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ABSTRACT

Aims. We search for the best possible transmission for an external occulter coronagraph that is dedicated to the direct observation of
terrestrial exoplanets. We show that better observation conditions are obtained when the flux in the focal plane is minimized in the
zone in which the exoplanet is observed, instead of the total flux received by the telescope.
Methods. We describe the transmission of the occulter as a sum of basis functions. For each element of the basis, we numerically
computed the Fresnel diffraction at the aperture of the telescope and the complex amplitude at its focus. The basis functions are
circular disks that are linearly apodized over a few centimeters (truncated cones). We complemented the numerical calculation of the
Fresnel diffraction for these functions by a comparison with pure circular discs (cylinder) for which an analytical expression, based
on a decomposition in Lommel series, is available. The technique of deriving the optimal transmission for a given spectral bandwidth
is a classical regularized quadratic minimization of intensities, but linear optimizations can be used as well.
Results. Minimizing the integrated intensity on the aperture of the telescope or for selected regions of the focal plane leads to slightly
different transmissions for the occulter. For the focal plane optimization, the resulting residual intensity is concentrated behind the
geometrical image of the occulter, in a blind region for the observation of an exoplanet, and the level of background residual starlight
becomes very low outside this image. Finally, we provide a tolerance analysis for the alignment of the occulter to the telescope which
also favors the focal plane optimization.This means that telescope offsets of a few decimeters do not strongly reduce the efficiency of
the occulter.

Key words. Astronomical instrumentation, methods and techniques - Techniques: high angular resolution - Methods: analytical -
Methods: numerical

1. Introduction

Almost twenty years ago Mayor & Queloz (1995) made the first
detection of an exoplanet, and more than a thousand are now
recognized1. External occulters will be formidable instruments
for performing detailed spectral analysis of exo-Earths that have
previously been detected by other methods.

The first use of an external occulter dates back to Evans
(1948), who used an occulting disk set in front of a very small
coronagraph of Lyot (1939). Very soon solar astronomers have
identified diffraction effects of a circular occulter and con-
sidered various kinds of apodized, shaped, or multiple occul-
ters for space missions, as well described in the review paper
of Koutchmy (1988). Because of implementation difficulties,
toothed or multiple discs are preferred over radially graded ones,
which have been described in Purcell & Koomen (1962) and
Newkirk Jr & Bohlin (1965). Next to the successful Solar and
Heliospheric Observatory mission (Brueckner et al. (1995)), fu-
ture solar coronagraphy envisages formation-flying spacecrafts
with an occulter of diameter 1.5 m at about 150 m in front of a
small telescope (Vives et al. (2009)).

The parameters are completely different for exoplanets,. In
rounded numbers, the occulting angle is about 0.2 arcsec against
2000 arcsec for the Sun, and a large 4m diameter telescope is
needed with an occulter of 50 m diameter at a distance of 80 000
km. The positive aspect of exoplanet experiments is that diffrac-

1 see for example http://exoplanet.eu/

tion phenomena are less difficult to simulate numerically than
in the solar case. This is due to two reasons. There are fewer
than 20 Fresnel zones compared with 8000 in the solar case, and
the main source of diffracted light is a point source instead of a
huge 1/2◦ extended object. Nevertheless, the problem remains
difficult because of the high expected dynamic range.

Progression of ideas for exoplanets first followed develop-
ments for the Sun, with little interaction, but now the theoreti-
cal calculations and instrumental developments have resulted in
much more developments than in the solar case. In his review
of space astronomy Spitzer (1962) mentioned the technique of
apodization envisaged by solar astronomers. Elaborated petal-
shaped occulters can already be found in Marchal (1985), and
Copi & Starkman (2000) proposed a circular apodizing trans-
mission on a square mask. Studies of shaped and apodized oc-
culters have been reported in many publications, such as Cash
(2006), Arenberg et al. (2007), Vanderbei et al. (2007), Soummer
et al. (2010), Cash (2011) and Wasylkiwskyj & Shiri (2011), to
cite just a few. Although partially transparent petal shaped occul-
ters are envisaged by Shiri & Wasylkiwskyj (2013), the most ad-
vanced technological developments are for petaled star shades.
The two-step procedure leading to an optimal shaped occulter is
well described in Kasdin et al. (2013). These authors explained
that they first seek for the optimal variable transmission of an
apodized occulter and then chose a sufficient number of petals
for the shaped occulter to best approach the theoretical result
given by the variable transmission. We here focus only on the
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first part of this approach, that is, on the search for an ideal trans-
mission, leaving the final design of a shaped occulter to a future
work.

Our purpose is to show that the occulter can be optimized
advantageously from the telescope focal plane, which will min-
imize the level of light that is diffracted by the star in a zone of
interest of the focal plane for the exoplanet. The resulting illu-
mination on the telescope aperture appears to be apodized from
center to edge. The integrated flux on the telescope pupil is no
longer minimized. The observation is nevertheless improved be-
cause most of the residual flux is trapped behind the geomet-
rical image of the mask, in a blind area for the observation of
the exoplanet. Differences in transmission with an occulter that
minimizes the flux over the aperture are small, but the gain in the
residual background light at the level of the exoplanet range from
1.9 to 50 depending on the spectral bandwidth, which might cor-
respond to a gain in integration time of a factor 3.6 to 2500 for
certain observing conditions, in photon counting mode.

