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This document focuses on the part of my research about the relations between Optimal Transport
(OT) and Machine Learning (ML). This choice has been made in order to provide a self content document
on a major part of our recent results. For a short discussion about my other research projects I refer the
reader to the Curriculum Vitae at the beginning of the document.

Note that I tried to keep this chapter very general but it still requires to use the terminology of
optimal transport. I refer the reader to the next chapter for a short introduction to optimal transport
with all necessary definitions.

1.1 Optimal transport for Machine Learning
In the following I provide a quick history of the introduction to OT in the machine learning community
followed by a discussion of some aspects of OT that can be used in ML applications.

1.1.1 A brief history of OT for ML
Optimal transport (OT) Optimal Transport aims at finding the solution of least effort to move mass
from one distribution to another. It is a fundamental problem strongly related to physics and has been
investigated by mathematicians since the introduction of the problem by Monge [Monge 1781]. When a
solution of the problem exists, OT also provides a measure of similarity between the two distributions
under the form of the optimal transport cost. This similarity, also called Wasserstein distance, can be used
in practice on any distribution of mass and encodes the geometry of the space through the optimization
problem.

Despite all those nice properties, OT has only relatively recently been used in data science. One
of the reasons was the numerical complexity of solving the OT problem on large datasets. For instance
computing a Wasserstein distance between empirical distributions having n samples has a time complexity
of O(n3).



2 Chapter 1. Introduction

1990 1995 2000 2005 2010 2015
0

100

200

300

400

500

EMD : Rubner et al.

Sinkhorn : Cuturi

WGAN : Arjovski et al.

Occurences of OT+ML in Google Scholar

Figure 1.1: Number of references in google scholar that contain Optimal Transport and Machine Learning in
recent years. We also report the years corresponding to the works of Rubner (EMD [Rubner 2000]), Cuturi
(Entropic OT [Cuturi 2013]) and Arjovski (WGAN [Arjovsky 2017]).

Early applications to image processing and ML The image processing community has investigated
the use of OT before its introduction to ML. The use of Earth Mover’s Distance (EMD), a special case
of Wasserstein distance has been proposed to measure similarity between gray images in [Peleg 1989]
and between color histograms of images in [Rubner 1998,Rubner 2000]. OT has been investigated also
in the image processing community for color adaptation and interpolation [Rabin 2011, Bonneel 2011].
It has also been used to reconstruct the mass distribution the early universe in [Frisch 2002]. A good
introduction to applications in image and signal processing is available in [Kolouri 2016]. One of the first
application of OT in ML is its use as a divergence in matrix factorization [Sandler 2011]. It was also
investigated for semi supervised learning in [Solomon 2014b]. One difficulty that greatly limited the use
of OT in ML on large datasets was numerical complexity.

Regularized OT In 2013, Marco Cuturi proposed to solve an approximation of the original OT prob-
lem in [Cuturi 2013] by adding an entropic regularization term to the optimization problem. The re-
sulting problem is strictly convex and easier to solve with the Sinkhorn-Knopp algorithm, that can
be implemented efficiently in parallel on GPU. It was later extended thanks to Bregman projections
to the fast computation of regularized Wasserstein barycenter [Benamou 2015] and can be greatly
accelerated [Solomon 2015] on images. Those new computational solvers for OT problems opened
the door for larger datasets and the statistical properties of regularized OT have been investigated
since [Cazelles 2018,Genevay 2018].

One major feature of entropic regularized OT is that one can express its dual or semi-dual (introduced
more in detail in Chapter 1) without constraints. The objective value in the dual or semi-dual is an
expected value w.r.t. the source and target distributions, so [Genevay 2016] proposed to solve it with
stochastic gradient. This allowed for fast iterative methods that can scale to a large number of samples and
also to solve semi-discrete OT when samples from the continuous distribution can be drawn. Finally the
work that cemented the introduction of OT in ML was the Wasserstein Generative Adversarial Network
proposed in [Arjovsky 2017]. In this work, Arjovski and Bottou proposed to minimize the Wasserstein
distance as an objective value for a Generative network. To this end they proposed to solve the problem
in the dual and to use neural networks to estimate dual potentials.

Optimal Transport provides in the ML context a unique set of tools that can estimate mappings
or similarities between distributions that take into account the geometry of the space. Those tools are
meaningful even when the distributions do not share the same support which is the case when working
with empirical distributions. Since its reintroduction to the ML community in 2014, research in OT for
ML has been steadily increasing as illustrated in Figure 1.1. There have been several NeurIPS workshops
focusing on this theme with increasing number of participants in 2015, 2017 and we will co-organize the
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NeurIPS OTML workshop1 in 2019.

1.1.2 Four aspects of optimal transport

The following present four aspects of OT that are of particular interest for ML applications. These
aspects will be used to provide a structure for the rest of the document as discussed in the next section.

OT for mapping between distributions One major aspect of Optimal Transport is the estimation
of a transportation. The solution of OT problems always provides an optimal pairwise relation between
the support of two distributions. This relation can take the form of Monge mapping or a more "fuzzy"
representation as a joint source/target distribution. A nice property of this mapping is that it is the one
corresponding to the least effort or moving the mass between the two distributions, making it a sensible
and natural choice when no other pairwise relations are available in the data. The Monge mapping, or
an approximation, can be used in ML to move samples between distributions. I discuss in the following
how OT cab be used for domain adaptation, i.e. to adapt samples from different distributions/datasets.

OT for similarity between histograms A second aspect of OT that is a key element to its use in
ML is the Wasserstein distance. This distance allows a measure of similarity between distributions that
take into account the geometry of the space and it can be used to measure similarity between histograms.
We define more in detail the difference between what we call histograms and empirical distribution in
the next chapter but keep in mind that we suppose that histograms have a fixed support and encode
their information on the weights of their bins. An increasing amount of data available today can be
represented as histograms. Classical divergences on histograms are separable in the sense that they treat
every bins of the histograms separately. While this is very efficient, it limits the information provided by
the divergence and especially when there is a complex geometry defining the relations between the bins.
Wasserstein distance can (at a numerical cost) encode this geometry and provide better modeling of the
histogram data.

OT for similarity between empirical distributions When the distribution is an empirical distri-
bution, it can be expressed as a weighted sum of Diracs (often with uniform weights). In this case the
information on the distribution is not in the weights but in the position of those Diracs. Most of the
datasets in ML can be expressed as empirical distributions. One extra difficulty when learning from
those distributions is that their support never overlap (you never have two Diracs exactly at the same
position). One approach consists in using Kernel density estimation with Maximum Mean Discrepancy
(MMD) [Gretton 2012]. But this approach can sometimes lose information due to the kernel smoothing
and becomes non-informative when the distributions support are far away. In this case Wasserstein dis-
tance can still provide a meaningful similarity measure that despite being non-smooth provides usefully
sub-gradients for model fitting.

OT on structured objects OT has been recently extended to a similarity measure between distri-
butions that do not share a common space with the Gromov-Wasserstein distance [Mémoli 2011]. It has
been used with success on structured objects seen as distributions such as graphs. This similarity, has
seen an increasing interest in the ML community since it opens the door for template based classifiers
and computation of barycenters of structured objects. Interestingly, using OT in this setting provides
a transport matrix between parts of the structured objects (the nodes for graphs) and allows for nice
interpretation of the relations between the objects.

1https://sites.google.com/view/otml2019/

https://sites.google.com/view/otml2019/
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1.2 Manuscript outline and contributions
In this section, we provide a short description of the chapters of the manuscript and of our contributions
that are presented in these chapters.

Chapter 1 : Introduction This is the current chapter. It acts as a short introduction to the
manuscript and a positioning into the young history of OT for ML. It also provides an outline of the
manuscript and of the contributions that will not be detailed so as to avoid an infinite recursion.

Chapter 2 : Optimal Transport tools and algorithm In the next chapter I introduce the main
tools of OT theory that will be used in the rest of the manuscript. We provide an introduction to
the optimization problems of OT and the resulting Wasserstein distance. The following section focuses
particularly on discrete distributions that are often encountered in ML and introduce regularized OT.
Finally I discuss the algorithms that can be used to solve those problems and present generic solvers we
proposed to solve regularized OT.

Chapter 3 : Mapping with OT This chapter discusses the use of OT mapping in ML applications.
In its first part I introduce several approaches that have been proposed to estimate an OT mapping
between distributions. I also define the "barycentric" mapping followed by some of our contributions in
this domain for estimating continuous OT mappings [Perrot 2016,Seguy 2018,Flamary 2019].

The second part of the chapter presents our first foray into the application of OT for ML problems
with the proposition of using OT to align in an unsupervised way (no known relations between source
and target samples) distributions in Domain Adaptation (DA) problem. In this problem the objective is
to estimate a predictor on an unlabeled target distribution using information from a labeled but different
source distribution. We proposed in [Courty 2014, Courty 2016a] to use OT to transfer samples (and
their labels) with OT so as to be able to train a predictor in the target domain (OTDA). We discuss the
assumptions of OTDA and the generalization properties of the estimated predictors. Finally we discuss
some extensions of OTDA and several successful applications found in the literature.

Chapter 4 : OT between histograms This chapter discusses the use of OT and Wasserstein distance
to process data that can be expressed as histograms. The first section of the chapter is a short state of the
art of methods proposed in this domain such as Geodesic PCA in the Wasserstein space and supervised
learning with the Wasserstein distance.

Next I introduce two of our contributions in this domain. The first one is an application of Wasser-
stein distance on musical audio signals [Flamary 2016]. We proposed a novel ground metric for OT in the
frequency domain that can encode some robustness to the variability of the audio spectrum of musical
notes (magnitude of the harmonics for instance). The second contribution denoted as Deep Wasserstein
Embedding (DWE) aims at learning an embedding that can emulate the properties of the Wasserstein
space [Courty 2018]. The learned embedding allows for a very fast computation of approximate Wasser-
stein distance and opens the door for a fast implementation of a large family of data mining approaches
(PCA, Kmeans) in the Wasserstein space.

Chapter 5 : OT between empirical distributions This chapter discusses the use of OT on empirical
distributions (for instance datasets) or between an empirical distribution and a parametrized distribution
(semi-discrete case). The first part of the chapter is again a state of the art in ML, that will discuss
both unsupervised learning through Generative models (WGAN) and supervised learning using robust
optimization procedures.

The second part of the chapter presents two contributions in this domain. The first one is denoted
Wasserstein Discriminant Analysis (WDA) and can be seen as a generalization of the Fisher discriminant
analysis when the distributions are not linearly separable. The main idea is to optimize a ratio similar to
the one in the Fisher Discriminant but using Regularized OT to measure inter and intra- class similarities.
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The second contribution, denoted as Joint Distribution Domain Adaptation or JDOT, is an approach
that aims at transferring information between source and target distributions to find directly a predictor
in the target domain that aligns the joint feature/label distribution. I will also discuss extensions of
JDOT to deep learning where the feature extraction is estimated simultaneously with the predictor.

Chapter 6 : OT for structured data This chapter describes an extension of OT when measuring
similarity between distributions lying in different spaces. I will first introduce the Gromov-Wasserstein
distance that has been proposed recently to measure similarity between structured objects and discuss
its optimization problem.

Next I present the Fused Gromov-Wasserstein distance that we proposed recently to measure similarity
between structured objects such as labeled graphs. I illustrate how this new metric allows for comparison
and estimation of graph approximations and barycenters in the last section of the chapter.

Chapter 7 : Concluding remarks This last chapter is a short conclusion for the document. The first
section discusses current ongoing works and what I believe are pertinent research directions. The second
section is a more general discussion about what I believe are the major questions that OT is facing in
future ML applications.





Chapter 2

Optimal Transport tools and algorithms
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This chapter will shortly introduce some definitions about OT in general with a focus on OT be-
tween discrete distributions. The last section will discuss more in details the numerical aspects of the
optimization problems for OT and regularized OT.

Notations. Let Ω be a set of Rd and µ, µs and µt three probability measures on Ω, Ωs ⊂ Ω and Ωt ⊂ Ω
respectively. P (Ω) is the set of probability distributions on Ω.

2.1 Optimal transport theory
Optimal transport (OT) is a fascinating problem that has been studied by mathematicians for hundred
of years. A very good introduction with simple notations is available in the book by Santambrogio
in [Santambrogio 2014]. For a more detailed report of major results (and proofs) we refer the reader
to the impressive books by Villani [Villani 2009, Villani 2003]. While [Villani 2003] is out of print, it
is probably more accessible for ML practitioners. Finally the most complete document to date about
numerical aspect of OT is the book by Peyré and Cuturi [Peyré 2017].

2.1.1 Monge and Kantorovitch problems
Monge problem The OT problem has been historically introduced in a mémoire by Gaspard Monge
[Monge 1781]. The objective was to move dirt from one place (déblais) to another (remblais) in the most
efficient way possible. To this end, he seeks a mapping T that will displace the mass between the source
and target mass distributions (µs and µt). But he also wants this mapping to be optimal with respect
to a given cost function c that gives the effort necessary for moving a unit of mass between two positions
in the space Ω.

The problem can be expressed formally as follows. Provided two probability measures µs and µt and
a cost function c : Ω × Ω → [0,+∞], the Monge formulation of optimal transport [Monge 1781] aims at
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finding a mapping m : Ωs → Ωt such that

inf
m#µs=µt

∫
Ωs

c(x,m(x))µs(x)dx (2.1)

where # is the mass preserving push forward operator. This operator displaces the mass from a given
distribution using mapping m such that that for any measurable Borel subset A ∈ Ωt, the mass is
preserved through mapping: µt(A) = µs(m−1(A)) = m#µs(A).

The optimization problem in Equation (2.2) is non convex because of the constraints on the mapping
m and a solution for a Monge map might not even exist. For instance the fact that T is a mapping
means that one cannot split the mass from a single point, which means that a solution might not exist for
discrete distributions with no density. In the general case, there is also no unicity in the solution of the
problem. For these reasons the Monge problem remained an open question for many years. Note that in
1884 the Académie des Sciences proposed the Prix Bordin [Bordin 1884], an award of 3000 Francs, to the
first work proposing general solution to the Monge problem. The prize was not awarded in the following
years, but one can note the impressive mémoire submitted by Appell that discussed several discrete and
continuous cases [Appell 1887]. Results about the existence and unicity of the Monge map were limited
to special cases until the works of Brenier [Brenier 1991]. He proved that when distributions µs and µt
have densities and the cost is the squared euclidean distance c(x,y) = ‖x − y‖2, the Monge map exists
and is unique as discussed more in details later.

Kantorovitch Primal formulation In the 1940s, Kantorovitch proposed a relaxation of the problem
with applications in optimal resource allocation [Kantorovich 1942]. The main idea is that instead of
seeking a mapping, one can seek a joint distribution between the source and target that defines how the
mass is allocated. For a given symmetric cost function c : Ω× Ω→ [0,+∞] the primal OT problem can
be expressed as the following problem known as the Kantorovitch formulation

min
γ∈Π(µs,µt)

{∫
Ω×Ω

c dγ = E(x,y)∼γ [c(x,y)]
}
. (2.2)

This is a constrained linear program where the constraints are defined as the polytope of the so-called
transport plans defined as

Π(µs, µt) =
{
γ ∈ P (Ω,Ω) :

∫
γ(x,y)dy = µs(x),

∫
γ(x,y)dx = µt(y)

}
, (2.3)

where we can clearly see that γ is constrained to have µs and µt as left and right marginals respectively.
In other words, we seek for the joint distribution γ with µs and µt as marginals that minimizes the
expected transportation cost. This optimization problem is a linear program (linear objective and linear
constraints). It is convex and always has a solution for a semi lower continuous c because the independent
distribution γ(x,y) = µs(x)µt(y) respects the constraints.

Kantorovitch dual formulation The Kantorovitch primal formulation (2.2) is a linear program. Its
dual by the Rockafellar-Fenchel theorem is:

max
φ∈C(Ωs),ψ∈C(Ωt)

{∫
φdµs +

∫
ψdµt

∣∣∣ φ(x) + ψ(y) ≤ c(x,y)
}

(2.4)

where C(Ω) is the set of continuous functions on Ω. The two scalar functions φ and ψ (also known as
Kantorovich potentials) are the dual variables of the optimization problem.

c-transform and semi-dual The c-transform (or c-conjugate) Hc is a formulation that appears nat-
urally in the dual formulation of OT. It is defined as

φc =: Hc(φ) =: inf
x

c(x,y)− φ(x) (2.5)
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and can be seen as a generalization of the Legendre transform. Using the c-transform one can reformulate
the dual problem (2.4) in its semi dual form

max
φ∈C(Ωs)

∫
φdµs +

∫
φcdµt (2.6)

where the problem now depends only on the first dual potential and is the supremum of a linear function
w.r.t. µs and µt.

Case when c(x,y) = ‖x − y‖ In this case there exists a solution but it is not unique. But one can
show that the optimal dual potential φ ∈ Lip1 is a 1-Lipschitz function and we have a close form solution
of the c-transform φc(x) = −φ(x). The optimal transport problem then amounts to finding φ ∈ Lip1

maximizing
sup

φ∈Lip1

∫
φd(µs − µt) = sup

φ∈Lip1
Ex∼µs [φ(x)]− Ey∼µt [φ(y)] (2.7)

This formulation is very nice due to the very simple c-transform, the optimization problem depends only
on one dual variable. The main difficulty in this optimization problem is to optimize over the set of 1-
Lipschitz functions. Some relaxations of this problem were proposed in the context of Generative models
as discussed in the next section.

Case when c(x,y) = ‖x−y‖2/2 Whenever the cost is quadratic and the distributions µs and µt have a
density, then Brenier’s Theorem [Brenier 1991] states that the optimal transport mapping m(x) exists
and is unique. More remarkably, it is a gradient of a convex function Φ(x):

m(x) = x−∇φ(x) = ∇
(
‖x‖2

2 − φ(x)
)

= ∇(Φ(x)) (2.8)

Note that this result can be generalized to any strictly convex loss of the form c(x,y) = h(x− y).

Case between Gaussian distributions when c(x,y) = ‖x − y‖2/2 A well known special case of
OT is when c(x,y) = ‖x − y‖2/2 and µs = N (ms,Σs) and µt = N (mt,Σt). When Σs and Σt are both
strictly positive definite, the Monge mapping can be expressed as

m(x) = ms + A(x−mt) (2.9)

with
A = Σ−

1
2

s

(
Σ

1
2
s ΣtΣ

1
2
s

) 1
2 Σ−

1
2

s = AT (2.10)

This result has been discussed and proven several times in the Optimal Transport literature [Givens 1984,
McCann 1997,Takatsu 2011,Bhatia 2018,Malagò 2018]. Note that we have investigated the quality of the
Monge mapping estimator m̃ when the covariances and means are estimated from a finite number of IID
samples in [Flamary 2019]. In this work we proved a mapping error Ex∼µs [‖m(x)− m̃(x)‖] is O(n−1/2)
that is remarkably independent from the dimensionality but of course limited to linear Monge mapping.

