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We provide in this supplementary material more details about some of the algorithmic aspects of
OST.

Optimisation for OST. As discussed in the main paper, when no regularisation is used, OST
unmixing boils down to the application of a linear operator L to the spectral samples, such that
hn = L>vn. L is a sparse matrix, with only M nonzero coefficients among KM . It only depends
on the transportation cost matrix C̃ and can be pre-computed like in Algorithm 1.

OST with entropic regularisation (OSTe). Entropic regularisation consists in penalising OST
with the negentropic term Ωe(T̃) =

∑
ik tik log(tik) weighted by λe. Remarkably, Benamou et al.

(2015) have shown that this optimisation problem becomes:

min
h≥0,T̃≥0

DKL(T̃,Z) s.t. T̃1K = v, T̃>1M = h, (1)

where Z = exp(−C̃/λe), the exponential being being applied entry-wise. Again, because h is
a variable of the optimisation problem, only T̃ needs to be optimised with h being subsequently
computed by the second constraint in Eq. (1). The resulting problem consists of a Bregman projection
and the optimal T̃ can be obtained by a simple scaling of the Z matrix (Benamou et al., 2015):̂̃

T = diag

(
v

Z1K

)
Z = diag(v)Le, (2)

where Le is the matrix with coefficients

lik =
exp(−c̃ik/λe)∑
p exp(−c̃ip/λe)

. (3)

Then, h is recovered from the second constraint in Eq. (1):

h =
̂̃
T
>
1M = L>e diag(v)1M = L>e v. (4)

OST with group regularisation (OSTg). The problem here considered is

min
h≥0,T̃≥0

〈T̃, C̃〉+ λg Ωg(T̃) s.t. T̃1K = v, T̃>1M = h, (5)

where

Ωg(T̃) =

K∑
k=1

√
‖t̃k‖1 (6)
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Algorithm 1 Computation of OST’s labelling matrix L

Require: Transportation cost matrix C̃.
1: Initialise L = 0M×K
2: for i = 1, . . . ,M do
3: k?i = arg mink{c̃ik}
4: lik?

i
= 1

5: end for

Algorithm 2 Unmixing with OSTg (one sample)

Require: Sample v, transportation cost matrix C̃, hyper-parameter λg .
1: Initialise R̃(0) with zeros, set iter = 0
2: repeat
3: iter = iter + 1
4: Compute C̃(iter) = C̃ + R̃(iter) with R̃(iter) computed with Eq. (8)
5: Compute L

(iter)
g with Algorithm 1 applied to C̃(iter)

6: Compute T̃(iter) = diag (v)L
(iter)
g and h(iter) = L

(iter)>
g v

7: until convergence

and λg is an hyper-parameter. As mentioned in the main paper, the optimisation problem may be
addressed with majorisation-minimisation (MM). MM consists of iteratively minimising an upper
bound of the objective function which is tight at the current iterate (Hunter and Lange, 2004). With
this procedure, the objective function is guaranteed to decrease at every iteration. As it appears, in
our case, we only need to majorise the penalty term Ωg(T̃) to obtain a tractable update. We may use
the tangent inequality√

‖t̃k‖1 ≤
√
‖t̃(iter)k ‖1 +

1

2

√
‖t̃(iter)k ‖1

(t̃k − t̃
(iter)
k )>1M (7)

where t̃
(iter)
k is the current estimate. The inequality essentially linearises the regularisation term,

whose contribution can now be absorbed into the inner product 〈T̃, C̃〉, by replacing C̃ with C̃(iter) =

C̃ + R̃(iter) where R̃(iter) is the M ×K matrix with coefficients

r̃
(iter)
ik =

1

2
‖t̃k

(iter)‖−
1
2

1 . (8)

The resulting overall optimisation procedure is summarised in Algorithm 2.

Group-regularisation does not change the maxima locations of h. OSTg is a nonconvex prob-
lem (because Ωg(T̃) is a nonconvex function). Because MM is only a descent procedure, the solution
will be dependent on the initialisation. By initialising R̃(0) with zeros in Algorithm 2 we ensure that
the first estimate T̃(1) is the solution of the unregularised OST. The expression of R̃(iter) given by
Eq. (8) shows that columns of T̃ with larger norms will subsequently be less penalised than those with
smaller norms. This promotes group-sparsity along iterations but has another interesting property.
Indeed it is easy to see that the ranking of the values of the norms will not change along iterations.
Even though the group regularisation promotes sparsity and affects the magnitude of the coefficients
in h, one can predict from initialisation in which order the columns may shrink to zeros. As such
the locations of the maxima will be same in the estimates of h returned by OST or OSTg. Hence,
the F-measures will be same for the two methods in the experimental results with real data, and only
OST needs to be considered, as far as this particular evaluation metric is considered.

Doubly-regularised OST (OSTe+g). Doubly-regularised OST may be addressed in the same MM
setting, again by linearising Ωg(T̃). Then, Algorithm 2 applies again by computing L

(iter)
g using

Eq. (3) instead of Algorithm 1. For this same reason, the location of the maxima in h as returned by
OSTe+g will also be the same as those returned by OSTe.
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