The paper is organized as follows: The fundamental relations
that describe the complex amplitudes diffracted by the occulter
in the aperture and focal planes are given in Sect. 2. The proce-
dure for optimizing the transmission of a circularly symmetric
apodized occulter to minimize the flux on the telescope aper-
ture or for selected regions of the focal plane are described in
Sect. 3. Sect. 4 contains results on the optimization problem and
a discussion. Additional information is given in two appendices
based on an analytic approach of the Fresnel diffraction of a pure
circular disc and of a linearly apodized disc.

2. Expressions of complex amplitudes and
intensities in the aperture and focal planes

We denote with 2Ω the overall diameter of the occulter. For an
occulting mask, it is convenient to write its transmission as t(r) =
1 − f (r), with the attenuation function f (r) constrained by 0 ≤
f (r) ≤ 1 for |r| ≤ Ω, and f (r) = 0 for |r| > Ω. For a wave of unit
amplitude, the Fresnel diffraction at the telescope aperture at a
distance z from the occulter (see Fig. 1) can be written as

ψ(r) = 1 −
τz(r)
iλz

∫ Ω

0
2πξ f (ξ)τz(ξ)J0(2π

ξr
λz

)dξ, (1)

where τz(r) = exp(iπr2/λz) is a quadratic phase-term corre-
sponding to a diverging lens, and J0(r) is the Bessel function
of the first kind.

This relation is equivalent to Eq. 4 of Vanderbei et al. (2007),
neglecting here the term of propagation of a plane wave. In
general, this integral does not admit an analytical solution, ex-
cept for f (r) = 1, as shown by Aime (2013) and outlined here
in Appendix A. Therefore, Eq.1, which appears as the Hankel
transform of f (r)τz(r), must be evaluated numerically. Compu-
tations of these transforms are delicate, as discussed by Lemoine
(1994) for example, who recommended a sampling of the func-
tion based on zeroes of the Bessel function J0. In practice, after
several tests described in Appendix A and B and below, we di-
rectly used the function NIntegrate of Mathematica, which per-
forms very well for this kind of calculation, thanks to recent im-
provements of numerical integration.

This wavefront ψ(r) arrives onto the aperture of the tele-
scope of transmission P(r), and we denote with ϕ(r) = P(r) ψ(r)
the complex amplitude of the wave going through the telescope
aperture. For the sake of simplicity, we assume in the follow-
ing a perfectly circular telescope of diameter 2R, centered on
the optical axis of the system, so that P(r) = Π(r/R), defining

here for convenience that the box distribution Π(r) equals 1 for
|r| < 1 and 0 elsewhere. Note that a more realistic telescope with
a central obscuration can be easily inserted into the calculations.
Using the circular symmetry of the problem, the complex ampli-
tude of the wave in the focal plane can be written as a Hankel
transform of ϕ(r) of the form:

φ(r) =
τF(r)
iλF

∫ R

0
2πξϕ(ξ)J0(2π

ξr
λF

)dξ =
τF(r)
iλF

ϕ̂(
r
λF

), (2)

where F is the focal length of the telescope. Note that here the
phase term τF(r) is compensated for by the lens phase function
of the telescope, meaning that a simple 2D Fourier transform
or Hankel transform denoted by ϕ̂ substitutes the more complex
Fresnel propagation of Eq. 1.

It is moreover convenient to calibrate the focal plane in terms
of angular units θ = r/F on the sky, and the intensity in the focal
plane of the telescope can be written

Φ(θ) =
1
λ2 |ϕ̂(

θ

λ
)|2, (3)

instead of just the Airy pattern

Φ0(θ) =
1
λ2 |ϕ̂0(

θ

λ
)|2 =

π2R4

λ2

(
J1(2πθR/λ)
πθR/λ

)2

(4)

for the direct observation without external occulter with a perfect
telescope of circular aperture of diameter 2R.

Limiting the analysis to only geometrical aspects, the occul-
ter prohibits the planet observation for an angular radius smaller
than Ω/z to the star, and the light coming from the planet passes
over the occulter for an angle θ0 > (Ω + R)/z, a variant of the ge-
ometric inner working angle Ω/z of Kasdin et al. (2013), taking
into account the telescope size. Note that all the wave and in-
tensity functions defined in this section are illustrated in Figure
1.

3. Procedure used for optimizing f (r) for integrated
intensities

The basic idea of an external occulter coronagraph is to avoid
letting the stellar light enter the telescope while leaving the light
coming from the exoplanet unchanged . In a first approximation,
if the angular position of the planet is larger than θ0, we can ex-
pect that the flux coming from the planet is almost unaffected
by the occulter, and a fair measurement of the efficiency of the
external occulter can be the normalized residual integrated in-
tensity over the telescope aperture, for example the quantity Γ
defined by

Γ =
2π
∆λ

∫ λM

λm

∫ R

0
r Ψ(r)drdλ, (5)

where Ψ(r) = |ψ(r)|2 is the wavelength-dependent intensity and
∆λ is the spectral bandwidth of the experiment, simply taken
equal to λM − λm here. In this analysis, the same weight is as-
signed to each wavelength, independently of the brightness of
the source, the quantum efficiency of the detector, or the pres-
ence of acquisition filters (Soummer et al. (2010)). It would be
easy to perform a differently weighted average for a more real-
istic analysis, if necessary. Our numerical computation has been
made from λm = 380 nm to λM = 750 nm and with R = 2 m.