2.1.2 Wasserstein distance
From the optimal transport optimization problem one can define the Wasserstein distance over the set
of distributions as

Wp(µs, µt) = min
γ∈Π(µs,µt)

{∫
Ωs×Ωt

c(x,y) dγ(x,y)
} 1

p

(2.11)

where c(x,y) = ‖x − y‖p and p ≥ 1. This distance is also known in the computer vision community as
the Earth Mover’s Distance (W 1

1 ) when p = 1 [Rubner 1998]. It can encode the geometry of the space
through c and always gives a meaningful value even when the two distributions have no overlapping
support as discussed in the following examples.
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Example 2.1.1 (Wasserstein distance between 1D Gaussian distributions). We illustrate the Wasserstein
distance on a simple example between two 1D Gaussian distributions N (ms, σ

2) and N (mt, σ
2). The

value of theW1 distance in this case is |ms−mt|, which obviously increases with the separation |ms−mt|
of the two distributions. As a comparison to another classical divergence, the total variation converges
to 2 when |ms −mt| → ∞.

Example 2.1.2 (Wasserstein distance between 1D uniform distributions). We illustrate the Wasserstein
distance on a simple example between two 1D uniform distributions U(ms − 1

2 ,ms + 1
2 ) and U(mt −

1
2 ,mt + 1

2 ). The value of the W1 distance in this case is also |ms −mt|. But in this case the well known
Kullback Leibler (KL) is not defined when |ms −mt| > 1, and the total variation is exactly equal to 2
and hence has a null gradient. This property has been a key reason in the recent interest in ML since a
lot of learning methods rely on gradient descent for fitting empirical distributions.

Special case between 1D distributions As the two examples above suggest the Wasserstein distance
in 1D can be easily solved when one have access to its cumulative distribution functions. When c(x, y)
is a strictly convex and increasing function of |x− y| the OT plan respects the ordering of the elements
and the solution is given by the monotone rearrangement of µs onto µt. The value of the W1 Wasserstein
distance with ground cost c is

W1(µs, µt) =
∫ 1

0
c(F−1

µs
(q), F−1

µt
(q))dq (2.12)

where Fµ is the cumulative distribution function of µ and F−1
µ (q), q ∈ [0, 1] is the quantile function

such that F−1
µ (q) = inf{x ∈ R : Fµ(x) ≥ q}. This close form can be easily approximated when using

empirical distributions and can be computed with a O(n log(n)) sorting. This very efficient solution led
to the proposition of Sliced Radon Wasserstein in [Bonneel 2014] that consists in computing the expected
value of the Wasserstein distance over the 1D projections integrated on the unit sphere Sd−1 (often from
finite random directions). The Sliced Radon Wasserstein has been used as a measure of fit for generative
networks thanks to its efficient computation [Kolouri 2018,Deshpande 2018,Liutkus 2018].

Bures-Wasserstein distance between Gaussien distributions When c(x,y) = ‖x− y‖2/2, µs =
N (ms,Σs) and µt = N (mt,Σt) the Wasserstein distance can be expressed as:

W 2
2 (µs, µt) = ||ms −mt||22 + B(Σs,Σt)2 (2.13)

where B(, ) is the so-called Bures metric:

B(Σs,Σt)2 = trace(Σs + Σt − 2(Σ1/2
s ΣtΣ1/2

s )1/2). (2.14)

This distance is also discussed in [Peyré 2017, Remark 2.29]. Note that when only empirical estimates (for
means and covariances) for the distributions are available, using these estimates in the equation above
gives an approximation with a sample complexity of O(n−1/2) as shown in the supplementary material
of [Rakotomamonjy 2018].

Wasserstein Barycenters One fascinating aspect of the Wasserstein distance is the geometrical space
that is induced by the distance. This geometry has been investigated by [McCann 1997] who proposed
an interpolation between two distributions minimizing the Wasserstein distance. This interpolation can
be generalized to what is known as Wasserstein barycenter [Agueh 2011] between distributions {µi}i
expressed as follows

µ̄ = arg min
µ

n∑
i=1

λiW
p
p (µi, µ) (2.15)

where λi > 0 and
∑n
i λi = 1. The barycenter can be seen as a Frèchet mean with respect to the

Wasserstein distance. The McCann interpolant is a special case of (2.15) where n=2 and λ = [1 − t, t]
with 0 ≤ t ≤ 1 [McCann 1997].
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Example 2.1.3 (Wasserstein barycenter between 1D Gaussians). The W2 barycenter between the two
Gaussian distributions N (ms, σ

2) and N (mt, σ
2) from Example 2.1.1 has a very simple form. For inter-

polation time t as defined above, the barycenter is the Gaussian distribution N (tmt + (1− t)ms, σ
2). We

can see that the Gaussian is displaced along tey axis. The fact that the distribution interpolates implies
that only one mode will be in the barycenter as opposed to the Euclidean barycenter that can have two
modes depending on the variance σ2.

2.2 Discrete distribution and entropic regularization
This section discusses the numerical aspects of OT computation for discrete distributions. It also in-
troduces entropic regularization of OT and the corresponding optimization algorithms. Finally we talk
about more general regularizations that can encode different information and discuss the recent stochastic
optimization approaches.

2.2.1 Discrete Optimal Transport
In this subsection we focus on the OT problem for discrete distributions since it is the most common
situation in machine learning.

Discrete distributions In the following we will use discrete distributions of the form

µ =
n∑
i=1

aiδxi
, µs =

ns∑
i=1

aiδxs
i
, µt =

nt∑
j=1

bjδxt
j

(2.16)

where xsi ,xtj ∈ Ω2,∀i, j and a ∈ Σns b ∈ Σns and Σn = {(ai)i ≥ 0;
∑n
i=1 ai = 1} is the simplex polytop.

This formulation can represent both the Lagrangian formulation (that is called empirical distribution in
this document) where both the support xi and the weights ai are free (quotient space: Ωn, Σn ) and the
Eulerian formulation (called histogram) where the support xi is fixed (such as a regular grid for instance)
and the information is encoded in a ( Quotient space: Σn ). Note that for a ML dataset with IID samples,
the Lagrangian formulation with uniform weights ai = 1

n ,∀i is often used. Finally the samples xi can be
stored into matrices X = [x1,x2, . . . ,xn]> ∈ Rn×d (resp. Xs,Xt).

Primal problem The optimal transport problem between distributions µs and µt can be expressed as
the following linear program

T0 = arg min
T∈P(a,b)

〈T,C〉F (2.17)

where C is a cost matrix with Ci,j = c(xsi ,xtj), 〈T,C〉F =
∑
i,j Ti,jCi,j is the Frobenius scalar product

and the marginal linear constraints are
P(a, b) =

{
T ∈ (R+)ns×nt | T1nt = a, TT 1ns = b

}
(2.18)

The solution is sparse with at most ns + nt − 1 non-zero coefficients in the transport matrix T0. The
matrix is actually very interpretable because each line i describes how the mass from bin ai is transported
onto the bins bj of the target distribution. Optimization problem (2.17) is usually solved in the equivalent
dual problem.

Example 2.2.1. This problem can be seen as the search for the optimal transport between production
sites i producing an amount ai and the stores j selling an amount bj when the cost of moving a unit
of mass from i to j is Ci,j . The constraints imply that all the production from the production sites is
transported to the stores and each store receives exactly the required amount bi. The transport company
wants to maximize its profit by minimizing the transport cost.
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Dual formulation The dual formulation of the convex discrete OT problem (2.17) is

max
α∈Rns ,β∈Rnt

αTa + βTb (2.19)

s.t. αi + βj ≤ Ci,j ∀i, j (2.20)

where α and β are the dual potentials (ns + nt coefficients with nsnt constraints ). The problem above
can be cast as a Network Flow problem and solved with a Network Simplex algorithm [Peyré 2017, Section
3.5] such as the one implemented in [Bonneel 2011] of complexity O(n3 log(n)) when n = ns = nt. In the
particular case where the weights in a and b are uniform and the number of samples is the same, the OT
matrix is a permutation matrix and other approaches such as the Auction Algorithm [Bertsekas 1981]
can also be used. This complexity is clearly a limit to ML applications that sometimes require to learn
from very large datasets.

Example 2.2.2. This dual can be interpreted as switching from the transport company view (where the
mass is moved to minimize cost) to the view of the individuals that sell and buy some amount of mass
and want to maximize their profit. The potentials can be seen as the unit price where the goods are sold
(α) and bought (−β) at the source and target. Intuitively both the seller and buyer want to maximize
(max in (2.19)) their profit but the difference between the selling αi and buying −βj cannot be more
than the transport price Ci,j (constraints in (2.20)).

c-transform and semi-dual Similarly to the continuous case, one can define the c-transform for the
dual potential α as

(αc)j = min
i

Ci,j − αi (2.21)

The optimization problem can then be expressed only as a function of α in the semi-dual formulation

max
α∈Rns

αTa −
∑
j

bj max
i

(αi − Ci,j) (2.22)

This formulation can also be interpreted as the fact that for a given selling price α the buyer j will always
buy at the minimum price ensuring that the transport price is covered (the c-transform).

Discrete Wasserstein distance For discrete distributions, we will use the following notation for the
Wasserstein distance

WC(a,b) = 〈T0,C〉F (2.23)

where C is the cost matrix and T0 is the solution of optimization problem (2.17). Note that this is a
slight abuse of notation since we can use any cost matrix C and we discard the parameter p used in the
continuous case (2.11). This formulation will also be used for regularized OT but using T as the solution
of the regularized OT problem.

Sub-gradients for the discrete Wassersein distance The Wasserstein distance is the solution of
a linear program and is not differentiable. But any solution α∗ of the dual problem (2.20) is a sub-
gradient of WC(a,b) with respect to the source distribution weights a. It can then be used for instance
to estimate a Wasserstein Barycenter as in [Cuturi 2014a]. The gradient w.r.t. the position of the diracs
when working with empirical distributions requires to differentiate through c (See [Cuturi 2014a, sec.
4.3]).

Convergence of Wasserstein distance One very interesting property of the Wasserstein distance is
its ability to measure a meaningful distance between distributions that do not have a shared support. One
particular case of this is the Wasserstein distance between a distribution ν and its empirical counterpart



2.2. Discrete distribution and entropic regularization 13

νn = 1
n

∑n
i=1 δxi

where xi are IID realizations from ν. In this case the Wasserstein distance has been
proven to converge with the following speed [Fournier 2015]

E[W1(ν, νn)] = O
(
n−

1
d

)
, (2.24)

where we recall that d is the dimensionality of Ω. This convergence speed is particularly slow for high
dimensional distributions and seems to pale in comparison to kernel MMD [Gretton 2012] that is known
to be O

(
n−

1
2

)
, independent from d. Sharpest bounds of O

(
n−

1
s

)
with s ≤ d depending on geometrical

properties of the distribution ν have been obtained in [Weed 2017].

2.2.2 Entropic regularization
A major recent result of optimal transport that allowed its use in numerous ML applications has been
the seminal works of Cuturi [Cuturi 2013] about entropic regularized optimal transport.

Entropic regularized OT in the primal Cuturi proposed to solve the following optimization problem

min
T∈P(a,b)

〈T,C〉F + λΩe(T) (2.25)

with λ ≥ 0 the regularization parameter and Ωe(T) =
∑
i,j Ti,j(log(Ti,j)− 1) the entropic regularization

term. The second term promotes a smooth joint distribution T. Interestingly, problem 2.25 is equivalent
to regularizing with the Kullback-Leibler (KL) divergence between T and a matrix of ones. Note that in
this document we will use the regularization defined above but other equivalent formulations use a KL
between T and the independent distribution ab> instead of a uniform matrix.

This regularization makes the problem strongly convex and less sensitive to small changes in the
distribution. It will make the optimization problem easier to solve as discussed in the following. But it will
spread the mass in the OT matrix, making it non-sparse when λ > 0 which can make the interpretation
of the OT matrix more difficult.

Sinkhorn-Knopp and Bregman projections The problem (2.25) is strictly convex and can be solved
with the well known Sinkhorn-Knopp Matrix scaling Algorithm [Sinkhorn 1967]. Indeed the solution can
be expressed as

T = Diag(u)K Diag(v), with K = exp(−C/λ) (2.26)

where the exponential function is taken element-wise.
The Sinkhorn-Knopp Algorithm (see Alg.2.1) updates iteratively u and v by projecting on the left and

right marginals until convergence. It is a very simple algorithm that relies only on matrix multiplications
and point-wise operations [Cuturi 2013]. It can be easily accelerated on CPU and GPU and can solve
in parallel several OT problems using the same cost matrix with different marginals (u and v become
matrices but the algorithm is similar). This algorithm has been shown to have a linear convergence
[Altschuler 2017] and is known to be very fast especially for a large regularization since the convergence
coefficient depends directly on λ. Note that one can also perform Greedy update by updating the
components of u and v that are farthest from convergence and proposed in the Greenkhorn Algorithm
of [Altschuler 2017].

The SK algorithm is in fact a special case of Bregman Projections as discussed in details in [Ben-
amou 2015]. Problem (2.25) can indeed be reformulated as

min
T∈P(a,b)

KL(T|K) (2.27)

whereKL(T|K) =
∑
i,j Ti,j log( Ti,j

Ki,j
)−Ti,j+Ki,j is the Kullback-Leibler divergence between the matrices

T and K. The Bregman Projection algorithm can then be applied by projecting alternatively the current
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Algorithm 2.1 Sinkhorn-Knopp Algorithm (SK). � denotes the point-wise division.
Require: a,b,C, λ

1: u(0) = 1,K = exp(−C/λ)
2: for i in 1, . . . , nit do
3: v(i) = b�K>u(i−1) // Update right scaling
4: u(i) = a �Kv(i) // Update left scaling
5: end for
6: return T = Diag(u(nit))K Diag(v(nit))

T matrix in the KL sense onto the left and right marginals. Numerous generalizations of this very simple
algorithm, to barycenter or multi-marginal OT are presented in [Benamou 2015].

It is also interesting to note that a relaxed formulation of OT where the constraints are relaxed as
a weighted additive term measuring the KL divergence between the marginals of T and the objective
marginals a,b [Frogner 2015,Liero 2018,Chizat 2018]. This very elegant formulation can also be solved
by Bregman projections and allows to compute unbalanced OT when the total masses of a and b are
different [Benamou 2003].

Entropic regularized OT in the dual Problem (2.25) can also be reformulated in the dual as

max
α∈Rns ,β∈Rnt

αTa + βTb− λ
∑
i,j

exp((αi + βj − Ci,j)/λ) (2.28)

where the optimal dual variables have a direct relation with the scaling vectors in Sinkhorn (u?,v?) =
(exp(α?/λ), exp(β?/λ)). Note that thanks to the regularization, the dual problem is unconstrained which
means that the problem can be solved by any gradient based algorithm such as L-BFGS [Cuturi 2016,
Blondel 2018]. Similarly to unregularized OT, one can express a c-transform for the regularized OT
problem above and find the regularized αc

λ as

(αc
λ)j = λ log(bj)− λ log

(∑
i

exp((αi − Ci,j)/λ)
)

(2.29)

which can be seen as a soft-min that converges to the true minimum (2.21) when λ→∞. The semi dual
can also be obtained and the problem solved only w.r.t. α [Genevay 2016].

max
α∈Rns

αTa − λ
∑
j

bj log
(∑

i

exp((αi − Ci,j)/λ)
)

(2.30)

The formulation above is a sum of smooth loss functions and can be solved using stochastic optimization
[Genevay 2016] as discussed in section 2.3.2.

Sinkhorn distance and Auto-differentiation Now that we have defined the regularized OT problem
we discuss how to compute the Wasserstein distance in this case. A first approximation would be to
approximate the Wasserstein distance as the optimal value in problem (2.25) such that Wλ

C(a,b) =
〈Tλ,C〉F + λΩe(Tλ). Since the optimization problem (2.25) is strictly convex and differentiable it has a
unique gradient w.r.t. a that can be shown to be the dual variable α? = λ log(u) [Cuturi 2014a]. But the
regularization term will introduce an important smoothing of the gradient [Luise 2018]. A more sensible
option is to use the following expression without the entropic term

OTλC(a,b) = 〈Tλ,C〉F (2.31)

where Tλ is the OT matrix in Equation (2.25). This term has been sometimes called the Sinkhorn loss or
sharp Sinkhorn and has been used to estimate barycenters [Luise 2018] and auto-encoders [Patrini 2018].



2.3. General regularization and stochastic optimization 15

But it is not a divergence because the regularization λ > 0 prevent OTλC(a,a) to be 0. In order to address
this problem [Genevay 2017b] has proposed the following formulation coined Sinkhorn Divergence

W̃λ
C(a,b) = Wλ

C(a,b)− 1
2W

λ
C(a,a)− 1

2W
λ
C(b,b) (2.32)

that requires three times the computational complexity of (2.31).
Also note that the OT loss described above in (2.31) is sightly more difficult to optimize since the

problem is now a bi-level optimization problem that requires in theory the use of the implicit function
theorem to compute a gradient [Luise 2018]. An elegant approach that can be used to optimize over (2.31)
and (2.31) is auto-differentiation of the Sinkhorn algorithm which has been proposed in [Genevay 2017b,
Flamary 2018]. The individual operations in Algorithm 2.1 are indeed all differentiable and modern
auto-differentiation tools can compute the gradient along the Sinkhorn iterations with a small overhead.
This last approach has been used to estimate Generative Adversarial Networks [Genevay 2017a].

Regularized Wasserstein Barycenters When using entropic regularization [Benamou 2015] has
proposed a very elegant Bregman projection algorithm to estimate efficiently a Wasserstein barycenter.
Note that as proposed in [Solomon 2015] when the histograms have a separable structure, support on a
regular grid for instance, the operators can be performed with a convolution which can greatly decrease
the complexity of the problem. This allowed for applications on 3D images for computing population
averages of fMRI images that take into account the geometry of the data [Gramfort 2015,Wang 2018].
A very detailed discussion about Wasserstein barycenters and their numerical estimation is provided
in [Peyré 2017, Section 9.2]. Note that [Bigot 2018b,Bigot 2018a] have studied the statistical properties
and convergence of the Wasserstein barycenters with entropic regularization.

Convergence speed of Sinkhorn distance The convergence speed of the Sinkhorn Divergence has
been investigated first numerically in [Genevay 2017b] that suggested that it was more robust thanWasser-
stein with a convergence speed independent from d. The theoretical proof was provided in [Genevay 2018]
that showed that the Sinkhorn divergence converges better than Wasserstein with speed O(n− 1

2 ) albeit
depending on the regularization term λ interpolating between Wasserstein and MMD.

2.3 General regularization and stochastic optimization
In this section we discuss a more general framework of regularized OT and the recent development of
stochastic optimization to solve the OT problem.

2.3.1 General regularized OT problems
Regularized Optimal Transport Entropy has been up to now the preferred regularization for optimal
transport mostly due to its efficient optimization algorithm. But depending on prior knowledge about
the distribution other regularization can be used instead. The general optimization problem is of the
form

min
T∈P(a,b)

〈T,C〉F + λΩ(T) (2.33)

where Ω is a general regularization term. A number of possible regularizations has been investigated
in [Dessein 2016] where the resulting distance is called ROT Mover’s distance. They showed that the
alternative projection used for entropic regularization can be adapted to a large family of regularization.

