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Contribution: SVM extension to probabilistic labels
We address the pattern classification problem arising when available target data include some uncertainties.
Suppose that target data is either qualitative (a class label) or quantitative (a probability). We propose a
SVM inspired formulation of this problem allowing to take into account class label through a hinge loss as
well as probability estimates using ε-insensitive cost function together with a minimum norm (maximum
margin) objective. The solution provided can be used for both decision and posterior probability estimation.

Problem formulation
Let X be a feature space and (xi, li)i=1...m the learn-
ing dataset of input vectors (xi)i=1...m ∈ X along
with their corresponding labels (li)i=1...m, such that

• class labels: li=yi ∈ {−1,+1} for i = 1 . . . n
(in classification),

• real values: li=pi = P(Yi = 1 | Xi = xi) ∈
[0,1] for i = n+ 1 . . .m (in regression).

Problem solution

Let k be a positive kernel satisfying Mercer’s condi-
tion and H the associated Reproducing Kernel Hilbert
Space. The associated P-SVM (probabilistic) pattern
recognition problem is
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Following the idea of soft margin introduced in regu-

lar C-SVM, slack variables ξi measure the degree of
misclassification of the datum xi. C and C̃ ∈ R∗ con-
trol the relative weighting of classification and regres-
sion performances. Let ε be the labelling precision, δ
be the confidence in the labelling and η = ε + δ. The
regression problem consists in finding optimal f such
that
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DUAL FORMULATION

Lagrange multipliers allow to rewrite the problem in its dual form
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with:

K1 = (yiyjk(xi, xj))i,j=1...n

K2 = (k(xi, xj)yi)i=1...n,j=n+1...m

K3 = (k(xi, xj))i,j=n+1...m

This formulation is similar to the one in classical SVM, hence we can benefit from the current solvers

Examples
Numerical examples implementation is based on the SVM-KM Toolbox [4]. We use a RBF kernel with
C = C̃ = 100. We compare the classification performances and probabilistic predictions of the C-SVM and
P-SVM approaches. In the 1st case, probabilities are estimated by using Platt’s scaling algorithm [5] while in
the 2nd case, probabilities are directly estimated as P (y = 1|x) = 1

1+e−a(f(x)+b) . Performances are evaluated

by computing Accuracy (Acc) and Kullback Leibler distance (KL)

Probability estimation

We generate two N (µ, σ) unidimensional datasets, labelled ’+1’ and ’-1’ (σ2
−1= σ2

1=0.3, µ−1=-0.5 and
µ1=+0.5). Let (xli)i=1...nl be the learning data set (nl=200), (xti)i=1...nt the test set (nt=1000). We compute
the true probability P (yi = +1|xi) for xi to belong to class ’+1’. Learning data are labelled in two ways:

a) 1st dataset (xli, y
l
i)i=1...nl is used to train the C-

SVM classifier. For i = 1 . . . nl,

if P (yli = 1|xli) > 0.5, then yli = 1,
if P (yli = 1|xli) ≤ 0.5, then yli = −1

b) 2nd data set (xli, ŷ
l
i)i=1...nl is used to train the P-

SVM algorithm. For i = 1 . . . nl,

if P (yli = 1|xli) > 1− η, then ŷli = 1,
if P (yli = 1|xli) < η, then ŷli = −1,
otherwise ŷli = P (yli = 1|xli).

True test data probabilities (black) and
P-SVM estimations (red) are quasi-
superimpoed (KL=0.2) whereas Platt’s
estimations are less accurate (KL=11.3).

Noise robustness

We generate two N (µ, σ) 2D datasets (σ2
−1=σ2

1=0.7, µ−1=(-0.3, -0.5), µ1=(+0.3, +0.5)). We compute class
’1’ membership probability P (yi = 1|xi) for each xli of the learning data set. To simulate classification error,

we artificially add a uniform noise (amplitude 0.1), to probabilities, such that for i = 1 . . . n, P̂ (yi = 1|xi) =
P (yi = 1|xi) + δi. We label learning data following the same scheme as described above.

Probability estimations of
C-SVM and P-SVM over a
grid using noisy learning data
(uniform noise, amplitude
0.1). Noisy learning data are
plotted in blue (class ’-1’) and
red (class ’1’) stars.

Far from learning data points, both probability estimations are less accurate, this being directly linked to
the choice of a gaussian kernel. However, P-SVM classification and probability estimations obtained for
1000 test points, are clearly more alike the ground truth (AccP-SVM = 99% , KLP-SVM = 3.6) than C-SVM
(AccC-SVM = 95%, KLC-SVM = 95). C-SVM is sensitive to classification noise and is no more converging to
the Bayes rule as seen in [6].

Figure shows the impact of noise amplitude on P-SVM and
C-SVM classification performances (values are averaged
over 30 random simulations). Even if noise increases,
classifications and probability predictions performances
of the P-SVM remain significantly higher than those of
C-SVM.

Conclusion
Experimental results show that P-SVM can perform
very well on simulated data for both discrimination
and posterior probability estimation. This approach
will be applied on clinical data to assess its useful-
ness in CAD for prostate cancer. This framework
can also be generalized to other dataset involving
quantitative data (e.g. to estimate a conditional cu-
mulative distribution function).
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