To find an optimal shape for the external occulter, a natu-
ral approach would be to minimize Γ with respect to f . Note that
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Fig. 1. Schematic diagram of an external occulter coronagraph with the principal notations used in the paper. The observation, occulter, aperture,
and focal telescope planes are shown.

this approach has been used in Wasylkiwskyj & Shiri (2011), but
this is not the only way to optimize the shape of an occulter. For
instance, Vanderbei et al. (2007) and Kasdin et al. (2013) pro-
posed to minimize the upper bound c on the real and imaginary
part of ψ(r),∀r ∈ [0,R].This approach will ensure that the inten-
sity in the aperture plan will be below 2c2 and also minimize the
flux. We emphasize that while we decided here to minimize the
flux, our approach can be readily adapted to the minimization of
the upper bound instead of the whole flux Γ.

Because of the conservation of energy, the flux is conserved
from aperture to focal planes. Nevertheless, we are in fact inter-
ested in the level of background light produced by the star in the
area where we observe the planet. A quantity representative of
the residual flux may be given by the residual light γ over a zone
of the focal plane, such as

γ =
2π
∆λ

∫ λM

λm

∫ θ2

θ1

θ Φ(θ)dθdλ, (6)

where θ1 and θ2 define the region of interest of the observation
(Fig. 1), corresponding for example to the habitable zone around
the star, or the possible excursion of a known planet over a star,
with probably θ1 close to θ0. We therefore have γ ≤ Γ, the equal-
ity holding in the limit θ1 = 0 and θ2 = ∞.

The two measures of residual light Γ and γ are based on dif-
ferent points of view. If one manages to completely shut off the
light in the aperture, then the residual light in the observation
area will also shut off, but the reverse is false. In other words,
minimizing Γ or γ with respect to f will lead to different opti-
mal solutions. We believe that minimizing γ is better when the
objective is to observe an exoplanet in a known area of the focal
plane.

3.1. Decomposition of f (r) on a basis of functions fk(r)

As already presented in Jacquinot & Roizen-Dossier (1964) for
the systematic search for apodizing properties, a common way
to optimize the shape of a function is to force this function to be
a weighted sum of basis functions. We here aim to optimize the
weights αk such that

f (r) =

K∑
k=1

αk fk(r) and 0 ≤ f (r) ≤ 1. (7)

Jacquinot & Roizen-Dossier (1964) have shown that, if the
expansion contains an infinite number K of terms, "the absolute
optimal function according to the criterion chosen" is obtained

1

0
0

f1(r)

r

f2(r) f3(r)
1

0
0

f(r)

r

Fig. 2. Left: illustration of the basis function used to represent the at-
tenuation function f (r) with an example of the combination of three of
these functions (right). For clarity of representation, the values of Ωm
and ∆ are not to scale of those used for the fk(r) basis functions.

regardless of the bases used. This result was obtained in the dif-
ferent context of Fraunhofer diffraction, but given the linearity of
the equations, the result still holds for our purpose. In practice,
however, the number K of elements of the bases must be limited
and the choice of basis functions becomes important.

After various tests, we used trapezoidal functions for the
fk(r), equal to 1 for r ≤ Ωm + (k − 1)∆ and equal to 0 for
r ≥ Ωm + k∆. The functions linearly decrease from 1 to 0 be-
tween Ωm + (k − 1)∆ and Ωm + k∆. These function, illustrated in
Fig. 2, are very similar to the binary disk for small ∆. It is the
same for their Fresnel diffraction pattern, as shown in Appendix
B, but this small difference is sufficient to lead to much better
numerical results. Note that these basis functions lead to a trans-
mission that is piece-wise linear as opposed to the use of binary
disk that leads to piece-wise constant transmission function. For
the numerical analysis, we set ∆ equal to 5 cm and used K = 300
functions spreading between Ωm = 10 m to ΩM = Ω = 25 m.
An example of such functions is given in Fig. 2. The reason for
the existence of an innermost opaque section (i.e. t(r) = 0 or
f (r) = 1 for r ≤ Ωm) is of technical origin linked with the space-
craft, as indicated for example by Vanderbei et al. (2007).

Note that expressing function f (r) as a sum of basis func-
tion leads to a more general model potentially at the cost of
more complex numerical computation. For instance, one might
choose to use a more elaborated basis of functions such as pro-
late functions. This would potentially lead to very good results
because those functions are known to provide efficient apodizers,
and might also be excellent occulters. Nevertheless, the physical
constraints on f (r) as discussed in the following would be more
difficult to express. In this particular case, it would be advan-
tageous to compute these constraint on a finite sampling of the
function, as in Vanderbei et al. (2007).
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3.2. Constraints on f (r) and fk(r)

The final attenuation function f (r) has to follow a number of
physical constraints. On the one hand, some of those constraints
can be easily enforced through a wise choice of the basis func-
tions. For instance the smallest radius of apodization is set by
Ωm, while the largest radius is selected by Ω = Ωm + K∆. On
the other hand, the attenuation function f (r) has to be equal to
1 for r < Ωm, and since all fk(r) functions are equal to 1 for
r ≤ Ωm, we have to enforce the linear constraint

∑K
k=1 αk = 1.

