
COMPUTER-AIDED DIAGNOSTIC SYSTEM FOR PROSTATE CANCER DETECTION AND
CHARACTERIZATION COMBINING LEARNED DICTIONARIES AND SUPERVISED

CLASSIFICATION

Jerome Lehaire1,2, Rémi Flamary3, Olivier Rouvière1, Carole Lartizien2

1INSERM, U1032, LabTau, Lyon, F-69003, France; Université de Lyon, Lyon, F-69003, France
2Université de Lyon, CREATIS; CNRS UMR5220; INSERM U1044; INSA-Lyon; Université Lyon 1, France

3Laboratoire Lagrange, UMR 7293, Université de Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur,
Nice, France

ABSTRACT

This paper aims at  presenting results of  a computer-aided
diagnostic  (CAD)  system  for  voxel  based  detection  and
characterization  of  prostate  cancer  in  the  peripheral  zone
based  on  multiparametric  magnetic  resonance  (mp-MR)
imaging.  We  propose  an  original  scheme  with the
combination of a feature extraction step based on a sparse
dictionary  learning  (DL)  method  and  a  supervised
classification in order  to discriminate normal {N}, normal
but  suspect  {NS}  tissues  as  well  as  different  classes  of
cancer tissue whose aggressiveness is characterized by the
Gleason  score  ranging  from  6  {GL6}  to  9  {GL9}.  We
compare  the classification  performance of  two supervised
methods, the linear support vector machine (SVM) and the
logistic regression (LR) classifiers in a binary classification
task.  Classification  performances  were  evaluated  over  an
mp-MR image  database  of  35  patients  where  each  voxel
was  labeled,  based  on  a  ground  truth,  by  an  expert
radiologist.  Results  show  that  the  proposed  method  in
addition  to  being  explicable  thanks  to  the  sparse
representation of the voxels compares well (AUC>0.8) with
recent  state-of-the-art  performances.  Preliminary  visual
analysis of example patient cancer probability maps indicate
that cancer probabilities tend to increase as a function of the
Gleason score. 

Index Terms— CAD, Prostate cancer, MRI, 
Dictionary learning, SVM, Logistic regression

1. INTRODUCTION

Prostate cancer is the most frequent cancer and the second
cause  of  mortality  in  France.  The  actual  gold  standard
diagnostic  method  is  the  echo-guided  biopsy  which  is
mostly  randomly  conducted  because  of  the  lack  of
sensitivity  and  specificity  of  ultrasound  imaging.
Radiologists  are  therefore  exploring  the  feasibility  of
multiparametric  magnetic  resonance  (mp-MR)  imaging
combining various MR sequences to target biopsies towards
suspicious  areas  or  ultimately  to  allow  the  non  invasive
active staging and follow-up of patients. Nevertheless, the

interpretation  of  mp-MR images  is  complex  since  cancer
lesions may generate conflicting signatures on the different
sequences.  To  leverage  this  problem,  computer-aided
diagnostic (CAD) systems recently demonstrated promising
results in assisting radiologists in the diagnostic phase. By
extracting features from a single or multiple MR sequences
followed by a supervised classification step, the proposed
systems generate probability scores of malignancy either at
a voxel level (CADe) thus providing probability maps in the
whole  prostate  [1,2,3,4,5],  or  at  the  level  of  a  region  of
interest (CADx) outlined by the radiologist [6,7].

Recently,  we  achieved  promising  results  with  CADx
system  based  on  the  combination  of  a  series  of  110
statistical, structural and functional features extracted from
three  MR sequences  (T2,  Apparent  Diffusion  Coefficient
and  Dynamic  Contrast  Enhanced)  and  a  SVM  classifier
[7,8]. We now aim at going one step further by proposing an
original  CADe  scheme  that  outputs  a  probability  score
correlated with the Gleason score (GL)  characterizing the
aggressiveness of cancer lesions. The challenge we address
is thus to design a system that can discriminate among the
different  types  of  prostate  cancer  lesions.  This  study is  a
preliminary step toward that goal.