Quadratic regularization One particular regularization is the squared Frobenius norm of the trans-
port matrix of the form

ΩF (T) =
∑
i,j

T 2
i,j (2.34)
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This regularization has the advantage that while it also promotes a spreading of the mass, the resulting
matrix stays sparse along the regularization path [Blondel 2018] as opposed to entropic regularization
that looses sparsity for λ > 0. This regularization has been used for solving transport over a graph
in [Essid 2018] where a Newton-type solver has been proposed to solve the problem. Also note that the
dual formulation for this regularization is of the form

max
α∈Rns ,β∈Rnt

αTa + βTb− 1
4λ
∑
i,j

max(0, αi + βj − Ci,j)2 (2.35)

which is a smooth function that resembles the SVM Squared Hinge of SVM-Rank loss [Laporte 2014a]
and can be solved efficiently with L-BFGS [Blondel 2018]. Finally the quadratic regularization can be
generalized to a Mahalanobis regularization, for instance [Ferradans 2014, Flamary 2014d] proposed to
regularize the OT matrix using a graph of neighborhood between empirical samples which results in a
quadratic regularization w.r.t. T.

Group lasso and structured regularization Regularization can make the optimization problem
more robust and efficient to solve, but one can also use it to encode additional information available
about the data. For instance if we know that the bins in the histogram from the source distribution are
somewhat grouped together it becomes sensible to promote the sharing of mass only among those groups.
To this end, we proposed in [Courty 2014,Courty 2016a] to use the following regularization

Ωp,q(T) =
∑
j,k

(∑
i∈Gk

T pi,j

) q
p

+ λe
∑
i,j

Ti,j(log(Ti,j)− 1) (2.36)

where Gk contains the non-overlapping index of the bins in group k. This regularization will promote
group sparsity for q ≤ 1 and p ≥ 1 as discussed more in details in [Courty 2016a]. Note that we keep the
entropic regularization term because the non-regularized OT is already sparse and we need to spread the
mass in order to make groups appear. In terms of optimization we proposed in [Courty 2014] to use a
Majoration-Minimization approach for the non convex case p = 1, q = 1

2 that consists in solving at each
iteration of the algorithm a linearization of the concave group lasso with Sinkhorn. The classical convex
group lasso p = 2, q = 1 regularization is a little more complex but can be solved using a generalized
conjugate gradient as discussed in the following.

The group lasso discussed above supposes that the groups of bins are known a-priori, which is a
strong assumption. In [Alvarez-Melis 2017] the authors propose to use the very general framework of
submodularity to encode structural information in OT. In practice their formulation allows for the joint
estimation of the groups and the OT matrix.

Projections, Conjugate and Generalized Conjugate gradients In this paragraph we discuss the
different optimization algorithms that can be used to solve the general regularized OT problem.

First, alternating projection approaches are known to work particularly well on entropic regular-
ization [Benamou 2015]. These alternating projection approaches can be generalized to a wide class
of regularization [Dessein 2016] terms. But in the general case, one also needs to project onto the
positive orthant (which was not necessary with entropic regularization) so a more general Dikstra Al-
gorithm [Bauschke 2011, Chapter 29] has to be used. Also note that the efficiency of those alternative
projection methods depends on the existence of a fast close form projection operator or else it will need
to use an iterative solver for each projection [Dessein 2016].

There exists a very simple approach that was proposed in [Ferradans 2014] to solve regularized OT:
Conditional Gradient (CG). This approach relies on optimizing at each iteration a linearization of the
optimized loss which can be done with a solver for non-regularized OT (See Algorithm 2.2.a). This
approach is very general and will even converge for non-convex regularization term [Lacoste-Julien 2016]
but solving non-regularized OT problem at each iteration can be computationally intensive.
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Algorithm 2.2 Conjugate Gradient (CG) and Generalized Conjugate Gradient (GCG)
(a) Conjugate Gradient (CG)

Require: a,b,C, λ,Ω
1: T(0) = Solve OT (2.2) with cost matrix C
2: for i in 1, . . . , nit do
3: G = C + λ∇Ω(T(i−1))
4: S = Solve OT (2.2) with cost matrix G
5: Select step α with ∆ = S−T(i−1)

min
α

〈
T(i−1) + α∆,C

〉
F

+ λΩ(T(i−1) + α∆)

6: T(i) = T(i−1) + α∆
7: end for
8: return T(nit)

(b) Generalized Conjugate Gradient (GCG)

Require: a,b,C, λ,Ωgcg = Ω0 + λeΩe (Eq. (2.37))
1: T(0) = Solve Sinkhorn with cost matrix C
2: for i in 1, . . . , nit do
3: G = C + λ∇Ω0(T(i−1))
4: S = Solve Sinkhorn with cost matrix G
5: Select step α with ∆ = S−T(i−1)

min
α

〈
T(i−1) + α∆,C

〉
F

+ λΩgcg(T(i−1) + α∆)

6: T(i) = T(i−1) + α∆
7: end for
8: return T(nit)

This is the reason why we proposed to use a Generalized conditional gradient (GCG) [Bredies 2009] to
solve the optimization problem that regularized by a general term plus an entropic term in [Courty 2016a,
Rakotomamonjy 2015] of the form

Ωgcg(T) = Ω0(T) + λeΩe(T) (2.37)

where Ωe(T) =
∑
i,j Ti,j(log(Ti,j) − 1) is the entropic regularization of (2.25). GCG allows to linearize

at each iteration of the algorithm only part of the objective function, which allows us to linearize Ω0
but keep the entropic term when solving the inner problem. In practice it means that each iteration of
the algorithm can use the Sinkhorn algorithm that can be much quicker on some problems. It has been
successfully used for group lasso regularization [Courty 2016a, Rakotomamonjy 2015] and has similar
complexity to the MM algorithm used for non-convex group lasso but still need to perform a line search
which can incur computational cost.

2.3.2 The rise of stochastic optimization
Stochastic optimization has been used with tremendous results for large scale optimization in ML, in
particular to train neural networks on large scale datasets [Bottou 2010]. The main idea is that when
optimizing a complex function that is a sum of numerous functions, such as empirical loss on a dataset
for instance, one do not need to compute an exact gradient on the whole dataset at each update of the
parameter but use a sensible (and fast to compute) approximation. It is natural to try and apply those
approaches to solve the OT problem in order to speedup computation for large problems.

Stochastic optimization in the semi-dual The first stochastic optimization algorithm applied to
OT has been proposed by [Genevay 2016]. In this work they express the dual (2.28) and semi-dual (2.30)
problem for entropic regularized OT and show that it has a structure amenable to stochastic optimization.
They propose to use Stochastic Average Gradient (SAG) in the semi-dual which is proven to converge
linearly to the solution of the strongly convex optimization problem.

Stochastic optimization in the dual The seminal works of [Genevay 2016] also proposed to solve the
entropic OT problem between continuous distributions in the dual. To this end they propose to estimate
dual potentials in a Reproducing Kernel Hilbert Space (RKHS). This approach is very elegant, and can
handle both continuous and semi-discrete formulations, but since it relies on kernel machines it does not
scale well on large datasets.

A large scale approach using neural networks to solve the non-regularized dual problem has been
proposed in [Arjovsky 2017]. In a nutshell, they proposed to solve the non-regularized OT problem (2.7)
with c(x,y) = ‖x−y‖ directly in the dual and use a neural network to estimate the dual potential φ (the
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second potential is a closed form φc = −φ in this case). This elegant formulation is hard to implement in
practice since the constraint on the Lipschitz constant φ ∈ Lip1 cannot be enforced on a neural network
so the authors had to use a coarse approximation based on parameter thresholding. This meant that
one cannot recover the Wasserstein distance at the end of the optimization due to an unknown constant.
This approach and its numerous extensions are discussed more in detail in Chapter 5.

Finally the approach discussed above is limited to the Euclidean cost function and only solves an
approximate non-regularized OT. We proposed in [Seguy 2018] to solve the regularized dual problem
similarly to [Genevay 2016] but using neural networks to estimate the dual potential instead of kernel
machines. For both entropic and Frobenius regularization, this dual problem is indeed unconstrained and
can be solved with stochastic gradient on the neural network parameters. Note that this approach also
works for any ground metric and the estimated transport matrix converges weakly to the non-regularized
OT when the regularization goes to 0 [Seguy 2018, Theorem 1].

Stochastic Wasserstein barycenters Several recent works also address the problem of estimating
Wasserstein barycenter on large datasets with stochastic optimization. In particular [Staib 2017] proposed
a stochastic projected gradient ascent that can be implemented in parallel and can handle streaming data.
The recent works of [Claici 2018] also propose a stochastic optimization of Wasserstein barycenters but
also allow the estimation of the support of the barycenters. These approaches allow the estimation of
un-regularized barycenters, which can be interesting of large datasets when the distributions are "peaky"
since as discussed above the regularization can have a "low pass" effect that can lead to loss of information.
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This chapter discusses the problem of estimating an OT mapping from empirical distributions. It will
also introduce one of our contribution to domain adaptation that uses the estimated mapping.

3.1 Optimal transport mapping estimation
While mathematicians have investigated in depth the properties and existence of optimal transport map-
ping between continuous distributions [Brenier 1991], they rarely asked the question of estimating a
mapping from empirical distributions since as discussed in the previous chapter, this mapping might not
even exist.

But in machine learning, we often suppose that we have access to a finite sampling from an unknown
continuous distribution. Which means that even though there is no mapping between two given samples,
there might exist a smooth mapping between the underlying distributions. The question of estimating a
reasonable continuous mapping from the empirical distribution is then a classical learning problem and
this mapping can be used in numerous applications as discussed in the next sections.

3.1.1 Barycentric mapping
A very elegant approach for mapping discrete samples has been proposed and used in [Reich 2013] for
sampling in Sequential Monte Carlo Methods. It has also been used in [Ferradans 2014] to adapt the
colors of the pixels between images. They proposed to use regularized OT to map the RGB color values
between two images. The main idea is that since the transport matrix T contains the information of
mass displacement, it can be used to find a reasonable position for a given displaced sample. For a given
source sample xsi and the OT matrix T its transported position can be estimated by solving the following
optimization problem

m̂T(xsi ) = arg min
x

∑
j

Ti,jc(x,xtj). (3.1)

The approximate mapping above gives the barycenter, w.r.t. the cost c, of the target samples weighted
by the OT matrix.
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Barycentric mapping with c(x, y) = ‖x− y‖2/2 One particular case of the formulation 3.1 is when
using squared Euclidean loss as proposed in [Ferradans 2014]. In this case the barycenter is a weighted
sum of the target samples:

m̂T(xsi ) = 1∑
j Ti,j

∑
j

Ti,jxtj = arg min
x

∑
j

Ti,j‖x− xtj‖2. (3.2)

It has nice geometric properties, for instance the displaced samples will always be inside the convex hull
of the samples in the target distribution. It is also very efficient to compute since it can be done with a
matrix product between T and the target sample matrix Xt with the following expression:

X̂s = Diag
(

1
T1nt

)
TXt (3.3)

where the division in the diagonal is done component-wise. The application is made even faster when
the OT matrix T is sparse. Note that a similar operation is performed when updating the position of
the Wasserstein barycenter in [Cuturi 2014a].

Barycentric effect and limits The approach proposed above is very elegant and fast when the OT
matrix T is already estimated. It also converges to the true Monge mapping for the squared Euclidean
loss when the number of samples goes to infinity as we proved in [Seguy 2018, Theorem 2]. But it has a
few limits that will be discussed here.

First, the use of regularization has some important effect on the barycentric mapping. Indeed regu-
larization, has the effect of spreading the mass between all target samples which means that all samples
will impact the position of the displaced samples. It can be seen in practice as a shrinkage effect where
all displaced samples will converge to the center of mass for a large regularization. While this can be seen
as denoising (averaging target samples), it also makes the choice of the regularization term very sensitive.

Second this approach allows to find a displacement only for samples already in the distributions when
T was estimated. In this sense it does not allow "out of sample" prediction because if new samples are
available in the source and target distributions, the OT problem has to be solved again. It can also
be very complex to solve the OT problem for a large number of samples. These problem have been
handled elegantly in [Ferradans 2014] using k-means clustering as a subsampling of the data. It greatly
decreases the number of samples of the distributions (quantification in color space) but some information
is obviously lost. In order to have a better mapping, they proposed to store the displacement for each
pixel to its cluster and apply this displacement after transport. This solution is limited since it does not
provide a continuous mapping and might have artifacts in large dimension.

3.1.2 Continuous mapping estimation
The problem of estimating a continuous mapping that provides out of sample prediction has been sur-
prisingly seldom investigated in the literature. In this section we introduce what is to our knowledge
the first practical results in this field and discuss two contributions we proposed recently. It is also a
difficult problem as suggested by the theoretical results in [Hütter 2019] that exhibit a minimax bound
in O(n−1/d) that is similar to the estimation error of Wasserstein distance.

Regression on the barycentric mapping In their works, [Stavropoulou 2015] proposed a very ele-
gant two-step approach for estimating a continuous mapping from discrete distributions. The first step
consists in estimating the optimal transport matrix T between the discrete distributions. The second step
consists in estimating a mapping m on a polynomial basis that approximates the barycentric mapping
using T

min
m

∑
i

‖m(xsi )− m̂T(xsi )‖2 (3.4)
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where m̂T is the barycentric mapping (3.1) applied to all samples andm is a linear weighting of polynomial
basis. The problem can be obviously solved using a least square solver. One limit of their approach is
that they did not perform regularization of m which can lead to over-fitting when the number of samples
in the distribution is small.

Joint OT and mapping estimation In order to address the problem of estimating an OT mapping
when only a small number of samples is available, we proposed to use regularization [Perrot 2016]. The
main idea is to estimate simultaneously the OT matrix and the mapping approximating its barycentric
mapping with

min
m∈H,T∈P

〈T,C〉F +
∑
i

‖m(xsi )− m̂T(xsi )‖2 + λ‖m‖2H (3.5)

where H can be the set of linear functions, a Reproducible Kernel Hilbert Space (RKHS) and λ > 0
is a regularization parameter. The joint estimation is interesting because the mapping estimation will
have an effect on the transport and vice-versa. While the problem is clearly a least square estimation
controlled by the OT matrix, you can also see problem (3.5) as a transport problem regularized by a
mapping model. Note that we did not use regularized OT here since the mapping data fitting term can
be seen as a regularization for T. Another interest of the regularization is that it can help providing
bounds for the transport map approximation (See [Perrot 2016, Section 3.3]).

The problem (3.5) can be solved using an alternate optimization algorithm (block coordinate descent).
When updating the transport matrix with a fixed mapping, the problem is a quadratic regularized OT.
When updating the mapping one can use any least square solver. The main limit of this approach is that
when we work in a RKHS, our mapping is a kernel machine, which is known to scale poorly to a large
number of training samples. While we also proposed to use a neural network for m in the paper, the
problem of solving the large scale OT in the alternative optimization remains and relies on OT solvers
of complexity O(n3).

Large scale OT and mapping estimation The limited scalability of the previous approach is a
problem when trying to learn from very large datasets. So we proposed an efficient stochastic gradient
approach in [Seguy 2018] that builds on neural network estimation of the dual potentials. When those
optimal dual potentials are estimated, one can use the following close form primal/dual formula to recover
the optimal OT matrix :

T ?i,j = exp((α?i + β?j − Ci,j)/λ) (3.6)

T ?i,j = 1
2λ max(0, (α?i + β?j − Ci,j)) (3.7)

where (3.6) is the solution with entropic regularization and (3.7) for quadratic regularization. It is then
easy to see that one can directly estimate a mapping m minimizing the loss

min
m

∑
i,j

T ∗i,j‖xtj −m(xsi )‖2 (3.8)

which again can be estimated using stochastic gradient descent when m is a neural net. This loss is
clearly equivalent to minimizing problem (3.4) but stays separable with respect to both i, j which make it
more amenable than the close form solution (3.3). Note that it can be easily extended to general losses c
which made the approach in [Seguy 2018] the first large scale mapping estimation that can accommodate
any ground cost.

Linear Monge mapping When the OT mapping between two distributions is linear, there exists a
close form solution relying only on first and second order moments [Flamary 2019, Proposition 1]. This
close form is the same as the Monge mapping between Gaussian distributions defined in Equation (2.9)
with m(x) = A(x −ms) + mt where A is defined in Equation (2.10). We have investigated the quality
of estimation of the linear Monge mapping when using empirical estimates for the moments and have
proven an expected mapping error of O(n−1/2).



22 Chapter 3. Mapping with Optimal Transport

3.2 Optimal Transport for Domain Adaptation (OTDA)
Now that we discussed how to approximate a Monge mapping from empirical distributions, we show how
those mappings can be used in machine learning. The first application of these mappings to the best of
our knowledge has been done in [Ferradans 2014]. They treat images as empirical distributions of the
pixels in 3D (color space) and propose to map those pixels between distributions/images. This process
also called color grading will transport the colors of one image onto the other. This very elegant use of
the Monge map can be seen as Domain Adaptation where a dataset is processed through a Monge map
to fit another dataset.

We discuss in the next sections our contribution that we called Optimal Transport for Domain Adap-
tation (OTDA) where we use a similar approach to perform domain adaptation for classification problem.

3.2.1 Principle of OTDA
Domain Adaptation (DA) is a problem in machine learning that is part of the larger Transfer Learning
family. The main problem that is addressed in unsupervised DA is how to predict classes on a new
(target) dataset that is different from the available (source) training dataset. In order to train a classifier
f that works well on the target data, we have access to samples (xsi , ysi ) drawn from the source joint
feature/target distribution Ps (whose feature marginal is defined as µs) and only feature samples xtj from
the marginal µt of the joint target distribution Pt.

Domain adaptation in the literature There exist numerous approaches for domain adaptation and
providing a full state of the art is beyond the objective of this document but we will discuss shortly the
main approaches before introducing our contribution.

First there has been a lot of work in DA based on re-weighting schemes [Sugiyama 2008]. The main
idea is that if the distribution of the data is different between source and target, one can re-weight the
samples in the source to compensate for this discrepancy. A classifier can then be estimated by minimizing
the weighted source distribution. These approaches have been shown to work very well in numerous case
but a classic failure scenario would be when the distributions do not overlap.

Another type of DA approaches can be categorized as subspaces methods. When the datasets are
high dimensional, one can suppose that there exists a subspace that is discriminant in both source and
target domains. This subspace can then be used to train a robust classifier. A standard approach is
to minimize the divergences between the two projected distributions [Si 2010]. Note that since source
labels are often available, one can also include this knowledge in the subspace estimation (to conserve
discrimination after projection) [Long 2014].