This constraint can also be expressed as a linear equality of the
form 1>α = 1, where 1 is a vector of ones.

Another more complicated constraint is the fact that 0 ≤
f (r) ≤ 1, ∀r. These block constraints, thanks to the simple struc-
ture of the fk functions, can be expressed as a linear inequality
constraints Aα ≥ b with

A =

[
C
−C

]
C =


1 1 . . . 1 1
0 1 . . . 1 1

0
...

. . .
... 1

0 0 . . . 1 1
0 0 . . . 0 1

 , and b =



0
...
0
−1
...
−1


.

Another constraint that has been used in previous works is the
smoothness of the transmission function. This is typically en-
forced using derivatives of the function, but in our case smooth-
ness can be readily enforced using a classical quadratic regular-
ization term α>α. Indeed, minimizing the euclidean norm of the
α vector under the constraint 1>α = 1 tends to promote simi-
lar values on all αk, leading to a smooth transmission function
(linear apodization for an infinite regularization). This kind of
regularization is equivalent to the constraint on the curvature of
f described in Kasdin et al. (2013).

An additional constraint that has been enforced in previous
literature is to force f to be monotonic, which in this case is a
decreasing function w.r.t. the radius r. This constraint, also en-
forced in Kasdin et al. (2013), has an extremely simple form in
our formulation, in effect it is the positivity constraint α ≥ 0.
To have a grasp of the performance loss due to this additional
constraint, we performed an optimization with and without this
constraint in the numerical experiments.

Note that in this work, we made the design choice of using
linear apodization functions as basis functions for the transmis-
sion. These choices lead to the above-mentioned physical con-
straints on the weights α. An equivalent formulation has been
proposed in Vanderbei et al. (2007) and Kasdin et al. (2013),
where the basis function are trapezoidal functions overlapping
such that the final transmission is also piece-wise linear. Copi
& Starkman (2000), Cash (2011) and Wasylkiwskyj & Shiri
(2011), on the other hand, used offset high-order polynomial or
hyper-Gaussian functions.

Below, we present the optimization problems derived from
minimizing the intensity Γ in the telescope aperture and mini-
mizing the intensity γ in a region of the focal plane. The optimal
functions are denoted as fΓ(r) and fγ(r) for the optimal attenu-
ation w.r.t. the aperture plane and w.r.t. a selected region of the
focal plane, respectively.

3.3. Minimizing the integrated starlight in the telescope
aperture plane : fΓ(r)

Substituting the decomposition of f (r) of Eq.7 into Eq.1, we ob-
tain

ψ(r) =

K∑
k=1

αk

(
1 − τz(r)

∫ Ω

0
fk(r)τz(ξ)J0(2π

ξr
λz

)dξ
)

=

K∑
k=1

αkψk(r), (8)

and the corresponding intensity becomes

Ψ(r) = |ψ(r)|2 =

∣∣∣∣∣∣∣
K∑

k=1

αkψk(r)

∣∣∣∣∣∣∣
2

=

K,K∑
k,l=1

αkαlψk(r)ψl(r)†

= α>Kψ(r)α, (9)

with Kψ(r) = ψψ† with ψ> = [ψ1(r), . . . , ψK(r)] a rank one ma-
trix of general coefficient Kl,k(r) = ψk(r)ψ∗l (r), where ψk(r) is
the Fresnel diffraction of a wave of unit amplitude for the basis
function occulter fk(r). The flux Γ can then be expressed as

Γ =
2π
∆λ

∫ λM

λm

∫ R

0
r α>Kψ(r)αdrdλ = α>KΓα, (10)

where KΓ = 2π
∆λ

∫ λM

λm

∫ R
0 r Kψ(r)drdλ is a K×K matrix integrating

all the surface of the aperture and all the wavelength in (λm, λM).
The optimization problem is finally defined as

min
α

α>(KΓ + µI)α (11)

s.t. 1>α = 1 and Aα ≥ b,

where I is the identity matrix and µ is a positive regularization
parameter. As discussed in Wasylkiwskyj & Shiri (2011), reg-
ularization is important in this case because the matrix KΓ is
poorly conditioned and would lead to difficulties when solving
the problem. Moreover, as discussed in the previous section, the
µ parameter weight the quadratic regularization on the α vec-
tor, promoting smoothness in the transmission function. This
smoothness has also been shown to be important in practice in
Kasdin et al. (2013), where an equivalent smoothness constraint
was inserted in the optimization problem. Also note that in prac-
tice one can easily express the smoothness constraint of Kas-
din et al. (2013) in our optimization problem instead of using a
regularization term. Since with the trapezoidal basis, the second-
order derivatives are exactly computed using the finite difference
between adjacent α components, the corresponding constraints
can be obtained by adding lines to the A matrix that contain
finite difference operators, and lines to b that contain the con-
straint parameter σ of Kasdin et al. (2013).