This problematic shares similar characteristics with that
of hyperspectral imaging (HSI)  [9]. We indeed hypothesize
that  the voxel MR signature  is  the resulting effect  of  the
linear  and  non  linear  combination  of  different  types  of
organic material (blood, cancer and normal tissue etc) and
we  aim  at  characterizing  the  voxel  element,  ie  either
quantifying the fractions of each component or classifying
the voxel in the class of the dominant one. Similar factors
make the unmixing and classification of the HSI and MR-
spectral signature task complex: the high dimensionality and
size of the data,  the linear  and nonlinear  spectral  mixing,
and the low number of labeled training data. Following the
unmixing  formalism,  we  consider  a voxel     as  a
linear combination of a finite number of basis elements that
constitute a dictionary   

        (1)



where   is  the  size  of  the  dictionary,   the  number  of
features,   the  approximation  elements  of   and

 are the decomposition coefficients for
voxel . The objective of unmixing is to both estimate the
series  of   and   elements.  The  interest  of  such  a
representation  is  first  to  characterize  the  content  of  the
image at a voxel level and second to reduce dimensionality
by considering the series of  as features for classification
purpose in the context of small training samples. Among the
different unmixing algorithm, those based on  simple linear
models such as VCA [10] postulate that the elements  are
'pure' components referred to as endmembers. As for HSI,
this assumption is likely to be violated with mp-MR features
because  of  nonlinear  effects  introduced  during  the  MR
acquisition  and  image  processing  steps  that  generate  the
features and the absence of 'pure' voxels in the MR images.
Sparse  coding  unmixing  models  have  been  shown  as  a
promising  alternative  to  the  linear  methods  for  HSI  [9].
They assume that the voxel is a linear combination of a few
basis  elements  of  a  larger  dictionary  and  learn  these
elements from the data so that they can encode nonlinear
variations  (e.g.  different  elements  of  the  dictionaries  can
indeed represent the same tissue). 

In this paper, we propose and evaluate different CAD
schemes  for  mp-MR  prostate  screening  that  combine  a
feature extraction step based on a sparse representation of
the  data  and  a  classification  step  performed  by  two
classifiers, the linear support vector machine (SVM) and the
logistic regression (LR) classifiers. Performance analysis of
these schemes is presented based on a series of 35 annotated
patients.

2. SUPERVISED CLASSIFICATION WITH
LEARNED DICTIONARIES

2.1. Feature extraction

A voxel  can be represented by   
where  represents the number of features for a given voxel.
Each voxel  was given a label  by an expert radiologist,
where  encodes normal {N}, normal but suspicious {NS}
and cancer tissues with Gleason scores ranging from 6 to 9.

2.1. Dictionary learning

Following  the  general  linear  model  of  Eq.  1,  the  sparse
dictionary  learning  (DL)  methods  are  based  on  the
optimization of a cost function that both attempt to find the
representation  of  the dictionary   that  best  describes  the
data while promoting a sparse representation. This leads to
the following joint optimization problem:

where   is  the  number  of  voxels,   is  a  regularization
parameter for coefficients sparsity and  is a convex set for

the dictionary elements. In  our numerical experiments, we
force  the  dictionary  elements  to  be  of  unitary  euclidean
norm.  We  chose  the  online  dictionary  learning  scheme
proposed by Mairal et al  [12] to solve the above problem.
This method was indeed proven to converge and scale up to
large  scale  data  such  as  the  one  in  our  application  (the
dimension of each feature  vector representing a voxel is of
size   = 70, and the total number   of processed voxels is
about  455  000).  The  stochastic  class  of  the  dictionary
learning  method,  which  process  one  sample   at  a  time
during   iterations,  implies  to  define  the  number  of
randomly chosen  voxels  at  each  iteration  of  the  method.
According to default setups defined in [12], this parameter,
defined as the mini-batch extension was set to 512 and the
number of iteration  to 100. 

2.2. Classification

In this paper, we consider a binary classification task so that
 and two classifiers were evaluated, the SVM

which  has  shown  good  performances  for  binary
classification tasks of prostate mp-MR imaging [7] and the
LR which directly outputs probability.

2.2.1. Support Vector Machine classifier (SVM)
The  linear  SVM  separates  the  data  by  an  hyperplane  of
equation   which  maximizes  the  distance
(margin) between the data of the two classes [11,14].  The
parameters   and   result  from  the  resolution  of  the
following optimization problem

 
 

where  are slack variables corresponding to the distance to
the  margin  of  possibly  misclassified  samples   and  
weights  the  empirical  classification  error.  Note  that  we
chose linear  SVM that can be efficiently learned on large
scale datasets [15].

