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1 Proof of the Joint Convexity of the Optimization Problem

We recall the optimization problem:

arg min
T∈H,γ∈Π̂

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (1)

and the theorem:

Theorem 1. LetH be a convex space and R(·) be a convex function. Problem (1) is jointly convex
in T and γ.

Proof. First of all recall that a sum of jointly convex functions is jointly convex. Hence it is
sufficient to show that the three terms of optimization problem (1) are jointly convex. We note
f1(γ, T ) = 1

nsdt
‖T (Xs)− nsγXt‖2F , f2(γ) =

λγ
max(C) 〈γ,C〉F and f3(T ) = λT

dsdt
R(T ). f1

depends on both T and γ and controls the proximity between the transformation induced by T and the
barycentric interpolation obtained from γ. f2 only depends on γ, it corresponds to the standard term
minimized to solve the optimal transport problem. f3 regularizes T to ensure a better generalization.

Note that f2 and f3 are by construction jointly convex in γ and T . We will show that the f1 is also
jointly convex. Let g(γ, T ) = ‖T (Xs)− nsγXt‖F , we want to show that:

g(tγ1 + (t− 1)γ2, tT1 + (1− t)T2) ≤ tg(γ1, T1) + (1− t)g(γ2, T2).

We have:

‖(tT1 + (1− t)T2)(Xs)− ns(tγ1 + (t− 1)γ2)Xt‖F
(Triangle inequality and definition ofH.)

≤ ‖tT1(Xs)− tnsγ1Xt‖F + ‖(1− t)T2(Xs)− (1− t)nsγ2Xt‖F
(t ∈ [0, 1].)

= t ‖T1(Xs)− nsγ1Xt‖F + (1− t) ‖T2(Xs)− nsγ2Xt‖F
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Furthermore noting that g is convex and positive we have:

[g(tγ1 + (t− 1)γ2 , tT1 + (1− t)T2)]
2

(∀x ∈ R+, x→ x2 is non decreasing.)

≤ [tg(γ1, T1) + (1− t)g(γ2, T2)]
2

(∀x ∈ R, x→ x2 is convex.)

≤ t [g(γ1, T1)]
2

+ (1− t) [g(γ2, T2)]
2 .

Noting that f1(γ, T ) = 1
nsdt

g(γ, T )2 concludes the proof.

2 Details about Block Coordinate Descent

To solve optimization problem (1) we propose to use a block-coordinate descent approach. As such
we need to find an efficient way to solve for γ when T is fixed and to solve for T when γ is fixed.

Solving for γ with T fixed In this case we want to solve:

arg min
γ∈Π̂

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (2)

where T is the current transformation. To solve such an optimization problem a common approach
is to use the Frank-Wolfe algorithm [1, 2]. It is a procedure for solving any convex constrained
optimization problems with a convex and continuously differentiable objective function over a
compact convex subset of any vector space. This algorithm can find an ε approximation of the optimal
solution in O(1/ε) iterations [3]. A detailed algorithm is given in Section 3.

Solving for T with γ fixed In this case we want to solve:

arg min
T∈H

f(γ, T ) =
1

nsdt
‖T (Xs)− nsγXt‖2F +

λγ
max(C)

〈γ,C〉F +
λT
dsdt

R(T ) (3)

where γ is the current mapping between the examples. The solution to this optimization problem
depends on the form ofH and R. This is discussed in detail in Section 3.2 in the main paper.

3 Detailed Frank-Wolfe algorithm

We propose in Algorithm 1 a detailed version of the Frank-Wolfe approach for solving problem (2).

Algorithm 1: Updating γ with the Frank-Wolfe algorithm.
input :The current values of γ and T .
output :The new value of γ.

1 begin
2 Initialize k = 0 and γ0 = γ
3 repeat
4 Solve Sk = argminS∈Π̂

〈
S,∇f(γk, T )

〉
F with

∇f(γ, T ) = λγ
max(C)

C− 2
nsdt

nsT (Xs)X
T
t + 2

nsdt
n2
sγXtX

T
t .

5 Find the optimal step αk satisfying the Armijo rule that minimizes f
(
(1− α)γk + αSk, T

)
.