The optimization problem defined Eq. (11) is a constrained
quadratic optimization Boyd & Vandenberghe (2004). The lin-
ear constraints forbid the use of the closed-form solution as pro-
posed in Wasylkiwskyj & Shiri (2011), but there exist several ef-
ficient optimization strategies in the literature, among which the
active set approach presented in Vanderbei & Shanno (1999).

3.4. Minimizing the starlight in a region of the telescope focal
plane: fγ(r)

To express, the intensity in the focal plane, we used the same
decomposition of the function f (r) as a sum of functions fk(r)
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as above, the complex amplitude in the focal plane can be writ-
ten as a sum of elementary function φk(r), Fourier transforms of
P(r)ψk(r) according to Eqs 7 and 2. The intensity in the focal
plane of Eq. 3 becomes

Φ(θ) =
1
λ2

∣∣∣∣∣∣∣
K∑

k=1

αkφk(
θ

λ
)

∣∣∣∣∣∣∣
2

= α>Kφ(θ)α, (12)

and the intergrated density

γ =
2π
∆λ

∫ λM

λm

∫ θ2

θ1

θ α>Kφ(θ)αdθdλ = α>Kγα. (13)

The resulting optimization problem is exactly the same that of
Eq. 11, but with a different metric Kγ.

The optimal functions fΓ(r) and fγ(r) are different because
the solutions α are different.Because of conservation of energy
between aperture and focal planes, these functions become iden-
tical in the special case θ1 = 0, θ2 = ∞, where KΓ = Kγ. Our
optimization in the focal plane was performed for θ1 = 0.1 arc-
sec and θ2 = 0.5 arcsec.

4. Results and discussion

4.1. Numerical computations

In the following, we denote ΨΓ(r) and ΦΓ(θ) the intensities ob-
tained in the aperture and focal plane of the telescope using an
external occulter of transmission 1 − fΓ(r) minimizing the inte-
grated intensity Γ and described in Sect. 3.3. Similarly, we de-
note Ψγ(r) and Φγ(θ) the results obtained using an occulter trans-
mission 1 − fγ(r), as described in Sect. 3.4.

Note that while obtaining the matrices KΓ and Kγ is a com-
putationally intensive problem, we can use heavily parallel com-
puting to estimate as a first step the ψk(r) and φk(θ) functions
through numerical integration. This was performed using Math-
ematica, with K computational jobs computed by ≈ 100 parallel
processes on eight core Intel processors. In the numerical ex-
periments, both ψk(r) and φk(θ) were regularly sampled on 3001
samples from respectively r ∈ (0,R+1) and θ ∈ (0, 0.644) arcsec.
Note that ψk(r) was computed outside of the telescope so that
we can used it for the tolerance analysis in section 4.4. More-
over, the behavior of the different optimization strategies outside
of the telescope aperture is also interesting. The wavelength λ
has also been sampled regularly with 21 samples in the visible
light interval (380, 750) nm. After computing ψk(r) and φk(θ), a
numeric 2D integration can be performed to obtain the matrices
KΓ and Kγ. The regularization parameter µ in the optimization
problem was chosen adaptively with µ = µ0 maxk,l |Kk,l| to be
less dependent on the metric matrix K. µ0 was chosen by hand
to allow good attenuation performance with a limited dynamic
in the solution function f . For the monochromatic study, we set
µ0 = 10−8 and for the more complex study on a wide bandwidth,
less regularization was necessary with µ0 = 10−10 because of a
more complex problem and a better conditioning of the K ma-
trix.

Finally, the code for all the numerical experiments will be
freely available on the authors website to promote reproducible
research 2.

2 http://remi.flamary.com/soft.html
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Fig. 3. Radial cut of the attenuation of the functions f (r) for aperture
and focal optimization at a wavelength of 562 nm. The dashed curves
denoted as ≥ 0 correspond to an optimization with α ≥ 0 constraint.

4.2. Optimization for monochromatic light

For a single monochromatic wave, here λ = 562 nm, we have
represented the apodizing curves fΓ(r) and fγ(r) in Fig. 3 and
the resulting intensities ΨΓ(r) and Ψγ(r) (top curves), and ΦΓ(θ)
and Φγ(θ) (bottom curves) in Fig.4. We emphasize that these
curves were obtained assuming a perfect circular telescope of
radius R. The f -curves are only slightly different and are really
similar to a linear apodization. Moreover, in the monochromatic
case, enforcing a monotonic f leads to the same results for the
thickness of the trace, which will not be the case anymore for a
wide spectral bandwidth, as we show below.

The results for the Ψ and Φ-curves are quite different. The
residual starlight ΨΓ(r) is very well attenuated across the tele-
scope pupil, as found by Vanderbei et al. (2007). In contrast,
Ψγ(r) presents a center-to-limb decrease which suggests an
apodized structure. It is interesting to note the behavior of the
curves beyond the region of optimization. There, the relative po-
sition of the curves is reversed very rapidly, the focal plane opti-
mization becoming lower than the pupil plane optimization. This
is an aspect that deserves further studies.

The intensity in the focal plane is also very interesting. While
fΓ tends to minimize the intensity at all angles θ, fγ only focuses
on the region of interest, and a strong residual light is observed
in the blind area behind the occulter.