Finally the last approaches aim at aligning the source and target distribution through a more complex
representation than linear subspace. [R. Gopalan 2014] propose to align the distributions by following
the geodesic between source and target distributions. Geodesic flow kernel [Gong 2012] aim at adapting
distribution using a projection in a Grassmann manifold and computing kernels using the geodesic flow
in this manifold. Note that both methods above aim at finding a way to compensate for the change
in distribution between the source and target domain. The same philosophy has been investigated for
neural networks where the feature extraction aims at being indistinguishable between the domain using
Domain Adversarial Neural Network (DANN) [Ganin 2016]. Other approaches have aimed at minimizing
a divergence between the distributions in the NN embedded space using covariance matrix alignment
(CORAL) [Sun 2016], minimization of the Maximum Mean Discrepancy (MMD) [Tzeng 2014] or Wasser-
stein in the embedded space [Shen 2018]. A recent survey in the domain of visual adaptation that has
been very active recently is given in [Csurka 2017].

Three-step adaptation with OT Our contribution to domain adaptation supposes that there exists
a transformation between the distributions. So we try and estimate this transformation in order to
adapt the source domain to the target before learning the classifier. While there is in theory a very



3.2. Optimal Transport for Domain Adaptation (OTDA) 23

Dataset 

Class 1

Class 2

Samples 

Samples 

Classifier on 

Optimal transport 

Samples 

Samples 

Classification on transported samples

Samples 

Samples 

Classifier on 

Figure 3.1: Illustration of the principle of OTDA. (left) an Optimal Transport mapping is estimated between
the source (red) and target (blue) distributions (center) the mapping is applied to the source samples. (right) a
classifier is estimated on the displaced source samples.

large number of mappings of the data that can explain the transformation, we choose to use the optimal
transport Monge mapping since it is the one corresponding to the least effort (a sound approach often
found in nature). Our Optimal Transport for Domain Adaptation (OTDA) [Courty 2016a] approach
consists in three steps:

1. Estimate a mapping m̂ between source and target feature distribution.

2. Apply the mapping m̂ to the source samples (they keep their labels).

3. Train a classifier on the displaced source samples (m̂(xsi ), ysi ).

Those three steps are illustrated in Figure 3.1. This approach has been received well in the DA community
because it is very simple and seems to work well in practice. In the next section we will discuss the
theoretical assumptions and limits and extensions of the approach.

Assumptions and theory We have defined several assumptions required for OTDA to perform well
in [Courty 2016a]. First we suppose that the difference between the distributions is due to a push-forward
mapping in the feature space such that µt = m#µs. In addition to this assumption we suppose that
the labels are preserved through the mapping such that Ps(x, y) = Pt(m(x), y). These two assumptions
are reasonable and correspond to a number of real life situations such as a change in the acquisition
conditions, sensor drifts, thermal noise in signal processing. It also implies that the expected loss of a
given classifier f on the target domain can be computed from the source domain with

Rt(ft) := E(x,y)∼Pt
[L(y, ft(x))] = E(x,y)∼Ps

[L(y, ft(m(x))] =: Rs(ft ◦m) (3.9)

where Rs (resp. Rt) is the expected risk in source (resp target) domains and L is a loss of Lipschitz
constant ML w.r.t. the x variable (ML = 1 for SVM Hinge loss for instance independently of the class
y). If in addition we suppose that the classifier ft has a Lipschitz constant Mf then we can bound the
expected generalization error on the target distribution with

Rt(ft) = E(x,y)∼Ps
[L(y, ft(m̂(x)− (m̂(x)−m(x)))]

≤ E(x,y)∼Ps
[L(y, ft(m̂(x))] +MfMlEx∼µs

[‖m̂(x)−m(x)‖] (3.10)

which clearly justifies step 3 in our approach that consists in estimating a classifier on the transported
samples (and hopefully minimize the error in target). Note that the left term above encodes the mapping
estimator m̂ and is hard to bound in practice. The term on the right measures the convergence of
the estimated Monge mapping toward the true one. The theoretical works of [Hütter 2019] provide a
convergence speed of O(n−1/d). Also note that [Seguy 2018, Theorem 2] proves a weak convergence of
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the barycentric mapping to the true mapping which suggests that the second term can be very small with
a large number of samples.

When one has access to a continuous mapping it might also be a good idea to train a good classifier
fs in the source domain and use m−1 to bring the new samples from target providing a target classifier
ft = fs ◦m−1. In this case we expressed in [Flamary 2019] the generalization error as

Rt(fs ◦ m̂−1) ≤ Rs(fs) +MfMLEx∼µs

[
‖m̂−1(m(x))− m̂−1(m̂(x))‖

]
(3.11)

If m̂(x) = Â(x− m̂s) + m̂t is the linear Monge mapping as defined in 2.9 using empirical estimates then
we have

Rt(fs ◦ m̂−1) ≤ Rs(fs) +MfML‖Â−1‖ Ex∼µs

[
‖A− Â‖

]
(3.12)

The bounds above are particularly interesting because they suggest that if we can estimate convergent
estimators of classifiers in source domain and mapping between distributions independently, we can
reach the performance of the Bayes classifier on target data. A generalization bound depending on
the number of samples used to train fs and the number of samples used to estimate m̂−1 is provided
in [Flamary 2019, Theorem 3].

One limit of the assumptions above is that our approach cannot handle the case of target shift
domain adaptation where the ratio of classes change between source and target distributions. Numerical
experiments in the domain of remote sensing where the proportion of classes vary between images in
[Tuia 2015c] show indeed a dramatic loss of performance for large deviations.

The devil in the regularization As discussed in the previous chapter, exact OT is often very sensitive
to the samples and complex to solve. This is why we proposed in our first paper [Courty 2014] to use
entropic regularization. It leads to a clear gain in performance when using the barycentric mapping but
the OT matrix becomes dense. This is a problem because one might want to keep some sparsity at least
between classes in order to avoid a collapsing of the samples.

This is why we proposed to use non convex group lasso introduced in Eq. (2.36) with p = 1, q = 1
2

in [Courty 2014]. Since we have access only to the labels in the source domain we use those labels to
provide groups for each column in the OT matrix. This means that for every target samples of unknown
class, we promote group sparsity w.r.t. the classes of the source samples, which forces every target
sample to "choose" a class among the groups. As discussed in the previous chapter, the non convex
problem can be solved using a linearization of the concave part with DCA which consists in performing
several Sinkhorn solver until convergence.

Other kind of regularization were later proposed in [Flamary 2014d] and [Courty 2016a]. Similarly
to the graph based regularization in [Ferradans 2014], we proposed to regularize the OT matrix with
respect to the graph of neighbors of the samples in [Flamary 2014d]. It was particularly interesting when
adapting surfaces modeled as a 3D distribution of nodes in order to maintain a reasonable manifolds
during the mapping. We also proposed in [Courty 2016a] the GCG algorithm 2.2.b to solve the group
lasso with p = 2, q = 1 that has the advantage to be convex. Note that all those regularizations provided
better performances in the numerical experiments but the group lasso (both convex and non-convex)
usually yield the best gain.

Finally we note the generalization of [Alvarez-Melis 2017] that proposed to use a sub-modular regular-
ization term that promotes structures in the OT matrix while simultaneously estimating those structures.
This very elegant extension is also proposed with an algorithm to solve the problem but remains compu-
tationally intensive.

How to map ? In [Courty 2014,Courty 2016a], we originally proposed to perform barycentric mapping
in order to map the source samples. This is obviously limited due to the lack of out of sample mapping.
[Perrot 2016] proposed a first step in estimating a continuous mapping that can displace new samples but
was limited to small to medium sized datasets due to computational complexity. Our more recent work
in [Seguy 2018] proposes a scalable estimation that can be estimated in two steps using stochastic gradient
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Figure 3.2: Illustration of gradient adaptation for seamless copy in image between images having different color
gradient distributions. (two-left) the two images and the mask for the copy. (middle) Seamless copy of [Pérez 2003]
that creates false colors (two-right) gradient adaptation with linear and non-linear mapping that produce more
realistic colors.

descent and deep learning. [Seguy 2018] also proved weak convergence of the barycentric mapping to the
true Monge mapping when the number of samples becomes large. But the community still lacks, to the
best of our knowledge, proper convergence speed and concentration inequalities concerning the quality
of such approximations.

3.2.2 Applications and extensions
OTDA in practice We compared OTDA to several approaches of the state of the art in [Courty 2016a]
on visual adaptation problems. It was often better than state of the art methods but has been shown to
be sensitive to the ground metric. For instance it worked surprisingly well when using Euclidean ground
loss on raw images which is known to be a particularly bad representation. But when using Euclidean
distance on features estimated from deep learning framework [Donahue 2014] the adaptation performance
was unsurprisingly even better.

OTDA has also been used in several biomedical applications. [Gayraud 2017] has applied OTDA to the
problem of P300 detection in Brain Computer Interfaces. It allowed to adapt between different subjects
and can potentially decrease the time needed for calibration. OTDA was also applied to the problem of
Computer Aided Diagnostic of Prostate cancer from MRI in [Gautheron 2017] to adapt between patients.
Finally [Chambon 2018] showed that OTDA can improve the performance of sleep stage classification
from ElectroEncephaloGrams.

Also note that while we proposed OTDA in the context of classification, learning a mapping between
distributions and applying it as proposed originally by [Ferradans 2014] also has numerous applications.
We already discussed color gradients that adapt the color space between images but we proposed an
extension that focuses not on the colors but on the gradients in the image in [Perrot 2016]. Basically we
proposed to perform a better seamless copy between images using Poisson image editing [Pérez 2003] by
adapting the gradient prior to image reconstruction. An example of our adaptation is available in Figure
3.2 showing that adapting the gradients leads to better integration in the target image (both colors and
dynamic properties). Finally the mapping can also be used to perform registration between two point
clouds and can be used in remote sensing for registering LiDAR acquisitions and detect erosion of a
coastal cliff [Courty 2016b].

Multi-domain adaptation and target shift OTDA can be extended to multi-domain when several
source datasets are available. It can for instance be applied in parallel as proposed in [Gayraud 2017].
Some theoretical insight on the quality of the adaptation was first presented in [Redko 2016] where a
generalization bond is exhibited both for single and multiple domains. Those bounds are very general but
they measure the discrepancy between the domains and use this discrepancy to bound the target error.
We believe that under the OTDA assumptions discussed above the generalization can be independent
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from this discrepancy and depends only on the number of samples (see Eq. (3.10)).
The problem of target shift (ratio of classes changing) can be handled in the multi-domain case by

estimating the ratio of classes in the target domain simultaneously with the OT matrices [Redko 2019].
In this case, the estimated ratio is used to re-weight the source samples and can be applied even when
sources and the target have very different proportions. Another way to look at this proportion estimation
is to estimate a barycenter of the proportions from the source domains optimal w.r.t. the OT that better
fits the target data. We show in the paper that our objective function is indeed minimal when the correct
class ratio is estimated.

Semi supervised Domain Adaptation OT for semi supervised learning has been proposed in the
seminal work of [Solomon 2014a] where they proposed to use the OT matrix to propagate labels between
samples or on a graph. OTDA can also be extended to the semi-supervised DA problem when a few
target samples have known labels. The problem is easier in this case since more information is available
and can help guide the transport. [Rousselle 2015] proposed to perform post-processing on the OT matrix
by removing the mass that goes between samples that have different classes. This works in practice but
the resulting matrix is not a transport matrix since some mass is discarded in the process. We proposed
an alternative in [Courty 2016a] that relies on a very simple linear regularization term of the form

Ωss(T) = 〈T,M〉F where Mi,j =
{

0 if class ytj unknown or ytj = ysi

∞ if ytj 6= ysi
(3.13)

This term forbids the OT solver to put mass between two samples that are known to have different
classes and in practice guides the whole OT problem. We achieved important performance gain w.r.t.
the unsupervised case in our experiments using this very simple regularization.
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In this chapter I discuss the use of OT for learning from histogram data. I first provide a short state
of the art of machine learning on histogram data with OT and then present two of our contributions,
namely Optimal Spectral Transportation (OST) and Deep Wasserstein Embeddings (DWE).

Data as histograms In this chapter I focus on histogram data, which can be described as discrete
distributions µ =

∑n
i=1 aiδxi

with a fixed support {xi}i. In this case a dataset contains many histograms
that have the same support xi (for instance a regular grid) but have different weights ai in their bins.
A natural divergence used on this kind of data is the Kullback–Leibler divergence but it treats all the
components of the histograms independently. The strength of the Wasserstein distance on this kind of
data is that it can encode the relation between the bins through their positions.

Note that a lot of datasets can be seen as histograms. For instance images (color or black and white)
are acquired by the physical process of counting photons on a regular-grid charge-coupled device (CCD).
They are then natural histograms after normalization. One can also see a power spectrum as a histogram
since it basically describes how the power is spread among different frequency bands. Finally a coarse
but efficient modeling of text can be used as word counts, yielding very sparse histograms where the bins
are all the words in a dictionary.

4.1 State of the art in Machine Learning
The ML community has only recently applied OT and the corresponding Wasserstein distance to ML
problems. In this section we present some works that have used OT for both unsupervised and supervised
machine learning.
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4.1.1 Unsupervised learning with OT
Dictionary learning In dictionary learning, one wants to find simultaneously a dictionary describing
a dataset along with the representation of the examples of the dataset on this dictionary. The problem
is often formulated as seeking for matrices D ∈ Rn×p and H ∈ Rp×n that approximate the matrix
A ∈ Rn×m with A ≈ DH, hence the name of matrix factorization often used un practice. Special cases
of Dictionary learning are the Principal Component Analysis and its positive counterpart Non-negative
Matrix Factorization (NMF) [Lee 2001]. When the data ak ∈ ∆n and h ∈ ∆p are both histograms and the
dictionary elements (columns) of D are also histograms di ∈ ∆∀i divergences specific to distributions such
as Kullback-Leibler [Lee 2001] or Itakura Saito [Févotte 2009] are often used. The Wasserstein distance
on the columns of A can also be used as a data fitting term, leading to the following optimization
problem [Sandler 2011] :

min
hk∈∆p∀k,D∈∆p

n

∑
k

WC(ak,Dhk) (4.1)

where the ground cost matrix C encodes geometrical relationship between the components of the his-
tograms. Dictionary learning has been first extended to the Wasserstein distance data fitting in [San-
dler 2011] but relied on slow linear programming solvers which limited its application on large his-
tograms/datasets. The use of regularized OT as proposed in [Rolet 2016], promotes smoothness in the
estimated dictionary elements and provides a significant speedup in the numerical computation for large
datasets. Finally note that since it can be difficult to design a meaningful metric for matrix C, [Zen 2014]
proposed to estimate this matrix simultaneously with the dictionary similarly to what was proposed
in [Cuturi 2014b] for Wasserstein distance.

Nonlinear unmixing with Wasserstein simplex A natural but non-obvious extension of linear
unmixing is to perform non-linear unmixing using Wasserstein Barycenters. Indeed while a linear mixing
model Dh can be seen as a Euclidean barycenter (since h ∈ ∆, the linear model is a weighted mean), one
can use a more complex barycenter such as the Wasserstein barycenter [Benamou 2015] to fit the data.
When using a Wasserstein data fitting term the estimation problem becomes

min
hk∈∆∀k,D∈∆p

∑
k

WC(ak,WB(hk,D)), with WB(h,D) = arg min
b∈∆

∑
i

hiWC(b,di) (4.2)

where WB is the Wasserstein barycenter of the dictionary elements in D weighted by h. This elegant
model has been proposed in [Schmitz 2017] and the authors propose a very interesting comparison between
the Euclidean (linear) and Wasserstein barycenter models and both the Euclidean and Wasserstein data
fitting terms. This extension of nonlinear mixing on the Wasserstein simplex suggests a lot of extensions
of non-supervised methods among which the Principal Component Analysis discussed next.

Wasserstein Principal Geodesic Analysis Principal Component Analysis (PCA) seeks for direc-
tions that maximize the variance in the data. The natural divergence in space when computing variances
is the Euclidean distance but PCA can be extended to more complex spaces such as geodesics. Principal
Geodesic Analysis (PGA), has first been introduced by Fletcher et al. [Fletcher 2004]. It can be seen as
a generalization of PCA on general Riemannian manifolds. Its goal is to find a set of directions, called
geodesic directions or principal geodesics, that best encode the statistical variability of the data on the
manifold.

Fletcher gives a generalization of this problem for complete geodesic spaces by extending three impor-
tant concepts: variance as the expected value of the squared Riemannian distance from mean, Geodesic
subspaces as a portion of the manifold generated by principal directions, and a projection operator onto
that geodesic sub-manifold. The space of probability distribution equipped with the Wasserstein metric
defines a geodesic space with a Riemannian structure [Santambrogio 2014], and an application of PGA is
then an appealing tool for analyzing distributional data. However, as noted in [Seguy 2015,Bigot 2017],
a direct application of Fletcher’s original algorithm is intractable because space of probability distribu-
tion is infinite dimensional and there is no analytical expression for the exponential or logarithmic maps
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allowing to travel to and from the corresponding Wasserstein tangent space. An efficient algorithm to
perform PGA with entropic regularization was proposed in [Seguy 2015] with application to image data.
Recent advances have proposed to solve both a Geodesic PCA and Log-PCA in the Wasserstein space
using Forward-Backward splitting [Cazelles 2018]. Note that we will discuss an efficient embedding in
section 4.3 that can greatly speedup the estimation of Wasserstein PGA.

Training Restricted Boltzman Machine with Wasserstein A Restricted Boltzmann machine
(RBM) is a generative stochastic artificial neural network that can learn a probability distribution. It
is often optimized by maximizing its likelihood over a dataset. When the data consists in histograms,
the Kullback–Leibler divergence is often used as a reconstruction loss. [Montavon 2016] proposed to use
the Wasserstein distance instead and has shown that it can help better estimate sensible models since it
can encode the geometry of the histograms during learning. For instance they estimated RBM on small
images and successfully used it for image completion and denoising.

4.1.2 Supervised learning and classification with OT
Learning with a Wasserstein Loss Similarly to the unsupervised case, the Wasserstein distance can
be used as a data fitting term for learning a probabilistic predictor since its output is an histogram. The
use of OT is particularly interesting in the multi-label scenario where a given sample can have multiple
labels and a separable loss such as KL will treat them all independently. In this case the labels of a given
sample can be seen as a histogram where non-zero bins denote the presence of a class. [Frogner 2015]
proposed to use the Wasserstein loss as a data fitting in multi-label classification, leading to the following
learning problem for a training set {xi,yi}i

min
f

N∑
k=1

WC(f(xi),yi) (4.3)

where f is a model with an output in the probability simplex, such as a neural network with softmax
output. One major contribution of [Frogner 2015] was to propose a very elegant loss matrix C that would
have been impossible to design manually for a large number of classes. They proposed to use a semantic
representation of the classes by computing the Euclidean distance between the class representation in the
word2vec embedding [Mikolov 2013]. This embedding is known to provide semantic euclidean distance
and will encode in C the semantic relations between the classes. In other words, mistakes between
classes that are similar will have a smaller loss (penalizing less an error) than between classes that are
very dissimilar. They proposed to use regularized OT to solve the problem and proposed an extension
relaxing the marginal constraints of the OT problem similarly to [Chizat 2018] to handle a different
number of classes in the samples.