6 Update γk+1 = (1− α)γk + αSk and k = k + 1.
7 until convergence

4 Bias including version ofH

We present the bias including version ofH both in the linear and the non-linear case.
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Biased linear transformations In the biased linear case we have:

H =

{
T : ∃ L ∈ Rd

s×dt ,∃ b ∈ Rd
t

,∀x ∈ ΩS , T (xs) = xsTL + bT =
(
xsT 1

)( L
bT

)}
.

(4)

In this case, optimization problem 1 becomes:

arg min(
L

bT

)
∈Rds+1×dt ,γ∈Π̂

1

nsdt

∥∥∥∥(Xs 1)

(
L
bT

)
− nsγXt

∥∥∥∥2

F
+

λγ
max(C)

〈γ,C〉F +
λT
dsdt

‖L− I‖2F .

(5)

As in the non biased case, it is possible to find a closed form solution for
(

L
bT

)
when γ is fixed:

(
L
bT

)
=

(
1

nsdt

(
Xs

1T

)
(Xs 1) +

λT
dsdt

(
I 0
0T 0

))−1(
1

nsdt

(
Xs

1T

)
nsγXt +

λT
dsdt

(
I
0T

))
.

(6)

Biased non-linear transformations In the biased non-linear caseH becomes:

H =

{
T : ∃ L ∈ Rn

s×dt ,∃ b ∈ Rd
t

,∀xs ∈ ΩS , T (xs) =
(
kXs

(xsT ) 1
)( L

bT

)}
(7)

Optimization problem 1 can be rewritten as:

argmin(
L

bT

)
∈Rns+1×dt ,γ∈Π̂

1

nsdt

∥∥∥∥(kXs(Xs) 1
)( L

bT

)
− nsγXt

∥∥∥∥2

F
+

λγ
max(C)

〈γ,C〉F +
λT
dsdt

‖kXs(·)L‖
2
F .

(8)

As in the non biased case, it is possible to find a closed form solution for
(

L
bT

)
when γ is fixed:

(
L
bT

)
=

(
1

nsdt

(
KXsXs

1T

)
(KXsXs 1) +

λT
dsdt

(
KXsXs 0
0T 0

))−1
1

nsdt

(
KXsXs

1T

)
nsγXt.

(9)

5 Proof of Equation (13) in the Main Paper

We recall the notations. Let T ∗ be the true transport map that we would obtain if we could solve
Monge’s problem. Let Bγ̂ be the empirical barycentric mapping of Xs using the probabilistic
coupling γ̂ learned between Xs and Xt. Similarly let Bγ0 be the theoretical barycentric mapping
associated with the probabilistic coupling γ0 learned on µS , µT the whole distributions and which
corresponds to the solution of Kantorovich’s problem. Using a slight abuse of notations we denote by
Bγ̂(xs) and Bγ0(xs) the projection of xs ∈ Xs by these barycentric mappings. We have that:

E
xs∼ΩS

‖T (xs)− T ∗(xs)‖2F

(Triangle inequality.)

≤ E
xs∼ΩS

(
‖T (xs)−Bγ0(x

s)‖F + ‖Bγ0(x
s)− T ∗(xs)‖F

)2
((a+ b)2 ≤ 2a2 + 2b2.)

≤ 2 E
xs∼ΩS

‖T (xs)−Bγ0(x
s)‖2F + 2 E

xs∼ΩS
‖Bγ0(x

s)− T ∗(xs)‖2F
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Furthermore considering thatH is as proposed in the paper and using Theorem 2 in [4] we have with
high probability that:

E
xs∼ΩS

‖T (xs)− T ∗(xs)‖2F

≤ 2
∑

xs∈Xs

‖T (xs)−Bγ0(x
s)‖2F +O

(
1√
ns

)
+ 2 E

xs∼ΩS
‖Bγ0(x

s)− T ∗(xs)‖2F

(Triangle inequality.)

≤ 2
∑

xs∈Xs

(
‖T (xs)−Bγ̂(x

s)‖F + ‖Bγ̂(x
s)−Bγ0(x

s)‖F
)2

+O
(

1√
ns

)
+ 2 E

xs∼ΩS
‖Bγ0(x

s)− T ∗(xs)‖2F

((a+ b)2 ≤ 2a2 + 2b2.)

