18, it is easy to see that

∂d

∂θs
= (A�)−1

�
∂

∂θs
∇βE(β)−

�
∂A

∂θs

��
d

�
(1.24)

Now, we can note that all components of the Hessian general term (1.23)
are continuous with respect to θ. For instance, d is continuous since it is the
product of a continuous matrix A−1 and continuous vector ∇βE (by hypoth-
esis on the loss function). Similar arguments can be employed for showing
continuity of all other terms.

Expression of Ȧk

The expression of this gradient takes different forms according to the type
of hyper-parameter. Using the definition (1.10), we get the expression

Ȧk =




0 . . . 0 . . . 0 . . . 0
... . . .

... . . .
... . . .

...

0 . . . 4Ĩ −4Ĩ 0
... . . . 0 . . . 0 . . . 0

0 . . . −4Ĩ 4Ĩ . . . 0
... . . . 0 . . . 0 . . .

...
0 . . . 0 . . . 0 . . . 0




, for θk = ρi,j ,with j > i



Learning constrained task similarities in graph-regularized MTL 25

and

Ȧk =




0 . . . 0 . . . 0
... . . .

... . . .
...

0 . . . 2Ĩ 0
...

... . . . 0 . . .
...

0 . . . 0 . . . 0



, for θk = λt,with t = 1, . . . , T

bibliography../../biblio/biblioAR,../../biblio/biblioRF,../biblio/biblioGG



26 Sunil Template

tasks

ta
s
k
s

Cluster−MTL

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

−20

−10

0

10

20

30

tasks

ta
s
k
s

Metric−MTL

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 −2

−1

0

1

2

3

4

5

6

7

x 10
4

tasks

ta
s
k
s

CoGraph−MTL

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

tasks

ta
s
k
s

CoGraph−MTL with l
1
 penalty

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

tasks

ta
s
k
s

CoGraph−MTL with must−link constraints

 

 

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

FIGURE 1.5: Examples of learned task similarity matrices on the OCR
dataset. (top-left) Clustered MTL. (top-right) Metric-MTL inverse covari-
ance task matrix. (middle-left) our CoGraph MTL with ΩΘ (middle-right)
our CoGraph MTL with ΩΘ−�1 . (bottom) our CoGraph MTL with ΩΘG



Bibliography

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

[2] Y. Bengio. Gradient-based optimization of hyperparameters. Neural
Computation, 12:1889–1900, 2000.

[3] K.P. Bennett, J. Hu, X. Ji, G. Kunapuli, and J.S. Pang. Model selec-
tion via bilevel optimization. In Neural Networks, International Joint
Conference on, pages 1922–1929, 2006.

[4] J. Bergstra and Y. Bengio. Random search for hyper-parameters opti-
mization. Journal of Machine Learning Research, 13:281–305, 2012.

[5] R. Caruana. Multi-task learning. Machine Learning, 28:41–75, 1997.

[6] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing mul-
tiple parameters for SVM. Machine Learning, 46(1-3):131–159, 2002.

[7] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimiza-
tion. Annals of operations research, 153(1):235–256, 2007.

[8] P.L. Combettes and J.C. Pesquet. Proximal splitting methods in signal
processing. Fixed-Point Algorithms for Inverse Problems in Science and
Engineering, pages 185–212, 2011.

[9] T. Evgeniou and M. Pontil. Regularized multi-task learning. In Proceed-
ings of the tenth Conference on Knowledge Discovery and Data mining,
2004.

[10] Theodoros Evgeniou, Charles A. Micchelli, and Massimiliano Pontil.
Learning multiple tasks with kernel methods. Journal of Machine Learn-
ing Research, 6:615–637, 2005.

[11] S. Feldman, B. A. Frigyk, M. R. Gupta L. Cazzanti, and P. Sadowski.
Multi-task output space regularization. arXiv, 2011.

[12] T. Van Gestel, J. Suykens, B. Baesens, S. Viaene, J. Vanthienen, and
G. Dedene. Benchmarking least squares support vector machine classi-
fiers. Machine Learning, 54(1):5–32, 2004.

27



28 Bibliography

[13] Tony Van Gestel, Johan A. K. Suykens, Gert R. G. Lanckriet, Annemie
Lambrechts, Bart De Moor, and Joos Vandewalle. Bayesian framework
for least-squares support vector machine classifiers, gaussian processes,
and kernel fisher discriminant analysis. Neural Computation, 14(5):1115–
1147, 2002.