Word Mover’s Distance (WMD) Wasserstein distance in a word2vec embedding can also be used
to measure similarity between text seen as histograms of word occurrences. In [Kusner 2015], the authors
propose this application called Word Mover’s Distance (WMD) as a reference to Rubner’s EMD. In
this case, a document is represented as a very sparse histogram and each word can be represented in a
semantic word2vec space. A simple example why this works well in practice is the use of synonyms in
a text. When using WMD two synonyms will be very close in the embedding and the OT will find a
similar correspondence between the words, which cannot be obtained with independent divergences.

The word2vec embedding can encode semantic representation between words but it has not been
estimated with a specific text classification objective. It means that one can estimate a metric in this
space that can maximize accuracy of a classifier. An extension of WMD that estimates a Mahalanobis
metric to be used for WMD has been proposed in [Huang 2016]. It relies on regularized OT for optimizing
a linear operator A applied to the data before computing WMD. Note that this approach is strongly
related to Ground Metric Learning as proposed for un-regularized OT in [Cuturi 2014b].
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Figure 4.1: (left) Audio sequence with its time and time-frequency representation, (center) its corresponding sheet
music and MIDI, (right) temporal evolution of the power in the harmonics when one note is played.

4.2 Optimal Spectral Transportation (OST)
In this section we present Optimal Spectral Transportation (OST) that is an adaptation of OT to musical
unmixing. To this end, we first introduce the problem of musical spectral unmixing and discuss the use
of the Wasserstein divergence for unmixing [Flamary 2016]. Next we discuss the resulting optimization
problem and regularized variants of OST.

4.2.1 Musical spectral unmixing
Musical spectral unmixing with linear model Being able to separate different sources in an
audio sequence is a difficult problem but can be very useful in applications such as audio restora-
tion [Févotte 2009]. In the particular case of musical data, one unmixing of particular interest consists
in determining automatically the sequence of musical notes that were played from the raw audio or time
frequency representation of an audio sequence (Figure 4.1(left)). The main objective is to be able to
reconstruct a sheet music or its discrete MIDI counterpart (Figure 4.1(center)) from a musical sequence.
A state of the art approach is to estimate a robust dictionary D modeling each notes and to perform
linear unmixing with KL divergence [Smaragdis 2006] on each spectrum in a time frequency representa-
tion. In this case one want to estimate on a given spectrum a the mixing coefficients h that minimize
the following linear unmixing optimization problem

min
h∈∆

KL(a,Dh) (4.4)

where KL is the Kullback-Leibler divergence.
While the approach above works very well in practice it still has a few limits that we will discuss

now. First we can see in the time frequency representation in (Figure 4.1(left)) that musical data has
an harmonic structure. This means that a given note played on an instrument will have in the Fourier
domain power on its fundamental frequency but also its harmonics (integer multiples of the fundamental).
This harmonic structure can be embedded in the dictionary elements of D but it forces the spectrum to
have fixed magnitudes at each harmonics. This can be a problem since changing instruments will change
those magnitudes and make the unmixing less robust. Another problem occurs if the instrument is not
well tuned, its fundamental frequency and corresponding harmonics will be slightly changed which leads
to a large discrepancy in a separable divergence such as KL. Finally, as illustrated in (Figure 4.1(right)),
the magnitude of the harmonics do change along time when a note is played. When using fixed dictionary
elements for the notes this might lead to a variability of the unmixing along time for a whole note. In the
following we show that Wasserstein distance can be designed to be robust to the variabilities discussed
above.

Linear unmixing with Wasserstein Linear unmixing can be seen as a special case of dictionary
learning where the dictionary elements are known a priori. It consists in estimating a representation of
an observation a ∈ ∆ as a weighted sum Dh =

∑
k hkdk of dictionary elements from a known dictionary
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D ∈ Rn×p+ where the dictionary elements (columns) of D are also histograms di ∈ ∆∀i. It is a classical
problem in remote sensing, signal and image processing and the representation h is often estimated by
minimizing a divergence (Euclidean, Kullback-Leibler [Lee 2001], Itakura-Saito [Févotte 2009]) between
the observation a and the reconstructed estimate Dh with respect to both D and h. One can also use
the Wasserstein distance to perform linear unmixing with

min
h∈∆

WC(a,Dh) (4.5)

This very simple extension to linear unmixing can encode the relationship between the bins of the his-
tograms in the C matrix, during the estimation. For instance we applied this formulation for linear
unmixing of planetary hyperspectral observations in [Nakhostin 2016] where the Wasserstein distance is
robust to small displacement along the frequencies. We will see in the following how this problem can be
adapted to musical data.

4.2.2 Optimal spectral transportation and optimization
Optimal spectral transportation We proposed to use the Wasserstein distance for linear unmixing
of audio spectrum in [Flamary 2016]. The main question that has to be answered when using Wasserstein
distance in this case is the design of the matrix C. A first tempting option is to use the quadratic loss
between the frequencies of the bins in the spectrum. This corresponds to the W 2

2 distance and will be
robust to small change along the frequency (badly tuned instrument) but a change in the magnitude of
the harmonics will be very costly, meaning the Wasserstein distance will be very sensitive to this problem.

In order to be robust to both small frequency change and harmonic magnitude, we proposed to use a
loss that takes into account the harmonic structure in the data and is quasi-invariant to it. We proposed
to use a ground cost matrix of term

Cij = min
q=1,...,

⌈
fi
fj

⌉(fi − qfj)2 + ε δq 6=1, (4.6)

where the fi are the frequency of bin i in the spectrum. The main idea here is that mass from frequency
fj in the model Dh can move to all its harmonics in the observed sample a for a small cost (ε) making
the corresponding Wasserstein loss invariant to changes in harmonics magnitudes. The small ε > 0 is
here to penalize the case where all the mass of a fundamental goes to the harmonics since in this case
it means that the note is in the next octave (it has no mass on the fundamental frequency). Finally
note that this loss is locally quadratic which means that it will allow small movement of mass along the
spectrum and will be robust to mistuned instruments.

The optimization problem for OT can be computationally expensive, but since a lot of information is
encoded in the cost matrix C one can wonder if the dictionary elements are still necessary. Indeed if we
take one dictionary element for a given note as a Dirac vector where the mass is 1 at the fundamental
frequency and 0 everywhere else there is no need for designing or estimating dictionary elements anymore.
Note that the invariant properties of (4.6) means that this simple Dirac dictionary element will be close
in the Wasserstein sense to all its harmonic variants with different magnitudes.

Optimization problem The resulting unmixing optimization problem can be expressed as

min
h∈∆,T≥0

〈T,C〉F s.t. T>1 = Dh,T1 = a (4.7)

When the dictionary elements are Diracs on the fundamental frequencies, the D is a selection operator
and the reconstructed model Dh can only have mass on p frequency positions (the fundamentals). The
problem can then be reformulated as

min
T̃≥0

〈
T̃, C̃

〉
F

s.t. T̃1 = a (4.8)
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where C̃, T̃ are sub-matrices of size n × p and the solution of the unmixing can be computed with
h = T̃>1. The problem above can be solved independently for each line of T with an argmax on C that
can be pre-computed in O(np), leading to a final complexity on one sample of only O(n).

One obvious limit is that the mass from observation a at frequency i will always be associated to
the same dictionary element having the minimal loss Ci,j in line i. This means that by construction
this unmixing is not sparse which can be a problem since detecting notes will require post processing
or sparsity promoting regularization. In the next section we discuss two regularization terms that we
proposed that can help in having more robust unmixing.

4.2.3 Regularization and applications
Entropic regularization A first regularization that can lead to more robust estimations is the entropic
regularization. When adding this regularization term, problem (4.8) can be reformulated as a Bregman
projection [Benamou 2015] that can be solved in closed form using a matrix multiplication of complexity
O(np). It is interesting to note that the entropic regularization has the effect of replacing the argmax
along the lines of C by a softmax whose smoothness is controlled by λ. This regularization works well
in practice but comes with a significant caveat: the estimation is even less sparse than the original OT
problem (4.8) which makes the identification of the active musical notes more difficult.

Sparsity promoting regularization In order to promote a sparse unmixing and an automatic detec-
tion of musical notes, we proposed to use the following regularization term

Ωcspare(T) =
∑
j

(∑
i

Ti,j

) 1
2

(4.9)

that will promote column sparsity hence sparsity in the unmixing since h = T>1. This regularization
term is very similar to (2.36) and the resulting optimization problem can be solved similarly with DC
algorithm. At each iteration the concave term (4.9) can be approximated by its linear majorization
resulting in the iterative solving of problem (4.8) where the loss matrix C is updated at each iteration.
While this iterative approach is slower than the original problem, it has been observed to converge in a
few iterations (≤ 10 ) and can still be computed efficiently.

OST in action We applied in [Flamary 2016] OST on a toy generated dataset where the exact dictio-
nary elements are known perfectly and compared it with KL unmixing of [Smaragdis 2006]. We generated
data with slightly shifted fundamental frequencies and varying harmonic magnitudes and observed that
indeed the proposed approach is robust to those complex and non-linear variabilities while being very
fast (∼ms per frame). OST seems to beneficiate from both regularization on the toy data regularization.

Next we applied our approach on the well known MAPS Dataset [Emiya 2010] that consists in several
piano sequences from classical music (m = 60 notes). We can compare to a ground truth on this
dataset since the musical notes are available as MIDI files. On this dataset, OST performed similarly as
KL+dictionary but was more computationally efficient (≥ 70 times quicker).

Finally since OST is a very quick approach, we implemented a demonstration program in Python
using the Pygame library were we can show the spectrogram and the estimated musical notes in real
time. The code is open source and available on GitHub 1.

4.3 Learning Deep Wasserstein Embeddings (DWE)
In this section we address the problem of speeding up multiple computations of OT distance and how to
perform efficient data mining in the Wasserstein space. I present to this end a paper published at ICLR
2018 [Courty 2018] that relies on the supervised learning of a Wasserstein embedding with deep learning.

1https://github.com/rflamary/OST

https://github.com/rflamary/OST
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Figure 4.2: Architecture of the Deep Wasserstein Embedding: two samples are drawn from the data distribution
and set as input of the same network (φ) that computes the embedding. The embedding is learnt such that the
squared Euclidean distance in the embedding mimics the Wasserstein distance. The embedded representation of
the data is then decoded with a different network (ψ), trained with a Kullback-Leibler divergence loss.

4.3.1 Deep Wasserstein Embedding
I discuss here how our method, coined DWE for Deep Wasserstein Embedding, learns, in a supervised
way, a new representation of the data that can speedup Wasserstein distance computation. Our objective
is to find a deep embedding that takes histograms as input but provides a Euclidean distance in the
embedding that mimics the Wasserstein distance between the original histograms. We proposed to learn
those embeddings in [Courty 2018] in a supervised way. To this end we need a pre-computed dataset that
consists of pairs of histograms {a1

i ,a2
i }i∈1,...,n of dimensionality d and their correspondingW 2

2 Wasserstein
distance {di = W 2

2 (a1
i ,a2

i )}i∈1,...,n. This dataset can be pre-computed offline in parallel but will be used
in the following to learn an embedding emulating the Wasserstein space.

Siamese networks A way to estimate a meaningful embedding that can be used more broadly is
to use a siamese neural network [Bromley 1994]. Originally designed for metric learning purpose and
similarity learning (based on labels), this type of architecture is usually defined by replicating a network
which takes as input two samples from the same learning set, and learns a mapping to new space with
a contrastive loss. It has mainly been used in computer vision, with successful applications to face
recognition [Chopra 2005] or one-shot learning for example [Koch 2015].

Deep Wasserstein Embedding We proposed in [Courty 2018] to learn an embedding network ϕ that
takes as input a histogram and projects it in a given Euclidean space of Rp as illustrated in Figure 4.2
on small images. In practice, this embedding should mirror the geometrical properties of the Wasserstein
space. We also propose to regularize the computation of this embedding by adding a reconstruction loss
based on a decoding network ψ. The reconstruction has two important implications: first we observed
empirically that it eases the learning of the embedding and improves the generalization performance of the
network (see experimental results in appendix of [Courty 2018]) by forcing the embedded representation
to catch sufficient information of the input data to allow a good reconstruction. This type of auto-encoder
regularization loss has been discussed in [Yu 2013] in the different context of embedding learning. Second,
using a decoder network allows the reconstruction from embedding, which is of prime importance in several
data-mining tasks (discussed in the next subsection).

An overall picture depicting the whole process is given in Figure 4.2. The global objective function
reads

min
φ,ψ

∑
i

∥∥‖ϕ(a1
i )− ϕ(a2

i )‖2 − di
∥∥2 + λ

∑
i

[
KL(ψ(ϕ(a1

i )),a1
i ) + KL(ψ(ϕ(a2

i )),a2
i )
]

(4.10)

where λ > 0 weights the two data fitting terms and KL(, ) is the Kullback-Leibler divergence. This choice
is motivated by the fact that the Wasserstein metric operates on probability distributions and KL can
be efficiently computed and derived.
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 MSE=0.407, RelMSE=0.003, Corr=0.995
Exact prediction
Mean pred
10th percentile
90th precentile

Method W 2
2 /sec

LP network simplex (1 CPU) 192
DWE Indep. (1 CPU) 3 633
DWE Pairwise (1 CPU) 213 384
DWE Indep. (GPU) 233 981
DWE Pairwise (GPU) 10 477 901

Figure 4.3: Prediction performance on the MNIST dataset. (Figure) The test performance are as follows:
MSE=0.41, Relative MSE=0.003 and Correlation=0.995. (Table) Computational performance of W 2

2 and DWE
given as average number of W 2

2 computation per seconds for different configurations.

4.3.2 Fast data mining in the Wasserstein space
Once the functions ϕ and ψ have been learned, several data mining tasks can be operated in the Wasser-
stein space. We discuss here the potential applications of our computational scheme and its wide range
of applications on problems where the Wasserstein distance plays an important role. Though our method
is not an exact Wasserstein estimator, we empirically show in the numerical experiments that it performs
very well and competes favorably with other classical computation strategies.

Wasserstein barycenters Barycenters in Wasserstein space were first discussed by [Agueh 2011].
Designed through an analogy with barycenters in a Euclidean space, the Wasserstein barycenters of a
family of measures are defined as minimizers of a weighted sum of squared Wasserstein distances. In our
framework, approximate barycenters can be obtained with

ā = arg min
a∈∆

∑
i

αiW (a,ai) ≈ ψ(
∑
i

λϕ(ai)), (4.11)

where ai are the data samples and the weights αi obeys the following constraints:
∑
i λi = 1 and

λi > 0. When the weights are uniform and the whole data collection is considered, the barycenter is the
Wasserstein population mean, also known as Fréchet mean [Bigot 2017].

Principal Geodesic Analysis in Wasserstein space We propose a novel PGA approximation as the
following procedure: i) find x the approximate Fréchet mean of the data as x = 1

N

∑N
i ϕ(xi) and subtract

it to all the samples ii) build recursively a linear subspace Vk = span(v1, · · · , vk) in the embedding space
(vi being of the dimension of the embedded space) by solving the following maximization problem:

v1 = argmax|v|=1

n∑
i=1

(v.ϕ(xi))2, vk = argmax|v|=1

n∑
i=1

(v.ϕ(xi))2 +
k−1∑
j=1

(vj .ϕ(xi))2

 . (4.12)

which is strictly equivalent to performing PCA in the embedded space. Any reconstruction from the
corresponding subspace to the original space is conducted through ψ.

4.3.3 Applications of DWE
Numerical precision and computational performance The true and predicted values for the
Wasserstein distances on never seen MNIST images are given in Fig. 4.3. We can see that we reach a
good precision with a test MSE of 0.4 and a relative MSE of 2e− 3. The correlation is of 0.995 and the
quantiles show that we have a very small uncertainty with only a slight bias for large values where only
a small number of samples is available for training. These results show that a good approximation of the
W 2

2 can be performed by our approach (≈1e-3 relative error).
We also investigated the ability of our approach to compute W 2

2 efficiently. To this end we computed
the average speed of Wasserstein distance computation on test dataset to estimate the number of W 2

2



4.3. Learning Deep Wasserstein Embeddings (DWE) 35

Class 0 Class 1 Class 4
L2 DWE L2 DWE L2 DWE

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 4.4: Principal Geodesic Analysis for classes 0,1 and 4 from the MNIST dataset for squared Euclidean
distance (L2) and Deep Wasserstein Embedding (DWE). For each class and method we show the variation from
the barycenter along one of the first 3 principal modes of variation.

computations per second in the Table of Fig. 4.3. Note that there are 2 ways to compute the W 2
2 with

our approach denoted as Indep. and Pairwise. This comes from the fact that our W 2
2 computation is

basically a squared Euclidean norm in the embedding space. The first computation measures the time to
compute theW 2

2 between independent samples by projecting both in the embedding and computing their
distance. The second computation aims at computing all the pairwise W 2

2 between two sets of samples
and this time one only needs to project the samples once and compute all the pairwise distances, making
it more efficient. Note that the second approach would be the one used in a retrieval problem where one
would just embed the query and then compute the distance to all or a selection of the dataset to find
a Wasserstein nearest neighbor for instance. The speedup achieved by our method is very impressive
even on CPU with speedup of x18 and x1000 respectively for Indep. and Pairwise. But the GPU allows
an even larger speedup of respectively x1000 and x500 000 with respect to a state-of-the-art C compiled
Network Simplex LP solver of the POT Toolbox [Flamary 2017b,Bonneel 2011]. Of course this speed-up
comes at the price of a time-consuming learning phase, which makes our method better suited for mining
large scale datasets.

Principal Geodesic Analysis We report in Figure 4.4 the Principal Component Analysis (L2) and
Principal Geodesic Analysis (DWE) for 3 classes of the MNIST dataset. We can see that using Wasserstein
to encode the displacement of mass leads to more semantic and nonlinear subspaces such as rotation/width
of the stroke and global sizes of the digits. This is well known and has been illustrated in [Seguy 2015].
Nevertheless our method allows for estimating the principal component even in large scale datasets and
our reconstruction seems to be more detailed compared to [Seguy 2015] maybe because our approach can
use a very large number of samples for subspace estimation.
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This chapter focuses on the use of OT on empirical distributions. Those distributions are very common
in machine learning since all the datasets used for training have a finite number of examples that are
supposed to be drawn independently from an unknown data distribution µd. One particular property
of those empirical distributions is that they nearly never overlap which means that they are particularly
difficult to compare for a learning purpose.

One very efficient approach to compare those empirical distributions have been to use classic diver-
gences such as `2 after the distributions have been convolved by a kernel (Parzen windows). This approach
known as Maximum Mean Discrepancy (MMD) [Fortet 1953] has been used with success for two-sample
tests [Gretton 2012] and generative modeling [Dziugaite 2015,Sutherland 2016]. Still the kernel has the
effect of spreading the mass around the diracs of the samples which might lose part of the information
encoded in the empirical distributions.

In the remaining of the chapter I first provide a short state of the art of the use of OT on empirical
distributions in machine learning and discuss more in details two of our contributions in this domain.
The first is the Wasserstein Discriminant Analysis that can be seen as a generalization of Fisher Discrim-
inant Analysis for non-linearly separable data. The second is a domain adaptation approach based on
minimizing the Wasserstein distance between joint feature/label distributions.