The resulting flux Γ, γ for all the different optimizations is
given in the upper part of Table 1. Interestingly, fΓ leads to a
flux Γ in the aperture plane 105 times fainter than fγ. Neverthe-
less, in the focal plane the flux γ in the observation area is ≈ 50
times fainter when using fγ. This clearly shows the importance
of using focal plane optimization for optimal apodization.

4.3. Optimization for a wide spectral bandwidth

Next we investigated the two optimization strategies on a wide
bandwidth. For this we compute a regular sampling in the in-
terval λ ∈ (380,750) nm and computing the average flux across
λ. Note that both a sampling of 20 and 100 values were investi-
gated, and while we used in the experiments a sampling of 100
for a better precision, the final results were very similar. In prac-
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Fig. 4. Top curves: intensity in the telescope aperture plane for an opti-
mization that minimizes the integrated intensity Γ in the aperture plane
(blue curve) or γ for optimizing the observation between 0.1 and 0.5 arc-
sec in the focal plane (red curve), for λ = 562 nm. Note the apodization
profile for the γ curve and the inversion of relative position of the curves
outside the region of optimization. Bottom curves: focal plane intensity
obtained for the two optimizations. An airy pattern corresponding to a
10−12 fainter exoplanet in the observation area is reported in black. The
apodization area defined by the smallest and largest radius of the occul-
ter is also reported in green. Note the inversion of behavior of curves
with regard to the overall occulter profile.

tice the variation of the wavefront is extremely smooth w.r.t. λ
and the selected sampling in sufficient.

For multiple wavelengths, λ ∈ (380,750) nm, the results are
very different. First the optimal functions are much more similar,
as illustrated in Figure 5. The functions also tend to oscillate
and the monotonic variants are this time different from the free
variant of the optimal functions.

The resulting intensities in the aperture and focal plan are
plotted in Figure 6. In the aperture plane, the intensity is still
apodized for fΓ, but the flux is much more attenuated than in the
monochromatic case. In the focal plane, the intensities retain the
same tendencies, but the gain due to the focal plane optimization
is lower. Interestingly, enforcing a monotonic function through
α ≥ 0 leads to a clear loss in terms of attenuation for both fΓ and
fγ.

In terms of quantitative performances, Table 1 (lower part)
shows that the flux in the observation area of the focal plane is
still more attenuated with fγ with a gain of 1.9 in the chromatic
case (1.6 with positivity constraint). While the gain in perfor-
mance is smaller than in the monochromatic case, it is far from
negligible when observing faint objects around a star. Interest-
ingly, in the chromatic case, the α ≥ 0 constraint leads to a loss
of 2 in attenuation (for both fΓ and fγ), proving that relaxing the
constraint can lead to additional gain as long as the apodization
is physically realizable.

An additional visualization comparing the performances of
fΓ versus fγ in the focal plane is given in Fig. 7. The intensity
Φγ(θ) is plotted as a function of ΦΓ(θ) for θ ∈ (0, 0.7) arcsec. The
red line allows a comparison between the methods; if a curve
is below this line, it means that Φγ(θ) < ΦΓ(θ) and vice versa.
We clearly see that Φγ(θ) > ΦΓ(θ) for θ < θ1 in the blind area
behind the occulter and that Φγ(θ) < ΦΓ(θ) ∀θ ∈ (θ1, θ2) in the
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Fig. 5. Radial cut of the attenuation of the functions f (r) for aperture
and focal optimization for the whole spectral bandwidth between 380
nm and 750 nm.
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θ, clearly showing the concentration of light behind the occulter for the
focal plane optimization. The line y = x clearly shows that the γ-curves
always give better results than the Γ-curves, especially in the observa-
tion area (reported in green).

observation area of the focal plane (illustrated in green in the
figure).

4.4. Tolerance analysis to positioning errors of the telescope

A study of the tolerance sensitivity to positioning errors for a 4m
circular telescope out of its on-axis position was carried out up
to an offset of 1 m.

Because of this offset, the resulting pupil plane and focal
plane intensities are no longer circularly symmetric, and the
computation of the final focal plane image can no longer use
the Hankel transformation of Eq.2. The focal plane image must
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Fig. 6. Same representation as in Fig. 4, but for an optimization made for the whole spectral bandwidth between 380 nm and 750 nm. The behavior
of the inversion of the curves is similar to the monochromatic case, although it is somewhat reduced by the effect of the chromatism.

Table 1. Resulting light flux in the aperture (Γ) of focal plane (γ) for all the optimization schemes. The upper part of the table corresponds to an
optimization on a unique wavelength λ, whereas the lower part of the table corresponds to an optimization on a large spectrum.

λ Flux fΓ(r) fΓ(r) ≥ 0 fγ(r) fγ(r) ≥ 0 Flux ratio Flux ratio ≥ 0

λ=562 nm Γ 9.07e-13 9.55e-13 5.06e-08 5.52e-08 1.79e-05 1.73e-05
γ 7.66e-13 8.06e-13 1.38e-14 1.44e-14 5.57e+01 5.61e+01

λ ∈(380,750) nm Γ 2.91e-13 5.88e-13 2.63e-12 7.01e-12 1.11e-01 8.38e-02
γ 7.08e-14 1.42e-13 3.74e-14 8.99e-14 1.89e+00 1.58e+00

be computed taking the modulus squared of the two-dimensional
Fourier transform of the complex amplitude of the wave on the
telescope aperture.