2.2.2. Multinomial logistic regression classifier (MLR)
Multinomial  logistic  regression  is  a  supervised  learning
method  that  also  leads  to  a  linear  decision  function  but
simultaneously provides probability estimates. In multiclass
classification,  MLR estimates  one  linear  model   and  
per class. The predicted conditional probability for class  is
of the form: 

The  linear  parameters   and   are  estimated  by
maximizing  the  likelihood  of  the  parameters   given  the
training  examples  with  a  quadratic  regularization  term
modeling a Gaussian  prior  knowledge  on the model.  The
full optimization problem is not given in this work due to



lack of space but we refer the reader to classical statistical
learning  references  such  as  [13].  The  decision  is  then
performed by selecting the class maximizing the conditional
probability. Note that in this work we only used the binary
classification variant of MLR known as logistic regression
LR. 

3. EXPERIMENTS AND RESULTS

3.1. Database description

The  experimental  database  consisted  of  35  patients  who
underwent  mp-MR  imaging  following  the  protocol
described  in  [7].   Each  tumor  or  suspicious  tissue  was
outlined  by  an  expert  radiologist  over  the  three  MR
sequences. The nature of the tumor as well as its GL score
were  confirmed  by  an  anatomo-pathologist.  The  total
number of voxels and their percentage belonging to each of
the four classes {N; NS; GS6; GS>6} are respectively {358
929 (79%); 31747 (7%); 10835 (2%); 54225 (12%)}. 

3.2. Experiments

Eight different CAD schemes were evaluated based on the
combination of the SVM and LR classifiers with four types
of  feature  vectors.  The  first  type  referred  to  as  raw_feat
corresponds to the 110  features  extracted  from the 3 MR
sequences [7]. The second input referred to as  alpha_VCA
are decomposition coefficients (abundances) obtained by the
VCA linear  model  [10].  Two  types  of  sparse  coefficients
were then considered. The first ones  alpha_DL result from
the learning of a global dictionary over the whole data set
based on the software implementation of Mairal et al [12]
while the second ones, alpha_ssDL, are generated from the
concatenation of four dictionaries,  each learned separately
on one of the four classes {N, NS, GS6, GS>6} with the
same algorithm. 

The linear SVM and LR classifiers are used as binary
classifiers  where  the  discrimination  task  is  to  separate
aggressive cancers (GS>6) from the rest (N, NS, and non
aggressive  cancer  GS6).  A  leave-one-patient  out  cross-
validation  strategy  (LOPO)  is  employed  to  evaluate  the
classification performance based on the area under the ROC
curve (AUC).

Optimal  methods  and  classification  parameters  were
obtained by maximizing the area under the curve using the
same  LOPO  scheme.  A feature  selection  step  was  first
performed  based  on  a  wrapper  method  described  in  [7].
Each classifier was first trained on all patients and all 110
features; the features were then ranked by descending order
of their corresponding SVM and LR weights. The optimal
number of features was selected from this ranked list based
on a feature forward selection (FFS) strategy following the
LOPO scheme, resulting in =70 selected features for each
classifier.  The  optimal  number  of  coefficients   for
alpha_VCA input  was  selected  by varying  this  parameter
between 4 and 30. Regarding the first  dictionary learning
method  alpha_DL,  the  size   of  the  dictionary  was

varied between 5 and 30. For the second dictionary learning
method alpha_ssDL, the number of dictionaries  was
set  to  1  for  the {NS;  GS6;  GS>6} classes  and  3 for  the
normal  class  {N} to account  for  the majority of  samples
from this class (79%). Then we multiplied simultaneously,
from 1 to 5, the number  of dictionary per class. We justified
the choice of =3 by the majority of examples coming
from the N class. Optimal values of   and   for the SVM
and LR classifiers respectively,  were selected in the range

. This led to the following optimal parameters:
=70,  =6,  =30 and  =[9 3 3 3] for SVM and  

=70, =6, =20 and =[3 1 1 1 ] for LR.  