5.1 State of the art in Machine Learning
This short state of the art discusses the different approaches proposed in recent years that use Wasserstein
distance on empirical distributions.
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5.1.1 Unsupervised learning and Generative Adversarial Network
Generative Adversarial Networks (GAN) A major problem of unsupervised learning is to estimate
a realistic data generator from a finite dataset. Early approaches aimed at learning simple Gaussian gener-
ative representations such as PCA as illustrated by the well known EigenFaces application [Sirovich 1987]
or Gaussian mixtures [Ghahramani 1996]. More complex generative models such as Restricted Boltzman
Machines (RBM) [Hinton 2012] have also been proposed for highly nonlinear distributions. While those
approaches managed to generate realistic samples they all had in common the fact that on complex
images those samples seemed to be smooth and lack details.

This problem lead to the proposition of Generative Adversarial Networks in [Goodfellow 2014a] which
objective is to generate samples that are indistinguishable from real data. They propose to find a generator
G that takes random IID samples drawn for instance from the Gaussian distribution µg as input and
transform them into realistic samples of the data distribution µd. The proposed optimization problem
consists in estimating simultaneously a generator G and a discriminator D optimizing the following
problem

min
G

max
D

Ex∼µd
[logD(x)] + Ez∼µg

[log(1−D(G(z)))]. (5.1)

Note that in the problem above each models G and D are adversaries in the sense that they try to
respectively minimize and maximize the objective value. We want the generator G to generate realistic
image, it means that the objective is to have a discriminator D failing to classify between generated and
real images. [Zhao 2016] has shown that at convergence those models reach a Nash equilibrium and the
generated distribution is almost equal to the data distribution. The seminal work of Goodfellow had a
tremendous impact in the machine learning community because of the quality of the generated images
and the apparent simplicity of the optimization problem. Extension to convolutional models have also
shown that the space at the input of the generator has semantic meaning [Radford 2015], meaning that
some simple arithmetic in the generator space allows for instance to add glasses to a person in the image
space. Still the training of GAN, i.e. the optimization of (5.1), is notoriously hard to do in practice and
requires numerous tricks [Salimans 2016] due to the fact that the small magnitude of the gradients when
updating G on a discriminator D that manages to separate the classes.

Wasserstein Generative Adversarial Networks (WGAN) The difficulty to estimate a GAN led
to the proposal of [Arjovsky 2017]. Wasserstein GAN aims at finding a generator G minimizing the W1
Wasserstein distance between the data distribution µd and the push-forward G#µg with the following
optimization problem

min
G

W 1
1 (G#µg, µd) (5.2)

The problem above has several nice properties, for instance the gradient of the Wasserstein distance never
vanish until true equality between the distributions which makes the problem easier to solve that classical
GAN (5.1). Also note the Wasserstein GAN fits into the family of minimum Wasserstein estimators
[Bassetti 2006]. The problem can be expressed in the dual of the OT problem with

min
G

sup
φ∈Lip1

Ex∼µd
[φ(x)]− Ez∼µg

[φ(G(z))] (5.3)

that is separable w.r.t. the data distribution and the generator. The problem above bears a strong
resemblance to original GAN since the dual potential φ can be seen as an adversarial discriminator.
It also illustrates the fact that the Wasserstein GAN is a special case of f-GAN that minimizes an f-
divergence [Nowozin 2016].

On the implementation side, [Arjovsky 2017] proposed to use a neural network to estimate the dual
potential φ. This brings several problems since it is very difficult to force a neural network to have a given
Lipschitz constant. The main idea proposed in [Arjovsky 2017] was to perform weight clipping so as to
limit the magnitude of the linear operators in the neural network, hence limiting the Lipschitz constant.
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The WGAN objective value is then a lower bound on the actual scaled Wasserstein distance as shown
below

max
f∈NN class

LWGAN (f,G) ≤ sup
‖φ‖L≤K

LWGAN (φ,G) = K ·W 1
1 (G#µg, µd) (5.4)

where the Wasserstein distance is multiplied by an unknown coefficient K (the true Lipschitz constant of
φ). Since the neural networks has a specific architecture, it might never reach KW1, which means that
the optimized value is not exactly the Wasserstein distance but it can be shown that the gradients are
aligned. Alternatively, [Gulrajani 2017] recently proposed to promote the gradient norm to be one, i.e.

min
G

sup
f∈NN class

Ex∼µd
[f(x)]− Ez∼µg

[f(G(z))] + λEx∼µst
[(||∇f(x)||2 − 1)2] (5.5)

where µst is a distribution of samples drawn on straight lines between samples from the source and target
distribution so as to promote the gradient constraints in the simplex of the whole source + target data.
This is a relaxation of the Lipschitz constraint but makes sense since the gradient of the dual potential of
Wasserstein is of norm 1 almost everywhere. A variant of Variational Auto-Encoders called Wasserstein
Auto-encoders has been proposed in [Tolstikhin 2017]. Wasserstein GAN and its improved version above
have had a strong impact in the GAN community due to their easier to learn optimization problem.

Note that other approaches relying on Wasserstein distance have been proposed to train Generative
Networks. [Genevay 2017b,Genevay 2017a] proposed to use entropic regularized Sinkhorn divergence as
fitting term for a model. Sliced Radon Wasserstein has also been proposed as an efficient alternative
[Deshpande 2018].

5.1.2 Supervised learning and domain adaptation
The use of the Wasserstein distance on datasets seen as empirical distributions for supervised learning
is quite recent and can be mostly grouped in two major families: robust optimization and domain
adaptation/transfer learning.

Distributionally robust optimization Distributionally robust optimization is a very elegant ap-
proach that has been used with success in machine learning for providing better generalization. When
the training data is an empirical joint feature/label distribution P̂, robust optimization consists in opti-
mizing the following problem

min
f

max
P,D(P̂,P)≤ε

Ex,y∼P [L(y, f(x))] (5.6)

where {P|D(P̂,P) ≤ ε} is called the uncertainty set in the language of robust optimization. The problem
above aims at finding a predictor f that works well even in the worst case distribution P in the uncertainty
set hence bringing robustness. Since P̂ is an empirical distribution, it seems natural to use the Wasserstein
distance to define the uncertainty set. In this case it gives a nice geometrical intuition about the authorized
displacements of the samples. For instance when using W1, if only one sample moves in P̂, then it can
move anywhere in the Euclidean ball of radius ε.

Using the Wasserstein distance in robust optimization has been studied simultaneously by several
groups. An application to robust logistic regression has been proposed in [Shafieezadeh-Abadeh 2015],
and was extended to several losses in [Shafieezadeh-Abadeh 2017] which also provided concentration in-
equalities. The authors in [Blanchet 2016] proposed to use this formulation to estimate a linear Lasso
estimator using the Wasserstein distance for defining the uncertainty set. [Esfahani 2018] has shown
that the optimization problem can in certain cases be reformulated as a Linear program and provided
concentration inequalities. [Gao 2016] provided a generalization to non-empirical distributions and do
not require the distributions to have a compact support. Also note that there is a strong relation
between robust optimization and adversarial training i.e. training classifiers robust to adversarial exam-
ples [Madry 2017]. Robust optimization has also been used to investigate the generalization of adversarial
training in [Sinha 2018].
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Finally [Lee 2017] provided a generalization bound and showed that such optimization can be used in
the case of Domain Adaptation. The main idea is that if you know how far away the source and target
distributions are with W1(Ps,Pt), then you can perform domain adaptation by solving problem (5.6)
with ε = W1(Ps,Pt) which will ensure that the classifier will work well on the target distribution since
it is included in the uncertainty set. This approach is actually quite elegant but not applicable when the
distributions are very different for instance when transformations occur on the feature space as discussed
for OTDA in Chapter 3.

Domain adaptation and transfer learning Domain adaptation and transfer learning for deep neural
network bring several challenges. In particular the problem of unsupervised domain adaptation try to
estimate a classifier on new data µ̂t with no labels available but with access to another dataset P̂s of
data marginals µs where labels are available. One major family of approaches aims at learning a classifier
f ◦ g that works well on the source distributions but that will also have a similar representation across
datasets in the embedding g. The global optimization problem can often be expressed as the following

min
f,g

Ex,y∼P̂s
[L(y, f(g(x))] + λD(g#µ̂s, g#µ̂t) (5.7)

where D is a divergence between the data distributions of the samples in the feature space obtained by
g. One of the first approaches proposed to use Maximum Mean Discrepancy to measure the dissimilarity
in the feature space [Tzeng 2014]. DeepCORAL proposed to minimize the squared Frobenius norm
between the covariance matrices of the two distributions [Sun 2016] hence focussing only on the second
order moments of the distributions. Domain Adversarial Neural Network use as the name suggests an
adversarial approach to promote similarity between the distributions [Ganin 2016].

Finally the Wasserstein distance has also been proposed as a measure of similarity between the
distributions in the feature space in [Shen 2018]. In their work that bears resemblance to [Ganin 2016] they
propose to use the dual formulation as in [Arjovsky 2017] with the gradient penalty of [Gulrajani 2017].
This leads to the following optimization problem

min
f,g

Ex,y∼P̂s
[L(y, f(g(x))] + λmax

φ

{
Ex∈µs

[φ(g(x))]− Ex∈µt
[φ(g(x))]− γEx∈µst

[‖∇xφ(g(x))− 1‖2]
}

(5.8)
where the part on the right is an approximation of the W1 Wasserstein distance. This method seems
to work very well in practice but shares a limit with all the formulations (5.7) above: they treat the
label information in the source and the feature information separately through two objectives. While this
makes sense when no labels are available in the target domain, we believe a more general formulation
that works on joint feature/label distribution can help enhance the performance. This approach will be
discussed in section 5.3.

5.2 Wasserstein Discriminant Analysis (WDA)
In this section, we present our contribution to the problem of estimating a discriminant linear subspace
from empirical distributions [Flamary 2018]. Estimating a linear subspace of the data is one major family
of dimensionality reduction methods [Van Der Maaten 2009,Burges 2010]. Although very simple, linear
subspaces have many advantages. They are easy to interpret, and can be inverted, at least in a least-
squares way. This latter property has been used for instance in PCA denoising [Zhang 2010]. Linear
projection is also a key component in random projection methods [Fern 2003] or compressed sensing and
is often used as a first pre-processing step, such as the linear part in a neural network layer. Finally, linear
projections only imply matrix products and stream therefore particularly well on any type of hardware
(CPU, GPU, DSP).

The objective of supervised linear projection approach is to find a projector P : Rd → Rp, p� d, such
that the embeddings of the projected points Pxi of µ = 1

n

∑
i δxi

separate the classes in {yi}i with respect
to a criterion. Note that the projector P can be seen as a push-forward operator, and the distribution of
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projected samples can be expressed as in P#µ. Also note that in the following we denote the empirical
distribution for class c as µc = 1

nc

∑
i,yi=c δxi

where nc is the number of samples from class c. The data
distribution µ is a weighted sum of the class distributions µ =

∑
c
nc

n µ
c.

5.2.1 Fisher ratio and Wasserstein discriminant
Fisher Discriminant Analysis (FDA) and local approaches FDA is one of the most common
approach to perform supervised dimensionality reduction. Given an empirical training dataset µ and its
corresponding classes {yi}i, the goal of FDA is to learn a linear map that can discriminate classes using
linear classifiers. FDA attempts to maximize w.r.t. P the sum of all squared distances ||Pxi − Pxj′ ||2
between pairs of samples from different classes c, c′ while minimizing the sum of all distances ||Pxi−Pxj ||2
between pairs of samples within the same class c [Friedman 2001, S4.3]. Because of this, it is well
documented that the performance of FDA degrades when class distributions are multi-modal.

Several variants of FDA have been proposed to tackle non-linearly separable problems [Friedman 2001,
S12.4]. For instance, a localized version of FDA was proposed by [Sugiyama 2007], which boils down to
discarding the computation for all pairs of points that are not neighbors. On the other hand, originally
designed to operate with a k-nearest neighbor classifier, the first techniques that were proposed to learn
metrics [Xing 2003] used a global criterion, namely a sum on all pairs of points. Later on, variations that
focused instead exclusively on local interactions, such as LMNN [Weinberger 2009], were shown to be far
more efficient in practice.

Wasserstein Discriminant Analysis We introduced in [Flamary 2018] a novel approach called
Wasserstein Discriminant Analysis (WDA). WDA is built on the regularized Wasserstein loss (2.31) to
compute similarity between the class distributions µc. The criterion we proposed to optimize is the
following:

max
P∈∆

∑
c,c′>cWλ(P#µc,P#µc′)∑

cWλ(P#µc,P#µc) (5.9)

where ∆ = {P = [p1, . . . ,pp] | pi ∈ Rd, ‖pi‖2 = 1 and p>i pj = 0 for i 6= j} is the Stiefel manifold
[Absil 2009], the set of orthogonal d×p matrices; P#µc is the distribution of projected samples from class
c. Wλ is the regularized Wasserstein loss defined in (2.31). The ratio in equation (5.9) is very similar to
the ratio of variances in FDA, we want to maximize the ratio of the regularized Wasserstein distances
between inter class populations and between the intra-class population with itself, when these points are
considered in their projected space. This is a major difference with other local approaches that rely on
relations between samples estimated in the original space.

Regularized OT and covariance matrices The entropic-regularized Wasserstein loss measures the
dissimilarity between empirical distributions by considering pairwise distances between samples. For a
given value of the regularization parameter λ the and the optimal OT matrix is T and the regularized
OT loss becomes

Wλ(P#µc,P#µc
′
) = 1

ncnc′

∑
i,j

Ti,j‖Pxsi −Pxtj‖2 = 〈PTP,Cc,c′

λ 〉 (5.10)

with
Cc,c′

λ = 1
ncnc′

∑
i,j

Ti,j(Pxci −Pxc
′

j )(Pxci −Pxc
′

j )T (5.11)

where Cc,c′

λ can be seen as a covariance matrix weighted by the relation between samples in the OT
matrix T. When the regularization parameter is small (5.10) will be similar to Wasserstein distance.
When the regularization increases, the entropic regularization will spread the mass across more samples,
hence enlarging the neighborhood between the samples. Finally note that the fact that the value of (5.10)
is always > 0 for any λ > 0 is necessary since it leads to a well posed optimization problem in (5.9) (the
denominator cannot be 0).
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5.2.2 Optimization problem and applications
Optimization problem Using the definition (5.10) of regularized Wasserstein distance, we can write
the Wasserstein Discriminant Analysis optimization problem as

max
P∈∆

{
J(P,T(P)) =

∑
c,c′>c〈PTP,Cc,c′

λ 〉∑
c〈PTP,Cc,c

λ 〉
= 〈P

TP,Cb,λ 〉
〈PTP,Cw,λ 〉

}
(5.12)

where Cb,λ =
∑
c,c′>c Cc,c′

λ and Cw,λ =
∑
c Cc,c

λ are the between and within cross-covariance matrices
that depend on the optimal matrices Tc,c′ that depend on P. Problem (5.12) can be reformulated as the
following bi-level optimization problem

max
P∈∆

J(P,T(P)) (5.13)

s.t. T(P) = arg min
T∈Uncn

c′

E(T,P) (5.14)

where T = {Tc,c′}c,c′ contains all the transport matrices between classes and the inner problem function
E is defined as the sum of regularized OT problems of the form (2.31) for all pairs c, c′ ≥ c yield a solution
T(P) as the concatenation of all the regularized OT matrices between the pairs. Optimization problem
(5.13)-(5.14) is a bi-level optimization problem, which can be solved using gradient descent [Colson 2007].
Indeed, J is differentiable with respect to P. This comes from the fact that optimization problems in
Equation (5.14) are all strictly convex, making solutions of the problems unique, hence T(P) is smooth
and differentiable [Bonnans 1998].

Optimization algorithm One can compute the gradient of J directly w.r.t. P using the chain rule as
follows

∇PJ(P,T(P)) = ∂J(P,T)
∂P +

∑
c,c′≥c

∂J(P,T)
∂Tc,c′

∂Tc,c′

∂P (5.15)

The first term in gradient (5.15) supposes that T is constant and can be computed (Eq. 94-95 [Pe-
tersen 2008]) as

∂J(P,T)
∂P

= P
(

2
σ2
w

Cb −
2σ2

b

σ4
w

Cw

)
(5.16)

with σ2
w = 〈PTP,Cw 〉 and σ2

b = 〈PTP,Cb 〉. The second term in (5.15) is much more difficult to compute
because of the Jacobian ∂Tc,c′

/∂P. A possible way to compute the Jacobian ∂Tc,c′
/∂P is to use the

implicit function theorem as in hyperparameter estimation in ML [Bengio 2000,Chapelle 2002]. Sadly in
our case it requires inverting a very large matrix, which does not scale in practice. It also assumes that
the exact optimal transport Tλ is obtained at each iteration, which is clearly an approximation since we
only have the computational budget for a finite, and usually small, number of Sinkhorn iterations. In the
paper we proposed to differentiate the transportation matrices obtained after running exactly L Sinkhorn
iterations, with a predefined L using auto-differentiation similarly to [Bonneel 2016,Genevay 2017b] and
as discussed in section 2.2.2.

In addition to automatic differentiation of the Sinkhorn algorithm, we proposed to use classical mani-
fold optimization tools such as projected gradient of [Schmidt 2008] or a trust region algorithm as imple-
mented in Manopt/Pymanopt [Boumal 2014,Koep 2016]. The latter toolbox includes tools to optimize
over the Stiefel manifold, notably automatic conversions from Euclidean to Riemannian gradients.

Connection between WDA and FDA Equation (5.12) exhibits a classical ratio between the inter-
and intra-class variance but with covariance matrices that depend on the projector P. When the regu-
larization parameter λ grows to infinity, the transport matrices between P#µc and P#µc′ converge to
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Figure 5.1: 2D tSNE of the MNIST samples linearly projected on p = 10 for different approaches. (first line)
training set (second line) test set. The method providing the best subspace estimation is the one separating the
classes on test data, in this case WDA.

T = 1
ncnc′

1nc,nc′ and do not depend on the data anymore. The covariance matrices become

Cc,c′
= 1
ncnc′

∑
i,j

(Pxci −Pxc
′

j )(Pxci −Pxc
′

j )T

and the matrices Cw,∞ and Cb,∞ correspond then to intra- and inter-class covariance matrices as used
in FDA. Since these matrices do not depend on P, the optimization problem (5.9) boils down to the
usual Rayleigh quotient which can be solved using a generalized eigen-decomposition of C−1

w Cb as in
FDA. Note that infinitely regularized WDA is equivalent to FDA when the classes are balanced (in the
unbalanced case one needs to weight the covariance matrices with the class ratios).

Applications on real data We investigated the performance of WDA on real datasets such as Caltech
and several UCI datasets in [Flamary 2018]. The proposed approach ranked the best across datasets. We
now discuss more in details the application to the well known MNIST dataset.