In practice, the study was made using a discrete Fast Fourier
Transform of an array of 1024 × 1024 points corresponding to
an overall zone of 20 × 20 meters, inside which the telescope of
diameter 2m was defined by 1 or 0 transmitting pixels over about
205 points in diameter. As a result, altogether 33 081 points were
set equal to 1. This percentage of zero-padding is enough to ob-
tain a satisfactorily sampled focal plane image.

Positioning errors were simulated by moving the complex
amplitude obtained in the shadow of the occulter over the tele-
scope aperture in one direction, by steps of 1 pixel or about 2 cm.
The two-dimensional array was filled using an interpolation of
the one-dimensional complex amplitude of the wavefront com-
puted with Eq. 1.

The focal plane image was obtained taking the modulus
squared of the Fourier transform of the wave on the telescope
aperture. The effect of wavelength was taken into account af-
terward. The diffraction pattern increases in size with the wave-

length. For that, a two-dimensional interpolation of the result
was used to resample the image. Moreover, a scaling factor in
intensity inversely proportional to the square of the wavelength
was applied, as in Eq.4. As a result, the integrated flux in the
focal plane becomes wavelength independent and equal to that
crossing through the telescope aperture. As before, for the sake
of simplicity, we assumed that the received flux is constant over
the spectral bandwidth.

Figures 8 and 9 present results obtained for transverse dis-
placements of the telescope up to 1 m from its nominal posi-
tion. We recall that the occulter shapes optimize the measure-
ment when the telescope is at its nominal on-axis position, ei-
ther for the integrated intensity on the telescope aperture, or for
a region in the focal plane between 0.1 and 0.5 arcsec. In both
cases the computation was made for the whole bandwidth of λ ∈
(380,750) nm.

Three-dimensional representations of the normalized inten-
sities in the telescope aperture were used to enhance differences
of intensities in the results of the two optimizations, and the
apodization-like pattern obtained for the focal plane optimiza-
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Fig. 8. Top curves: pupil plane intensities for an offset of 1 m for λ ∈
(380,750) nm. Density curves below represent the focal plane intensities
(log scale) for telescope positions: on-axis (upper curves) and offsets
of 50 cm (intermediate curves) and 1 m (lower curves). Left: aperture
optimization, right: focal plane optimization.

tion. Both curves were clipped to make the central parts of the
images well visible. As expected, there is much less light for the
aperture plane minimization when the telescope is at its nominal
position. Since the optimization was calculated for a 4m diam-
eter telescope, there is a rise in the intensity at the edges for
this large offset. This increases becomes somewhat surprisingly
in favors of the focal plane optimization for a large off-set, as
already discussed in Fig. 6.

In Fig. 8 focal plane intensities are also represented in color
levels, with a common color scale for the telescope on-axis and
off-axis of 50 cm and 1m. The two circles of radius θ1 = 0.1
arcsec and θ2 = 0.5 arcsec define the angular area inside which
the residual intensity is integrated. The focal plane optimization
is found to always be better than the aperture plane optimiza-
tion. From comparing these curves, it is clear that the residual
diffracted light remains concentrated longer inside the first cir-
cle for the focal plane optimization, which is especially clear for
the 50 cm offset images. This behavior is confirmed by Fig. 9
which represents the integrated intensity in this region with a
logarithmic scale.
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Fig. 9. Average residual light level γ for the focal plane (a) and pupil
plane (b) optimization, as a function of the telescope offset in centime-
ters for λ ∈ (380,750) nm. The average is computed over the region
from 0.1 to 0.5 arcsec delimited in Fig. 8 by two circles.

5. Conclusion

We addressed the problem of optimizing of the shape of a cir-
cularly symmetric apodized occulter. To this end, we proposed
a general expression for the attenuation function, as a weighted
sum of basis functions. We expressed the optimization problem
as the minimization of the flux, first in the pupil plane, as is com-
monly done in the literature, and then in the focal plane of a
4.m diameter telescope, for a region between 0.1 to 0.5 arcsec in
which the exoplanet is supposed to be observed.

Numerical experiments show that the focal plane optimiza-
tion leads to a better attenuation of the starlight than the pupil
plane optimization. One interesting result is that while the focal
plane optimization leads to a strong flux in the pupil plane, most
of this light is concentrated in the area behind the occulter in
the focal plane, which is not a problem for a perfect telescope.
Finally, the robustness of our approach to lateral misalignment
of the occulter was investigated and showed that the focal plane
optimization also yields a better robustness.

As already indicated, the optimization study was made for
a 4m telescope assumed to be at its on-axis position. A simple
procedure to make the experience less sensitive to defect posi-
tion would be to perform the optimization for a larger aperture
than is actually used. A better procedure would be to estimate
the statistics of pointing errors and include them in the optimiza-
tion procedure. Then a better tolerance to pointing errors would
be obtained, probably at the expenses of a tolerable loss in the
starlight rejection. Nevertheless, our analysis showed that tele-
scope offsets of a few decimeters will not strongly reduce the
efficiency of the occulter.