3.3. Results

Table  1  reports  the  values  of  the  AUC  and  Acc  metrics
derived  from  the  binary  classification  task  performed  by
each of the 8 CAD schemes. These metrics were averaged
over the 35 patients. All CAD schemes performed similarly
according to the AUC metrics with a mean value of 0.78+/-
0.1.  The LR classifier  allowed  achieving  higher  accuracy
performance  (Mean  Acc  value  of  0.84)  than  the  SVM
classifier (Mean Acc value of 0.72).  This comes from the
validation scheme that maximizes the AUC of the method.
Note that a similar accuracy can be obtained from the SVM
classifier by adjusting the bias .

Table  1. Performances  achieved  for  binary  classification
task, averaged over 35 patients

Input Classifier AUC Acc

raw_feat
SVM 0.79+/-0.11 0.72+/-0.10

LR 0.78+/-0.11 0.83+/-0.11

alpha_VCA
SVM 0.77+/-0.11 0.71+/-0.09

LR 0.77+/-0.11 0.84+/-0.11

alpha_DL
SVM 0.79+/-0.11 0.70+/-0.12

LR 0.78+/-0.11 0.84+/-0.11

alpha_ssDL
SVM 0.78+/-0.11 0.71+/-0.10

LR 0.78+/-0.11 0.83+/-0.11

A sign  test  between  all  CAD  schemes  based  on  the
AUC  values  derived  for  each  of  the  35  patients  was
performed.  For  the  SVM  classifier,  all  feature  sets  were
shown  to  produce  similar  performance  except  for  the
raw_feat  set  which  was  shown  to  outperform  the
alpha_ssDL feature set (p=0.02). For the LR classifier, the
raw_feat and the alpha_DL feature sets were both shown to
outperform the  alpha_VCA  features (p=0.04) but all other
paired  comparisons  concluded  on  similar  performance  of
the different feature sets. There was no statistical difference
between the performance of the two classification methods. 

Fig 1.  illustrates examples of the predicted probability
maps (column 2 to 5)  for  two patients,  obtained with the
different  CAD  schemes  and  superimposed  on  the  T2-
weighted transverse slice.



Fig. 1. Example of predicted probability maps for three patients, four types of input: raw_feat, alpha_VCA, alpha_DL, 
alpha_SSDL and the SVM and LR classifiers.

The  first  example  is  a  patient  with  two  aggressive
cancers  (GS=7  for  the  two  lesions).  The  Acc  and  AUC
values  are  displayed  under  each  image  for  this  patient.
Comparison of the first and second lines indicates that the
SVM probability maps better highlight the two lesions than
the LR classifier. This result is also correlated with the AUC
metric. The Acc metric does not correctly capture the visual
performance; It is indeed likely to be more sensitive to the
very unbalanced class sample size, i.e. strongly impacted by
the majority of normal (N) voxels (79%). The four features
sets allow achieving similar probability maps with a higher
contrast achieved for the alpha_ssDL. The second example
shows probability maps obtained  with the SVM classifier
for a patient with one aggressive lesion (GS=7) and a non-
aggressive lesion (GS=6). The two lesions are well depicted
by the four features sets with the highest contrast achieved
with the raw features. The mean probability achieved for the
GS=7 lesion is slightly higher than that of the GS=6 lesion
thus  suggesting  that  the  probability  values  might  be
correlated with the GS score. Same comment applies to the
third  patient  images  that  clearly  indicate  that  the  very
aggressive  lesion  (GS=9)  is  scored  as  highly  suspicious
(yellow-red area, proba>0.85) while the NS lesion appears
with a much lower cancer probability (blue area; proba<0.5)

but  still  higher  than  that  of  the  normal  tissue (pink  area,
proba~0). 

4. PERSPECTIVES AND CONCLUSION

This paper evaluates different CADe schemes for prostate
cancer localization and characterization based on mp-MRI
screening.  The achieved AUC performances are shown to
compare  well  with  recent  state-of-the-art  performances
[1,2,3,4,5].  The introduction of  the sparse DL methods in
the feature extraction step did not allow any performance
gain for the specific binary classification task considered in
this  study  ({NS;GS6;GS>6}  versus  {N}).  Our  ongoing
research  investigates  multiclass  and  non  linear  detection
tasks. We hypothesize that DL methods associated with non
linear multiclass SVM may help achieving the challenging
goal of deriving cancer probability maps correlated with the
Gleason score.
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