In a first experiment, we wanted to measure how robust our approach is with only few training
samples despite high-dimensionality of the problem. To this end, we draw n = 1000 samples for training
and report the KNN prediction error for the different subspace methods when projecting onto p = 10
and p = 20 dimensions (detailed results in [Flamary 2018, Fig. 5]). For both p, WDA found a better
subspace than the original space which suggests that most of the discriminant information available in the
training dataset has been correctly extracted. Conversely, the other approaches struggle to find a relevant
subspace in this configuration. In addition to better prediction performance, we want to emphasize that
in this configuration, WDA leads to a dramatic compression of the data from 784 to 10 or 20 features
while preserving most of the discriminative information.

To gain a better understanding of the corresponding embedding, we have further projected the data
from the 10-dimensional space to a 2-dimensional one using t-SNE [Van der Maaten 2008]. In order
to make the embeddings comparable, we have used the same initializations of t-SNE for all methods.
The resulting 2D projections on the test samples are shown in Figure 5.1. We can clearly see the
overfitting behavior of FDA, LFDA [Sugiyama 2007], LMNN [Weinberger 2009] and LDSR [Suzuki 2013]
that separate accurately the training samples but fail to separate the test samples. Instead, WDA is able
to disentangle classes in the training set while preserving generalization abilities.

5.3 Joint Distribution Domain Adaptation (JDOT)
We introduced a first Domain Adaptation approach based on mapping between distributions in Chapter
3. While this approach has very nice properties and works very well in practice it requires the strong
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assumption that the labels are transported along the samples which clearly limits its application in
practice. Another limit of the mapping approach is that it is a two-step method that requires first a
good approximation for a mapping and then a classifier estimation. In the following we discuss another
approach proposed originally in [Courty 2017] that relaxes the "label conservation through mapping"
assumption and estimates a classifier simultaneously with the OT between source and target distributions.

5.3.1 Model and theory
The main idea behind Joint Distribution Domain Adaptation (JDOT) [Courty 2017] is to work in the
joint feature/label space and align the source and target distributions.

Distributions and proxy distribution The source and target joint distributions are denoted respec-
tively Ps and Pt. In practice we have only access to a finite source dataset with labels P̂s and a finite
number of the target examples with no labels µ̂t. Since we do not have access to the full joint distribution
in the target space, it is impossible to compute an OT between those. This is why we proposed in JDOT
to use the following target proxy distribution

P̂t
f

= (x, f(x))x∼µ̂t (5.17)

where f : Ω → C is a classifier we want to estimate. This distribution will not be equal to the true Pt
but is a reasonable approximation if we have a good classifier f .

JDOT formulation Now that we have defined the proxy distribution P̂t
f
we can use it to express the

proposed JDOT optimization problem:

min
f∈H

WD(P̂s, P̂t
f
) (5.18)

where H is the functional space of f that can be a Reproducing Kernel Hilbert Space (RKHS) or defined
through a neural network architecture and the ground loss for the Wasserstein distance is expressed as

D(x1, y1; x2, y2) = α‖x1 − x2‖2 + L(y1, y2) (5.19)

where L is a Lipschitz continuous loss (regression or classification) and α > 0 is a parameter that weights
the impact of the features w.r.t. the impact of the label loss. In other words we want to estimate the
classifier f that best aligns the proxy distribution with the source joint distribution. Note that with this
formulation we choose to use a loss that is separable between features and labels since it is much easier
to optimize as discussed in the next section. Also note that in oder to avoid overfitting we have added a
regularization term on f during the numerical experiments.

Problem (5.18) can be expressed with the primal formulation of OT as

min
f∈H,T∈P

∑
i,j

Ti,j
(
α‖xsi − xtj‖2 + L(ysi , f(xtj))

)
(5.20)

We can see from this formulation that the OT matrix will be optimal w.r.t. the joint feature/label loss D
and will have an effect of label propagation during the training of f . Indeed if some mass is transferred
through T between source sample i and target sample j, minimizing (5.20) w.r.t. f will minimize the
discrepancy between f(xsi ) and label ytj hence treating sample xsi as if he was from class ytj . This will be
discussed in more details in the next section when we discuss the proposed optimization algorithm.

Generalization bound We provided in [Courty 2017] a generalization bound for JDOT. This bound
is of interest since it shows that the generalization error in the target domain can be bounded by the
proposed JDOT loss, which explains why the minimization problem (5.18) works well in practice. In
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order to achieve this generalization bound we extended the notion of probabilistic Lipschitzness introduced
in [Urner 2011,Ben-David 2012]. The extension that we called Probabilistic Transfer Lipschitzness (PTL),
assumes that a labeling function must comply with two close instances of each domain w.r.t. a coupling
Π between the source and target feature distributions.

Definition 1. (Probabilistic Transfer Lipschitzness) Let µs and µt be respectively the source and
target distributions. Let φ : R → [0, 1]. A labeling function f : Ω → R and a joint distribution Π(µs, µt)
over µs and µt are φ-Lipschitz transferable if for all λ > 0:

Pr(x1,x2)∼Π(µs,µt) [|f(x1)− f(x2)| > λd(x1,x2)] ≤ φ(λ).

Intuitively, given a deterministic labeling functions f and a coupling Π, it bounds the probability of
finding pairs of source-target instances labelled differently in a (1/λ)-ball with respect to Π.

We recall the definition the expected loss in the target domain Rt(f) as Rt
def= E(x,y)∼Pt

L(y, f(x)),
the expected error on the source domain is defined similarly as Rs(f). We assume the loss function L
to be bounded, symmetric, k-lipschitz and satisfying the triangle inequality. We can now give our main
result (simplified version):

Theorem 5.1. Let f be any labeling function of ∈ H. Let Π∗ = arg minΠ∈Π(Ps,Pt
f )
∫

(Ω×C)2 α‖xsi −

xtj‖2 +L(ys, yt)dΠ(xs, ys; xt, yt) and W1(P̂s, P̂tf ) the associated 1-Wasserstein distance. Let f∗ ∈ H be a
Lipschitz labeling function that verifies the φ-probabilistic transfer Lipschitzness (PTL) assumption w.r.t.
Π∗ and that minimizes the joint error Rs(f∗) +Rt(f∗) w.r.t all PTL functions compatible with Π∗. We
assume the input instances are bounded s.t. |f∗(x1)−f∗(x2)| ≤M for all x1,x2. Let L be any symmetric
loss function, k-Lipschitz and satisfying the triangle inequality. Consider a sample of Ns labeled source
instances drawn from Ps and Nt unlabeled instances drawn from µt, and then for all λ > 0, with α = kλ,
we have with probability at least 1− δ that:

Rt(f) ≤ W1(P̂s, P̂tf ) +
√

2
c′

log(2
δ

)
(

1√
NS

+ 1√
NT

)
+Rs(f∗) +Rt(f∗) + kMφ(λ).

The detailed proof of Theorem 5.1 is given in the supplementary material of [Courty 2017]. The bound
on the target error above is interesting to interpret. The first two terms correspond to the objective
function (5.18) we propose to minimize accompanied with a sampling bound. The last term φ(λ) assesses
the probability under which the probabilistic Lipschitzness does not hold. The remaining two terms
involving f∗ correspond to the joint error minimizer illustrating that domain adaptation can work only
if we can predict well in both domains, similarly to existing results in the literature [Mansour 2009,Ben-
David 2010]. If the last terms are small enough, adaptation is possible if we are able to align well Ps and
Ptf , provided that f∗ and Π∗ verify the PTL. Finally, note that α = kλ and tuning this parameter is
thus actually related to finding the Lipschitz constants of the problem.

5.3.2 Optimization and application
Learning with JDOT According to the hypotheses on f and L, Problem (5.20) is smooth and the
constraints are separable according to f and T. Hence, a natural way to solve the problem (5.20) is to
rely on alternate optimization w.r.t. both parameters T and f . This algorithm is also known as Block
Coordinate Descent (BCD) or Gauss-Seidel method (the pseudo code of the algorithm is given in the
appendix of [Courty 2017]). Block optimization steps are discussed with further details below.

1. Solving with fixed f boils down to a classical OT problem with a loss matrix C such that
Ci,j = αd(xsi ,xtj) + L(ysi , f(xtj)). We can use classical OT solvers such as the network simplex
algorithm, but other strategies can be considered, such as regularized OT [Cuturi 2013] or stochas-
tic versions [Genevay 2016].
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Figure 5.2: Illustration of JDOT on a 1D regression problem. (left) Source and target empirical distributions and
marginals (middle left) Source and target models (middle right) OT matrix on empirical joint distributions and
with JDOT proxy joint distribution (right) estimated prediction function f .

2. The optimization problem with fixed T leads to a new learning problem expressed as

min
f∈H

∑
i,j

Ti,jL(ysi , f(xtj)) + λΩ(f) (5.21)

Note how the data fitting term elegantly and naturally encodes the transfer of source labels ysi
through estimated labels of test samples with a weighting Ti,j in the optimal transport matrix.

Let us now discuss briefly the convergence of the proposed algorithm. Owing to the 2-block coordinate
descent structure, to the differentiability of the objective function in Problem (5.20) and constraints on f
(or its kernel trick parameters) and T are closed, non-empty and convex, convergence result of Grippo et
al. [Grippo 2000] on 2-block Gauss-Seidel methods directly applies. It states that if the sequence {Tk, fk}
produced by the algorithm has limit points then every limit point of the sequence is a critical point of
Problem (5.20).

Estimating f for least square regression problems We detail the use of JDOT for transfer least-
square regression problem i.e when L is the squared-loss. In this context, when the optimal transport
matrix T is fixed the learning problem boils down to

min
f∈H

∑
j

1
nt
‖ŷj − f(xtj)‖2 + λ‖f‖2 (5.22)

where the ŷj = nt
∑
j Ti,jy

s
i is a weighted average of the source target values. Note that this simplification

results from the properties of the quadratic loss and that it may not occur for a more complex regression
loss. An illustration of JDOT for a simple 1D regression problem can be seen in Figure 5.2. From this
Figure we can see that not only the estimated function f performs very well on the target data, but also
that the estimated OT matrix with the proxy distribution is actually very similar to the one on the true
joint distribution.

Estimating f for hinge loss classification problems We now aim at estimating a multiclass clas-
sifier with a one-against-all strategy. We suppose that the data fitting is the binary squared hinge loss of
the form L(y, f(x)) = max(0, 1−yf(x))2. In a One-Against-All strategy we often use the binary matrices
P such that P si,k = 1 if sample i is of class k else P si,k = 0. Denote as fk ∈ H the decision function related
to the k-vs-all problem. The learning problem (5.21) can now be expressed as

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xtj)) + (1− P̂j,k)L(−1, fk(xtj)) + λ
∑
k

‖fk‖2 (5.23)

where P̂ is the transported class proportion matrix P̂ = 1
Nt

T>Ps. Interestingly this formulation illus-
trates that for each target sample, the data fitting term is a convex sum of hinge loss for a negative and
positive label with weights estimated from T.
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Figure 5.3: Illustration of JDOT for a classification problem. (a): Decision boundaries for linear and RBF kernels
on selected iterations. The source domain is depicted with crosses, while the target domain samples are class-
colored circles. (b): Evolution of the accuracy along 15 iterations of the method for different values of the α
parameter;

We illustrate the behavior of our method on a 3-class toy example (Figure 5.3). We consider a
classification problem using the hinge loss and H is a Reproducing Kernel Hilbert Space. Source domain
samples are drawn from three different 2D Gaussian distributions with different centers and standard
deviations. The target domain is obtained rotating the source distribution by π/4 radian. Two types of
kernel are considered: linear and RBF. In Figure 5.3.a, one can observe on the first column of images
that using directly a classifier learned on the source domain leads to bad performances because of the
rotation. We then show the iterations of the block coordinate descent which allows one to recover the
true labels of the target domain. It is also interesting to examine the impact of the α parameter on the
success of the method. In Figure 5.3.b, we show the evolution of classification accuracy for six different
α in the case of RBF kernel. Relying mostly on the label cost (α = {0.1}) leads to a deterioration of the
final accuracy. Using only the input space distance (α = {50, 100}) allows a performance gain. But it
is clear that using both losses with α = {0.5, 1, 10} leads to the best performance. Also note the small
number of iterations required (< 10) for achieving a steady state.

JDOT in practice We applied JDOT on two different transfer tasks of classification and regression
on real datasets. We provided an Open Source Python implementation of JDOT with examples for
reproducing the figures on GitHub 1.

JDOT was evaluated on classification tasks on the Caltech Office [Saenko 2010] and Amazon re-
view datasets [Blitzer 2006]. For Caltech office JDOT was compared to all the methods evaluated
in [Courty 2016a] and performed better in average than all other approaches. On Amazon review,
JDOT was compared to the state of the art approach on this dataset namely Domain Adversarial Neural
Network [Ganin 2015] which was outperformed by JDOT using the same neural network architecture.

For the regression task, we used the cross-domain indoor Wifi localization dataset that was proposed
by Zhang and co-authors [Zhang 2013], and recently studied in [Gong 2016]. Two cases of adaptation
were considered: transfer across periods, for which three time periods t1, t2 and t3 are considered, and
transfer across devices, where three different devices are used to collect the signals in the same straight-line
hallways (hallway1-3). JDOT had encouraging performance (best out of 3) on the adaptation between
periods. On the adaptation between devices, it had tremendous performances with 99% accuracy in the
localization when best competitors were around 87%.

5.3.3 DeepJDOT and extensions
JDOT had very encouraging results on real data but the experiments were limited to small scale datasets
due to the global OT optimization problem in (5.18). Another question raised by JDOT is the space in

1JDOT code: https://github.com/rflamary/JDOT

https://github.com/rflamary/JDOT
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Figure 5.4: Overview of the DeepJDOT method. While the structure of the feature extractor g and the classifier
f are shared by both domains, they are represented twice to distinguish between the two domains. Both the
latent representations and labels are used to compute per batch a coupling matrix γ that is used in the global
loss function.

which the similarity between features should be computed. In [Courty 2017] we used the raw data space
which is known to perform rather poorly on images.

Learning feature extraction and adaptation jointly The main idea behind DeepJDOT is to learn
a representation of the data g simultaneously with the classifier f on this representation. The final
classifier is f ◦ g and the JDOT computes the distance in the feature space using the embedding of the
data through g instead of the raw original space. The proposed optimization problem can be expressed
as

min
T∈P,f,g

1
ns

∑
i

Ls (ysi , f(g(xsi ))) +
∑
i,j

Tij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(xtj))

))
. (5.24)

We can see from the equation above that it is an extension of JDOT where the feature extraction g is
learned simultaneously and used to compute the transport between the joint distributions. But learning
a representation working on unlabeled target data is prone to overfitting so we also add a classification
loss on the original data that will help in avoiding catastrophic forgetting of the source domain. An
illustration of the loss and architecture of the network is given in Figure 5.4.

The devil in the approximation The problem described in (5.24) is very complex to optimize for large
datasets due to the global OT problem. We proposed in [Damodaran 2018b] to solve the problem with a
stochastic approximation using minibatches from both the source and target domains [Genevay 2017b].
This approach has two major advantages: it is scalable to large datasets and can be easily integrated in
modern deep learning frameworks. The objective function (5.24) is approximated by sampling a mini-
batch of size m, leading to the following optimization problem:

min
f,g

E

[
1
m

m∑
i=1

L (ysi , f(g(xsi )) + min
γ∈∈P

m∑
i,j

γij
(
α‖g(xsi )− g(xtj)‖2 + λtL

(
ysi , f(g(xtj))

))]
(5.25)

where E is the expected value with respect to the randomly sampled minibatches of size m drawn from
both source and target domains. The classification loss functions for the source and target domains
(L) can be any general class of loss functions that are twice differentiable. We opted for a traditional
cross-entropy loss in both cases. Note that, as discussed in [Genevay 2017b], the expected value over
the minibatches does not converge to the true OT coupling between every pair of samples, which might
lead to the appearance of connections between samples that would not have been connected in the full
coupling. However, this can also be seen as a regularization that will promote sharing of the mass between
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neighboring samples. Finally note that we did not use the regularized version of OT as in [Genevay 2017b],
since it introduces an additional regularization parameter that should be cross-validated, which can
make the model calibration more complex. Still, the extension of DeepJDOT to regularized OT is
straightforward and could be beneficial for high-dimensional embeddings g.

DeepJDOT in practice We applied DeepJDOT to three visual adaptation datasets: Digits classifi-
cation, Home-Office, and VisDA-2017 dataset. For digit classification we considered four data sources
(domains) from the digits classification field: MNIST [Lecun 1998], USPS [Hull 1994], MNIST-M, and the
Street View House Numbers (SVHN) [Netzer 2011] dataset. The Office-Home dataset [Venkateswara 2017]
contains around 15′500 images in 65 categories from four different domains: artistic paintings, clipart,
product and real-world images. The Visual Domain Adaptation classification challenge of 2017 (VisDA-
2017; [Peng 2017]) requires training a model on renderings of 3D models for each of the 12 classes and
adapting to natural images sampled from MS-COCO [Lin 2014] (validation set) and YouTube Bound-
ingBoxes [Real 2017] (test set), respectively. The test set performances were evaluated on the official
competition server.

For all datasets, we compared to a number of state of the art approaches such as DeepCO-
RAL [Sun 2016] and DANN [Ganin 2016]. Details of the numerical experiments are given in
[Damodaran 2018b], but DeepJDOT had consistently better performances compared to all the other
methods. We also did an ablation study where we removed some terms in the objective function and it
illustrated the importance of each term in (5.25).

For an interpretation of the performance of DeepJDOT we visualized the quality of the embeddings
for the source and target domain learnt by DeepJDOT and DANN using t-SNE embedding on the
MNIST→MNIST-M adaptation task (Figure 5.5). As expected, on the model trained on source data the
samples from the source domain are well clustered and target samples are more scattered. The t-SNE
embeddings with the DANN are better but not able to align the distributions well. DeepJDOT perfectly
aligns the source domain samples and target domain samples per class, which explains the good numerical
performances reported above. The “tentacle”-shaped and near-perfect separation of the classes in the
embedding illustrate the fact that DeepJDOT finds an embedding that both aligns the source/target
distribution, but also maximizes the margin between the classes.

Label denoising with DeepJDOT The optimization problem from DeepJDOT can be adapted to
other learning problems. Indeed the fact that the labels are propagated through the OT matrix suggests
that when using regularization, multiple labels will be propagated on the samples performing some kind
of label smoothing on the samples. For this reason we investigated the use of regularized OT in the
DeepJDOT framework in the presence of label noise in [Damodaran 2018a]. In this case we proposed to
optimize the following problem

min
f∈H

∑
i,j

Ti,j
(
α‖xi − xj‖2 + L(yi, f(xj))

)
(5.26)

where T is the solution of entropic regularized OT using ground loss 5.19 between the noisy training
data (xi, yi) and the proxy distribution (xi, f(xi)). The regularization will perform a smoothing of the
labels around its neighbors in the joint feature/label space which will provide robustness. The method
has been evaluated on real life remote sensing applications and performed very well for training deep
neural networks compared to other robust losses.



