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How to extract features?

I Continuous parameters for feature
extractions:
⇒ Infinite set.

I Select from a finite number of values by
Cross Validation or MKL [1]: limited to
small number of parameters.

I Infinite MKL [2] for continuous parameters:
limited to small scale datasets.

I We propose an active set algorithm for
feature extraction and classifier learning:
learning from continuously parametrized
features for large scale datasets.

Examples of infinite sets

I 2D Gabor functions for texture recognition.

g(u, v) = e
−( u2

2σ1
+ v2

2σ2
)
eiπf (u cos θ+v sin θ)

4 parameters: θ, f , σ1, σ2.
I Signal filtering for Brain-Computer

Interfaces. For Motor Imagery, a
[fmin, fmax ] bandpass filtering is applied to
the signals.
2 parameters: fmin, fmax .

Framework

I n training examples {xi , yi}ni=1 with xi ∈ X
and yi ∈ {−1,1}.

I φθ(·) is a θ parametrized feature extraction.
I The decision function is:

f (x) =
N∑

j=1

〈wj , φθj
(x)〉Xθj (1)

where some of the wj are 0.
I Φ is the matrix of feature maps, resulting

from the concatenation of the N matrices
{Φθj
}.

I Φ is normalized to unit norm and
Φ̃ = diag(y)Φ.

Fixed number of features

I Optimization problem:

min
w,b

J(w) =
C
2n

(1I−Φ̃w)T
+(1I−Φ̃w)++Ω(w)

(2)
where [Φ̃w]i = f (xi), 1I is a unitary vector,
(·)+ = max(0, .) is the element-wise
positive part of a vector, Ω is a `1 − `2
norm.

I Optimality conditions are:

−ri +
wi
||wi ||2

= ~0 ∀i wi 6= ~0

||ri ||2 ≤ 1 ∀i wi = ~0
(3)

with ri = C
n Φ̃T

i (1I− Φ̃w)+.

Active Set Algorithm

1: Set A = ∅ initial active set
2: Set w = ~0
3: repeat
4: w← solve problem (2) with features

from A
5: r , i ← maxi∈Ac ||ri ||2
6: if r > 1 then
7: A = A ∪ i
8: end if
9: until r ≤ 1

I The most violating feature is added for
convergence speed (Line 5).

I Sub-problem solved quickly with an Fast
Iterative Shrinkage Algorithm [3] (Line 4).

Extension to the infinite set

I Aim: find a finite set Θ of features
minimizing J(w).

I The new optimality conditions are:

−ri +
wi
||wi ||2

= ~0 ∀i wi 6= ~0

||ri ||2 ≤ 1 ∀i wi = ~0
‖Φ̃T

θs
(1I− Φ̃w)+‖2 ≤ 1 ∀ θs 6∈ Θ

(4)

I Not possible to check optimality ∀θ.
I Optimality checked on a randomly drawn

finite set of θs 6∈ Θ (Line 5).
I Add the most violating feature from this

random subset to the active set.

Figure 1: Textures D29 (left) and D92 (right) from the
Brodatz Dataset

Texture Recognition Dataset

I Classifying 16×16 patches from Brodatz
textures D29 and D92.

I Fixed and random 2D Gabor marginal
features compared.

I C has been set to 10.
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Figure 2: Accuracy performance with different
numbers of sampled features (left) 81. (right) 1296.

BCI Dataset

I Dataset IIa from BCI Competition IV.
I Comparison between a fixed [8,30]Hz bandpass

and a random bandpass of at least 20Hz inside
[8,30]Hz.

I A CSP [4] is applied to the filtered signals and the
most discriminant spatial filters are kept.

I The number of selected filters and C are chosen
through Cross-Validation.

Subjects
Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg
CSP [4] 88.89 51.39 96.53 70.14 54.86 71.53 81.25 93.75 93.74 78.01
Fixed 88.19 53.47 96.53 63.89 60.42 69.44 79.17 97.92 93.06 78.01

Random 90.97 52.78 95.14 73.61 62.50 72.92 82.64 97.22 92.36 80.01

Table 1: Classification accuracy on the test set for classical
CSP approach, fixed and random bandpass filter for feature
extraction on the BCI dataset.

Conclusion

I Active set algorithm.
I Handle large scale problems.
I Automated selection of continuous

parameters.
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