≤ 4
∑

xs∈Xs

‖T (xs)−Bγ̂(x
s)‖2F +O

(
1√
ns

)
+ 4

∑
xs∈Xs

‖Bγ̂(x
s)−Bγ0(x

s)‖2F + 2 E
xs∼ΩS

‖Bγ0(x
s)− T ∗(xs)‖2F . (10)

6 Complementary Information on Experimental Protocol for the Domain
Adaptation Experiments

Algorithm 2 explains the 2-fold circular validation used for tuning the hyper-parameters and inspired
from [5, 6]. In this algorithm M is any model able to bring closer the source and the target.
For example, with our linear mapping learned from our regularized OT formulation, we have
M(Xt) = Xt and M(Xs) = XsL.

Algorithm 2: Circular validation.
input :(Xs,ys) source examples and their labels, Xt target examples, Aλ a learning procedure using

hyper-parameters λ.
output :Average accuracy of Aλ.

1 begin
2 Split (Xs,ys) in two halves (X1

s,y
1
s) and (X2

s,y
2
s).

3 Learn M1 = Aλ(X
1
s,y

1
s ,Xt) and set y1

t the pseudo-labels of M1(Xt) obtained from a 1NN
learned on (M1(X1

s),y
1
s).

4 Set s1 the accuracy of a 1NN learned on (M1(Xt),y
1
t ) and evaluated on (M1(X2

s),y
2
s) .

5 Learn M2 = Aλ(X
2
s,y

2
s ,Xt) and set y2

t the pseudo-labels of M2(Xt) obtained from a 1NN
learned on (M2(X2

s),y
2
s).

6 Set s2 the accuracy of a 1NN learned on (M2(Xt),y
2
t ) and evaluated on (M2(X1

s),y
1
s) .

7 return s1+s2

2
.

7 Illustrations on the Moons Dataset for the Domain Adaptation
Experiments

In Figure 1 we propose some illustrations of the transformation learned by our approach on the
Moons dataset.

8 Complementary Information on Gradient Adaptation in Image Editing

In the paper, we build from a technique, denoted Poisson Image Editing, that operates in the gradient
domain of the image. Hence, the gradients of the selection operate as a guidance field for an image
reconstruction based on membrane interpolation with appropriate boundary conditions extracted from
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Original (Angle: 20)

Source: +1

Source: −1

Target: +1

Target: −1

Linear γ Linear T

Non linear γ Non linear T

Original (Angle: 50)

Source: +1

Source: −1

Target: +1

Target: −1

Linear γ Linear T

Non linear γ Non linear T

Figure 1: Illustrations of our approach on the Moons dataset when the rotation is of 20 degrees (first
and second rows) and 50 degrees (third and fourth rows). The transformation T follows closely the
transport map γ and the shapes of the two moons are well preserved. Furthermore learning a linear
transformation is better when the angle is 50 degrees. The shrinkage effect is due to the regularization
on the transformation which penalizes complex solutions.

the target image. Let f be an unknown scalar function (usually a component of the color space of
the image) defined on a given region of the image Ω. Let ft be the target image defined everywhere
apart from the interior of Ω. The Poisson editing method operates by solving for f the following
variational optimization problem with Dirichlet boundary conditions:

min
f

∫ ∫
Ω

|∇f − v|2 with f |∂Ω = ft|∂Ω. (11)

Here, v is the guidance field, which is usually given as the gradient from the source image fs over
the domain Ω, i.e. v = ∇fs|Ω. One can show that the unique solution to this problem is the solution
of the following Poisson equation [7]:

∆f = div v over Ω, with f |∂Ω = ft|∂Ω, (12)
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Figure 2: Complementary Illustrations of seamless copies with gradient adaptation.

Figure 3: Illustration of failure of style adaptation.

where div stands for the divergence operator. Using appropriate first order discretization of the
Laplacian operator, solving for this problem amounts to solve a big sparse linear system, which can
be performed efficiently with multi-grid solvers. We propose in the paper to enhance the generality
of this technique by forcing the gradient distribution from the source image to follow the gradient
distribution in the target image. We start by learning a transfer function Ts→t : R6 → R6. We then
solve for the following system:

∆f = div Ts→t(v) over Ω, with f |∂Ω = ft|∂Ω. (13)

In Figure 2 and 3 we show other results produced by our methods. Figure 3 illustrates one particular
case of failure of style adaptation: as our method does not modify the spatial arrangement of the
gradient, it is not possible to produce the same vast swaths of colors as in the target image.
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