This conclusion was obtained for the condition that the tele-
scope has a perfectly circular aperture and another study is re-
quired to model a telescope with central obscuration. Moreover,
it would be interesting to study the effect of a a more realistic
telescope with small defaults of phase and amplitude. Deviations
from this perfection could lead to somewhat different results, but
the exigency of quality is limited to a maximum of 0.5 arcsec, or
about twenty Airy rings for a 4m diameter telescope. Finally,
with the knowledge of the exact PSF of the telescope, one can
readily adapt our optimization approach. A comparison of pupil
vs focal optimization for the maximum-magnitude minimization
as in Kasdin et al. (2013) would also be interesting.
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Appendix A: Quality test of the numerical
computation using an analytical expression for a
sharp-edged circular occulter

Aime (2013) has shown, using an approach similar to Born &
Wolf (1999), that an analytic expression using Lommel series
could be derived for the Fresnel diffraction of a sharp circular
occulter of the form f (r) = f•(r,Ω) = Π(r/Ω), defining here
Π(r) as the function equal to 1 for |r| ≤ 1 and 0 otherwise. At the
wavelength λ, the complex amplitude ψ•(r,Ω) of the wave at the
distance z for

(i) inside the geometrical umbra (r < Ω) and
(ii) outside (r > Ω),

can be written using two series:

ψ•(r,Ω) =

(i) τ(r) τ(Ω)
∞∑

n=0

(−i)n(
r
Ω

)nJn(
2πΩr
λz

)

(ii) 1 − τ(r) τ(Ω)
∞∑

n=1

(−i)n(
Ω

r
)nJn(

2πΩr
λz

). (A.1)

At r = Ω, both series converge to the same value given by

ψ•(Ω,Ω) =
1
2

(1 + exp(i
2πΩ2

λz
)J0(

2πΩ2

λz
)). (A.2)

These series are alternative series for the real and imaginary
terms, and according to the Leibniz estimate, an upper bound
of the error for the sum limited to n = N terms is given by the
absolute value of the N + 1 term. The convergence is easy when
r/Ω is smaller than 1, for the first sum for r < Ω inside the ge-
ometrical umbra, or the inverse outside. The main error occurs
near the transition zone r = Ω.

In Fig.A.1 we compare the analytical and numerical results
for an example of a circular occulter of 50 m diameter set at
80 000 km, and for a wavelength of 550 nm. The Lommel se-
ries were computed for 100 terms, and there is no difference be-
tween the two methods. Results were drawn for the real, imagi-
nary, modulus, and unwrapped phase of the Fresnel diffraction.
Note that this is just an example, in particular, the real and imag-
inary part of the diffraction pattern are highly sensitive to a small
variation of any of the parameters. The modulus of the intensity
pattern clearly shows the visible Poisson spot at the center of the
pattern. The unwrapped phase presents a strong phase variation
in the center of the umbra and a quieter structure outside the ge-
ometric umbra, that is for a region utilized by the telescope for
the planet observation. The consistency between the two analytic
and numerical results is recognized here as a proof of the quality
of the numerical calculation.

Appendix B: Numerical calculation of linearly
apodized basis functions fk(r)

As indicated in the body of the paper, we tried several forms
for the set of apodized basis functions fk(r), and decided to use
the simple trapezoidal functions described in the body of the pa-
per because they affect the final solution the least. We did not
succeed in deriving an analytic form for the Fresnel diffraction
of these functions, but comforted by the results obtained on the
Fresnel diffraction of Π(r/Ω), we used the direct numerical cal-
culation of Mathematica.

We recall that these functions are linearly apodized disks of
radii varying from 10 m to 25 m in steps of 5 cm, the apodization
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Fig. A.1. From top to bottom: real, imaginary, squared modulus and
unwrapped phase of ψ(r) for a circular occulter of radius Ω = 25 m (the
vertical line) at z = 80000 km for λ = 0.55µ m. The continuous line
represents the Lommel series, dots are the result of a direct numerical
computation of Eq. 1 using NIntegrate of Mathematica

applies for 5 cm at the edge. The resulting ψk(r) are very similar
to those obtained for the functions Π(r/Ω). Differences between
moduli are lower than 1%, as shown in Fig. B.1 for two extreme
cases, but essential to obtain proper results on diffraction pat-
terns. In Fig. B.2 we focus on the central part of the diffraction
pattern, for r ≤ 2 m. Curves are drawn for a raw and linearly
apodized occulter of 10 m and 10.05 m.

Article number, page 9 of 10



A&A proofs: manuscript no. Starshade

0 10 20 30 40

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

Radial distance in meter

lin
sc

al
e

di
ffe

re
nc

e
 Ψ k

HrL -
 Ψ 0

HrL 

Fig. B.1. Differences of moduli of Fresnel diffractions for raw and lin-
early apodized functions for Ω values of 10 m (thick curve) and 10 m
(thin curve).
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Fig. B.2. Representation for r between 0 and 2 m of the moduli of ψk(r)
of linearly apodized occulters of radii 10 m and 10.05 m (a). The two
curves are almost over imposed, and curve (b) represents 100 times their
differences.
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