[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer-Verlag, 2001.

[15] L. Jacob, F. Bach, and J.-P. Vert. Clustered multi-task learning: A con-
vex formulation. In Advances in Neural Information Processing Systems,
NIPS, 2008.

[16] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom
to share in multi-task feature learning. In Proceedings of the 28th ICML,
pages 521–528. ACM, June 2011.

[17] T. Kato, H. Kashima, M. Sugiyama, and K. Asai. Multi-task learning
via conic programming. In Advances in Neural Information Processing
Systems, 2008.

[18] S. Sathiya Keerthi, Vikas Sindhwani, and Olivier Chapelle. An efficient
method for gradient-based adaptation of hyperparameters in svm models.
In Advances in Neural Information Processing Systems 19, pages 673–680.
MIT Press, 2007.

[19] A. Kumar and H. Daum III. Learning task grouping and overlap in multi-
task learning. In Proceedings of the International Conference on Machine
Learning, 2012.

[20] Claudia Ledesma-Ramirez, Erik Bojorges Valdez, Oscar Yáñez Suarez,
Carolina Saavedra, Laurent Bougrain, and Gerardo Gabriel Gentiletti.
An Open-Access P300 Speller Database. In Fourth International Brain-
Computer Interface Meeting, 2010.

[21] A. Maurer, M. Pontil, and B. Romera-Paredes. Sparse coding for multi-
task and transfer learning. In Proceedings of the International Conference
on Machine Learning, 2013.

[22] Guillaume Obozinski, Ben Taskar, and Michael I. Jordan. Joint covariate
selection and joint subspace selection for multiple classification problems.
Statistics and Computing, 20:231–252, April 2010.

[23] A Rakotomamonjy, R Flamary, G Gasso, and S Canu. lp-lq penalty
for sparse linear and sparse multiple kernel multi-task learning,. IEEE
Transactions on Neural Networks, 22(8):1307–1320, 2011.

[24] A. Rakotomamonjy and V. Guigue. BCI competition III: Dataset II -
ensemble of SVMs for BCI P300 speller. IEEE Trans. Biomedical Engi-
neering, 55(3):1147–1154, 2008.



Bibliography 29

[25] R. Rifkin, G. Yeo, and T. Poggio. Regularized least squares classification.
In Advances in Learning Theory : Methods, Model and Applications, pages
131–153. IOS Press, 2003.

[26] B. Romera-Paredes, A. Argyriou, N. Bianchi-Berthouze, and M. Pontil.
Exploiting unrelated tasks in multi-task learning. In JMLR Proceeding
track, volume 22, pages 951–959, 2012.

[27] B. Romera-Paredes, M. Hane Aung, N. Bianchi-Berthouze, and M. Pon-
til. Multilinear multitask learning. In Proceedings of the International
Conference on Machine Learning, 2013.

[28] Kim Seyoung and Eric P. Xing. Tree-guided group lasso for multi-task
regression with structured sparsity. In ICML, pages 543–550, 2010.

[29] S. Sra. nonconvex proximal splitting : batch and incremental algorithms.
In Advances in Neural Information Processing Systems (NIPS), 2012.

[30] J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vande-
walle. least squares support vector machine classifiers. World Scientific,
2002.

[31] S. V. N. Vishwanathan, A. J. Smola, and M. Murty. SimpleSVM. In
International Conference on Machine Learning, 2003.

[32] C. Widmer, M. Kloft, N. Goernitz, and G. Raetsch. Efficient training of
graph-regularizer multi-task svm. In Proceedings of the European Con-
ference on Machine Learning (ECML), 2012.

[33] Christian Widmer, Nora C Toussain, Yasemin Altun, and Rätsch Gunnar.
Inferring latent task structure for multitask learning by multiple kernel
learning. BMC Bioinformatics, 11(Suppl 8):S5, 2010.

[34] Y. Zhang and D.Y. Yeung. A convex formulation for learning task re-
lationships in multiple task learning. In Proceedings of Uncertainty and
Artificial Intelligence, 2010.

[35] L. Zhong and J. Kwok. Convex multitask learning with flexible task
clusters. In Proceedings of the 29th International Conference on Machine
Learning (ICML), 2012, 2012.