50 Chapter 5. Optimal Transport between empirical distributions

Source (red) VS target (blue) Class discrimination

So
ur
ce

O
nl
y

D
A
N
N

D
ee
pJ

D
O
T

Figure 5.5: t-SNE embeddings of 2‘000 test samples for MNIST (source) and MNIST-M (target) for Source only
classifier, DANN and DeepJDOT. The left column shows domain comparisons, where colors represent the domain.
The right column shows the ability of the methods to discriminate classes (samples are colored w.r.t. their classes).
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In this short chapter, I discuss the application of OT when the distributions do not live in the same
ambient space. In this case it is obvious that one cannot compute a ground metric c between samples in
source and target domains. I will present first an extension of OT called the Gromov-Wasserstein distance
(GW) proposed in [Mémoli 2011]. Next I introduce the Fused Gromov-Wasserstein distance (FGW) that
we proposed recently to measure similarity between labeled graphs. The last section describes some
applications of FGW on classical graph processing problems.

In the following I will define GW and FGW on discrete distributions for readability reasons but most
of the discussed properties have been proven for general distributions (see [Mémoli 2011,Vayer 2018]).

6.1 Gromov-Wasserstein distance
The Gromov-Wasserstein (GW) distance has been introduced in [Mémoli 2011] to provide a similarity
measure and a matching between objects. The main idea behind GW is to look at (and align) pairwise
relations between samples in their respective domains and to seek for a transport between these pairwise
relations.

6.1.1 Definition and properties
Gromov-Wasserstein distance Let µX =

∑
i hiδxi be a source distribution having a support in X ,

and µY =
∑
j giδyj be the target distribution with a support in Y. The GW distance is defined as

GWp(D,D′, µX , µY ) =
(

min
T∈Π(µX ,µY )

∑
i,j,k,l

|Di,k −D′j,l|pTi,j Tk,l
) 1

p

(6.1)

where Di,k = ‖xi − xk‖, D′j,l = ‖yj − yl‖ are the pairwise distances between samples in source and
target respectively. The GW is a metric for p ≥ 1 and the optimal matrix T in the problem above gives
a correspondence between source and target samples that aligns the pairwise relationship between the
samples across different metric spaces.
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GW properties This distance has interesting properties such as being null if and only if there exists
an isometry between the two distributions. It is also invariant to rotations and translations of the distri-
butions. GW has been used to measure similarity between graphs where the pairwise distance between
nodes can be computed for instance with shortest path. It is a sensible measure of similarity between
surfaces in computer graphics where the rotation invariance is of particular interest. [Mémoli 2011]. It
can also be used for the estimation of GW barycenters between distributions lying in different spaces with
very nice interpolation between weighted surfaces in [Peyré 2016]. Finally note that the GW distance
has been used as a data fitting term to train a generative model across different spaces in [Bunne 2019].

6.1.2 Solving Gromov-Wasserstein

Solving the optimization problem Solving the optimization problem in 6.1 is very difficult. It is
a high dimensional non-convex constrained Quadratic Program (QP) that is much more complex and
memory intensive than the Linear Program of classical OT. Since it is non convex one can only hope to
find local stationary points in practice.

Interestingly solving the GW problem 6.1 is equivalent to solve a general regularized OT of the form
2.33 where C = 0 and Ω(T) is the non-convex quadratic term. One simple approach that we implemented
in the POT toolbox [Flamary 2017b] consists in using Conditional Gradient (CG) to find a local solution.
CG relies on solving at each iteration a linearization of the objective function which in our case boils
down to solving a classical OT of complexity O(n3 log(n)).

Another approach proposed in [Peyré 2016] was to regularize the problem with entropy. In this case
the regularization has a smoothing (and convexification effect) and similarly to entropic OT the transport
matrix is not sparse anymore. But the problem can be solved with a simple projected gradient descent
where each projection can be done with the efficient Sinkhorn algorithm.

Gromov-Wasserstein in 1D GW has been introduced only recently in the mathematical and ML
community and some of its behavior in special cases have not yet been investigated. But we looked
at the problem in 1D and have proven that there exists a closed form for GW in 1D in [Vayer 2019b].
Interestingly 1D GW has also a closed form relying on quantile functions and similar to the solution for
1D Wasserstein. In a nutshell, for uniform weights and the same number of sample, the solution when
the samples on the left and right have been sorted is either the identity matrix on the anti-identity matrix
(invariance to rotations). This means that one can find the optimal solution by computing the GW loss on
both (Can be efficiently computed in O(n). The GW in 1D is a specific structure of Quadratic Assignment
Problem that can be solved efficiently using a O(n log(n)) sorting followed by a O(n) computation (same
complexity as 1D Wasserstein). We find it very interesting that in 1D one can solve and compute this
problem in O(n log(n)) when the computation of the objective value itself is O(n3) [Peyré 2016] in the
general case.

This efficient solver in 1D opens the door to Sliced Radon Gromov Wasserstein which can be used
on a very large number of samples for generative model training or Sliced GW barycenter estimation
[Vayer 2019b]. For example, one can solve Gromov Wasserstein in 1D (so one projection in sliced radon
configuration) on 1 million samples in about 10−2 seconds.

6.2 Fused Gromov-Wasserstein distance

In the previous section, we introduced GW that can measure similarity between graphs. But one limit
of GW is that when the graphs in source and target are labeled it cannot encode this label. Before
introducing the Fused Gromov-Wasserstein distance we first need to express the labeled graph as a
distribution.
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}
}

}
Figure 6.1: Illustration of a labeled graph modeled as a distribution. (Left) Labeled graph with (ai)i its feature
information, (xi)i its structure information and histogram (hi)i that measures the relative importance of the
vertices. (Right) Associated structured data which is entirely described by a fully supported probability measure
µ over the product space of feature and structure, with marginals µX and µA on the structure and the features
respectively.

6.2.1 Structured object as a distribution
We proposed in [Vayer 2019a] to model a labeled graph as the following distribution (see Figure 6.1):

µ =
∑
i

hiδ(xi,ai) (6.2)

where the Diracs have a position in the joint structure/label. xi encodes a position in the structure space,
the structure relation between the nodes is encoded through the pairwise relations ‖xi−xj‖ that can be
computed implicitly for instance with a shortest path between nodes. The label in each node is denoted
as ai and it can be compared across graphs so it lies in the same space for all objects. hi is the weight
of each node in the distribution, by default one can use uniform weights. The joint structure/label space
allows to encode simultaneously the graph structure and the label information.

6.2.2 Fused Gromov-Wasserstein
We proposed in [Vayer 2019a] the FGW between µs =

∑
i hiδ(xi,ai) and µt =

∑
j gjδ(yj ,bj):

FGWp,q,α(D,D′, µs, µt) =
(

min
π∈Π(µs,µt)

∑
i,j,k,l

(
(1− α)Mq

i,j + α|Di,k −D′j,l|q
)p
Ti,j Tk,l

) 1
p

(6.3)

whereMi,j = c(ai,bj) measures the divergence between labels and 0 ≤ α ≤ 1 is a parameter that weights
the relative importance of the labels and structures. The optimization problem above is very similar to
the one of GW but comes with an additional linear term. It is clearly an interpolation between GW
on structure alone (α = 1) and Wasserstein on nodes labels α = 0. In order to solve the optimization
problem, we proposed in [Vayer 2019a] to use a Conditional Gradient that relies on iteratively solving
linear OT problems. It can also be solved using entropic regularization with a slight change in the
projected gradient algorithm of [Peyré 2016].

Theoretical properties The FGW distance described above has several nice theoretical properties
that were proven in [Vayer 2018]. First FGW is a metric over structured data that is invariant to
measure and feature preserving isometries. It is a true metric when q = 1 and a semi-metric when q > 1
far any p ≥ 1. FGW also have nice geometrical properties for continuous distributions such as uniquely
defined constant speed geodesics which open the door to Fréchet means (or barycenters). Finally it is an
upper bound for the GW and Wasserstein distances and we have shown in [Vayer 2018] that FGW in the
same space has the same sample complexity as Wasserstein distance of O(n−1/d).
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Bary with n=15 Bary with n=7

Figure 6.2: Illustration of FGW graph barycenter. Columns 1 to 6 are noisy samples that constitute the datasets.
Columns 6 and 7 show the barycenters for each setting, with different number of nodes. Blue nodes indicates a
feature value close to −1, yellow nodes close to 1.

6.2.3 Fused Gromov-Wasserstein barycenters
Since FGW is a meaningful similarity measure between graphs we proposed to estimate FGW barycenters
corresponding to the following optimization problem:

min
C,µ

∑
k

λkFGWp,q,α(D,Dk, µ, µk) (6.4)

where (Dk, µk) describes object k and λk are the relative weights of the objects. Note that optimizing D
corresponds to the estimation of the structure of the barycenter. For instance when Dk corresponds to
shortest path on the graph, one can recover the graph structure of the barycenter using a threshold on D.
The features of the graph (its labels) are encoded in µ through the matrix of labels A = [a1, . . . ,an]>.
The optimization problem above is hard to solve but one can relatively easily get a stationary point
by using a block coordinate descent algorithm that corresponds to updating alternatively the FGW
transport matrices and the structure/feature matrices of the barycenter similarly to what was proposed
in [Peyré 2016].

6.3 Applications on graphs
FGW is a novel distance between labeled graphs and can be applied to numerous applications. We present
in the following several illustrative applications of FGW.

6.3.1 Graph classification
FGW is a principled metric between labeled graph that can encode both the structure of the graph
and the labels on the nodes and can be used to train template based classifiers. In [Vayer 2019a], we
designed a very simple non-positive kernel of the form k(·, ·) = exp(−FGW (·, ·)). This kernel was used
to train support vector machines on several graph classification datasets. We achieved very competitive
performance even when compared to deep learning methods such as Patchy-SAN Graph Convolutional
Networks [Niepert 2016]. This result is particularly impressive since we compare our FGW on simple
label/graph representation to a much more complex supervised feature extraction network but still can
outperform it.

Note that an interesting development would be to train an embedding that can represent the la-
bel/structure spaces on each graph for prototype based classifier. Note that one can also directly train
a linear classifier on prototypes with FGW distance, that would be an extension of the Dissimilarity
Measure Machines framework proposed in [Rakotomamonjy 2018].
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Graph with communities Approximate Graph Clustering with transport matrix

Figure 6.3: Example of community clustering on graphs using FGW . Community clustering with 4 communities
and uniform features per cluster.

6.3.2 Graph barycenters and community clustering
Graph barycenters, compression and clustering Another interesting application of FGW is to
find a barycenter for a family of graph. We illustrate barycenters for two families of "noisy" graphs (one
with a circle structure and one with an ∞ structure) in Figure 6.2. The barycenters with n = 15 and
n = 7 nodes are reported in the last two columns of the figure. One can see that the barycenters recover
both the overall structure of the family and the labels (colors). Note that by selecting the number of
nodes in the barycenter one can compress the graph or estimate a "high resolution” representation from
all the samples. To the best of our knowledge, no other method can compute such graph barycenters.
Finally since we can now compute Fréchet means of graphs, we can extend classical algorithms sur as
K-means to estimate graph centroids from a dataset of clustered graphs. We show the evolution of the
cluster centers and final clusters in [Vayer 2019a, Fig. 5].

Graph community clustering As discussed above, one can estimate a "compressed" version of a given
graph with a smaller number of nodes. In practice this can be used to perform community clustering in
graphs. We generate a community graph illustrated in the left column of Figure 6.3. We can see that the
relation between the blocks is sparse and the features also follow the graph clusters (noisy but similar in
each block). The graph approximation shown in the center column of Figure 6.3 is done with 4 nodes
and we can recover both the blocks in the graph and the average feature on each blocks. Note that in
addition to finding 4 nodes corresponding to the communities, we also have access as illustrated in the
right column of Figure 6.3 to a transport matrix that gives the relation between the nodes in the original
graph and the cluster nodes in the compressed graph.
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This chapter provides concluding remarks about this document. It first describes some current and
future works that we plan to investigate. Finally I discuss some more fundamental and general questions
that will be in my opinion key to the future of OT for ML.

7.1 Current and future work
7.1.1 Optimal Transport on graphs
The Fused Gromov-Wasserstein distance described in Chapter 6 has been illustrated on several examples
of data mining on graphs. But a lot of work remains to be done in order to make it a general tool for
use in Graph Processing. First I believe that it would be very interesting to investigate the link between
FGW and Signal Processing on graphs [Shuman 2012] that is a very active community. One first direction
would be to study at what happens on the eigenvectors and eigenvalues when computing the barycenter
of two distributions that share the same graph.

Another direction we want to investigate is to propose some structure in the ground distance matrix of
the graph barycenter such as sparsity and group structure. Promoting such a structure will help getting
better estimators since we can encode prior knowledge directly in the estimation. Having an additive
structure (with a dictionary) for the distance matrix might even lead to novel applications such as graph
dictionary learning where a manifold with FGW metric can be estimated.

7.1.2 Estimating the Monge mapping
The problem of estimating the continuous Monge mapping from empirical distributions has only been
investigated very recently. In my opinion, despite recent results [Flamary 2019,Hütter 2019,Paty 2019b]
the community is still searching for a general estimator that has known statistical properties (in term of
convergence) and can be computed in practice. The question of the use of regularized OT is still open
since the effect of the regularization is to split the mass, which seems counterproductive for mapping
estimation.
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One important research direction in my opinion is to investigate how to find good estimator for
nonlinear Monge mapping. [Paty 2019b] proposed in a recent paper to include regularity directly in
the Brenier potentials, which leads to a very elegant (but not efficient) Quadratically Constrained QP
(QCQP). They can also provide out of sample mapping by solving a smaller QCQP. Another approach also
relying on smoothness of the mapping would be to estimate Monge mapping on finite order polynomial
basis (linear, quadratic, . . . ). Interestingly, in this case the positivity constraint on the Jacobian of the
mapping, corresponds to semi algebraic constraints on the polynomials. We plan on studying the effect
of those constraints on the polynomial parameters to evaluate the quality of estimation of a linear and
higher order polynomials mappings.

7.1.3 Wasserstein on minibatches
One major problem of OT is its computational complexity. It has been a problem for large scale implemen-
tation especially when used to train neural networks with stochastic gradient updates. Wasserstein GAN
proposed to solve the problem in the dual and to estimate the dual variable with a NN [Arjovsky 2017]
but some approximations had to be done since the constraints of the dual variable are impossible to
encode in practice. Using regularized OT makes the problem scalable but still requires to solve large
problems. In order to use it for training neural networks with SGD updates, [Genevay 2017a] proposed
to compute the OT on minibatches. Since then, OT on minibatches has been used in practice in several
recent works from domain adaptation [Damodaran 2018b] to GAN [Deshpande 2018,Kolouri 2018].

One important question is then: what happens when we minimize the expectation of OT on mini-
batches? It clearly leads to a biased solution w.r.t. the solution of Wasserstein distance. We plan on
investigating why optimizing on minibatches works in practice and look at the statistical estimators and
results of stochastic optimization. Another question is the effect of the size of the minibtach. In practice
one can see this as a regularization parameter, so the effect of this regularization when combined with
entropic regularization as proposed in [Genevay 2017a] is still an open problem.

7.1.4 Adversarial regularization with Wasserstein
One major recent development in deep learning was the introduction of adversarial training [Goodfel-
low 2014b,Miyato 2016], that aims at training neural networks that are robust to adversarial examples.
This can be seen as a regularization of the neural network that will forbid quick change in classification
output (w.r.t. the input) and promote robustness. Recent approaches such as virtual adversarial training
(VAT) [Miyato 2018] create virtual adversarial samples that correspond to the closest samples that lead
to the largest change in the classifier output.

Those methods have reached state of the art performances on semi supervised learning. But they
treat all classes uniformly (the regularization is isotropic) despite the fact that on can often have access
to some additional information (such as similarity between classes). We proposed in our preliminary
works in [Damodaran 2019] to encode these relations in the estimation of adversarial examples using
Wasserstein distance on the output of the classifier. This will allow us to promote smoothness between
classes that are known to be similar/noisy but keep a complex border when necessary.

7.2 The big OT for ML questions

7.2.1 Statistical properties of Wasserstein distance
One well known bottleneck for the use of Wasserstein distance in ML from measuring similarities between
empirical description is its very slow convergence of O(n−1/d) in terms of number of samples n that
depends on the dimension d. Similar convergence has also been proven for the Monge mapping estimation
[Hütter 2019]. This leads to the following question: do we really want to use the Wasserstein distance or
Monge mapping in practice?
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Researchers have partially answered this question with the negative. In [Genevay 2018], the authors
have studied the statistical properties of the Sinkhorn divergence and shown a much better convergence
speed of O(n−1/2) (for a fixed regularization parameter). Since exact OT can be computationally expen-
sive, Sinkhorn divergence seems to be an elegant and efficient alternative. But the question of how to
select the regularization term is still open and application dependent. We can also note the burgeoning
Sliced Wasserstein distance that can in some way avoid the curse of dimensionality and has been used
with success for training generative models [Kolouri 2018,Deshpande 2018,Liutkus 2018]. All the trend-
ing numerical approaches in ML seem to go away from the original Wasserstein, and they all correspond
to some kind of regularization that attenuate the large variance of OT. The question of how to keep the
nice geometric properties of OT and avoid its statistical shortcoming will be key to the future of OT for
ML.

7.2.2 Large scale optimization
The slow convergence of Wasserstein discussed above suggests to use it on massive datasets. One major
problem in this case is the complexity of solving the OT problem. It is known to be O(n3 log(n)) for exact
OT and nearly O(n2) for entropic OT which still cannot scale well to very large datasets. Stochastic
optimization procedures as proposed in [Genevay 2016] and [Seguy 2018] do scale but can still be very
slow on large datasets for small regularization terms. This limits their application when the Sinkhorn
divergence is the objective value of the optimization problem.

In order to tackle this complexity, we can observe as discussed in the previous section a trend that
consists in optimizing the expectation of the Wasserstein distance over minibatches [Genevay 2017b,
Damodaran 2018b]. This is interesting in practice since it allows the use of classical SGD with IID
minibatches but the objective value is very different from the Wasserstein distance or its entropic coun-
terpart. Other approaches tend to replace the Wasserstein with more efficient loss such as Sliced-Radon
Wasserstein but still use minibatches [Kolouri 2018]. The question of how to scale OT solvers is strongly
related to the discussion above about statistical properties and will also be central in a near future.

7.2.3 Learning the ground metric
Finally another important question in OT is the choice of the ground metric [Cuturi 2014b]. In practice,
the Euclidean distance is often used but this is known to be a poor measure of similarity for instance
when data lie in a manifold. For specific problem, one can design some ground metric using prior
knowledge similarly to the design of a kernel for SVM as we did for OST [Flamary 2016]. We also
proposed to estimate the equivalent of a Mahalanobis distance in [Flamary 2018] that will optimize a
separability measure between classes. A similar approach estimating a robust subspace has been proposed
in [Paty 2019a].

Some works such as [Genevay 2017b, Bellemare 2017] have proposed to learn an adversarial deep
embedding (maximize w.r.t. the embedding) and it seems to work well for generative training. Still
the question of finding a ground metric optimal with respect to a given objective without overfitting is
important. While simple linear embeddings as discussed above are one way. The question of learning a
regular ground metric so that it conserves smoothness (and why not convexity) remains an open problem
that will have to be solved if we want to apply OT in a wide range of ML applications.
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