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Introduction Brain-Computer Interfaces

Brain-Computer Interfaces

Signal processing

A cquisition > Signal Classification >t Application Output —>

Aim
Providing a direct communication channel between the human brain and an external
device.

Challenges

» Providing robust classifiers.

» Learning quickly (time and learning examples).

BClI Types

> Motor Imagery.

» Event-Related Potential.
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Introduction Brain-Computer Interfaces

Event Related Potential (ERP)

ERP-based BCI [Luck, 2005]

» ERP: signal emitted by the brain after a given event occurs.
» Recording done with ElectroEncephalograms: noisy signal.

» Usually linear classifiers are sufficient.

P300 Speller

» P300 ERP occurs 300 ms after a rare event.
» The subject focuses on a letter.

» The columns and lines of the keyboard are
flashed randomly.

> P300 appears when the column/line is flashed.

> The classifier output for all colmuns/lines are
added in order to find the selected letter.
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Introduction  Sensor selection

Sensor selection

Why ?

» All sensors are not relevant.

> Reduce implementation cost (short setup time,
smaller EEG cap).

How is it done?

> Prior knowledge (discriminant areas of the brain).

> Recursive Feature Elimination (RFE) maximizing performances through
Cross-Validation [Rakotomamonjy and Guigue, 2008].

» RFE using a relevance criterion (SSNR) [Rivet et al., 2010].

» Discriminant framework with sparsity inducing
regularization [Tomioka and Miiller, 2010].
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Introduction Multi-task learning

Multi-task learning

Why?

In BCI, learning a classifier for one subject is one task.
A way to transfer knowledge between subjects (transfer learning).

Good results obtained for Motor Imagery in BCI [Alamgir et al., 2010].

vV V. vYvY

Better performances for a small number of training samples.

How is it done?
Learning jointly all the tasks and promoting similarity between them by:

> Minimizing the variance of the classifiers [Evgeniou and Pontil, 2004].
> Forcing the classifier to lie on a low dimensional space [Argyriou et al., 2008].

> Selecting jointly the relevant features [Rakotomamonjy et al., tted].
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Optimization Framework  Sensor Selection

Definitions for sensor selection

Sensor 1 Sensor p
. A\
T _
Xj = L\
r features 1]
Learning set
> {xi,¥i}ie{1...ny the n training examples.
> x;eRYwithd=rxp (r temporal features for each of the p sensors)
Linear classifier
f(x)=x"w+b (1)

with w € RY the separating hyperplane and b € R the bias term.
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Optimization Framework  Sensor Selection

Optimization framework

Discriminative framework

n

' o xT
min Z L(yi,x; w—+ b) + AQ(w) (2)

where:

» L(-,-) is a loss function measuring the discrepancy between actual and predicted
labels.

» In this work, L(y, #) = max(0,1 — y9)? is the squared hinge loss.
> Q(-) is the regularization term.

> Regularization controlled by A.

Regularization term

> Avoid over-fitting.

» Select relevant sensors through sparsity.
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Optimization Framework Sensor Selection

Regularization terms |

{5 — norm
’
Qa(w) = [|w>
Where || - ||2 is the euclidean norm.
» Not sparse. 1
-1
» All components are regularized -1 0 0
independently. 1
Feasible region for Qz(w) <1
{1 — norm
d 1
Qu(w) = wil
i=1
» Sparsity on the features of w. -1 1
> All components are regularized 0 11 0
independently.

Feasible region for Q;(w) <1
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Optimization Framework Sensor Selection

Regularization terms Il

¢y — £, mixed norm

’
Np(w) = Z llwellp
g€g
where G contains non-overlapping groups of
{1.d}, 1< p<2and [jx||, = (5, %) . g -
0
11

> /1 norm on the vector containing the ¢, Feasible region for Q;1_»(w) <1
norm of each group.

> p controls regularization between

1
V1 —¥1 =¥, and ¢1 — ¥> also known as
group-lasso.
» We group the features by sensor.
) -1
-1 0 0
11

Feasible region for Q;1_,(w) <1
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Optimization Framework Sensor Selection

Regularization terms Il

Adaptive {1 — ¢, mixed norm
Qa1 o(w) = Bgl|wg|l2
geg
where the weights 3z are selected to enhance 1
sparsity.

> Problem solved with 8; = 1.

» Then problem is solved iteratively with

Bg = 1/||wg||2 , w* being the optimal j |
classifier from last iteration. 0 11 0
» Stop when convergence or after max Feasible region for Q;1_»(w) <1

number of iterations.
Similar for Q,.1_2(w) with a scaling

> Sparser results as groups with small norms : .
Bi on each dimension.

are more penalized.

> Better theoretical properties [Bach, 2008].
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Optimization Framework Multi-task learning

Definitions for multi-task learning

Sensor 1 Sensor p

——N— ——N—

o=l L LT P IANGE DT T

r features

Learning set

> {Xit,Yit}tie(1..n foreach task t € 1...m.

> x;, € R? with d = r x p (r temporal features for each of the p sensors)

Tasks

» One task per subject.

> We learn jointly (wy, b;) for each task t.
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Optimization Framework Multi-task learning

Optimization framework for MTL

Discriminative framework for MTL

I’VT";IE Z Z L(yi,s, Xi-[,-tWt + b:) + Qmu(W)
t i

where:

> W = [wi...w,] € RY*7 is a matrix concatenating all the classifiers.
> Qmu(W) is the regularization term.
Regularization term

» Avoid over-fitting.
> Select relevant sensors through sparsity.

» Promote similarity between tasks.
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Optimization Framework Multi-task learning

MTL Regularization

Regularization term

m

Qe (W) = A D [[Wella +2s Y [|we — W3

geg’ t=1

Mixed norm Similarity

where A\, and As weight the mixed norms and similarity regularization.

Mixed norm Similarity
G’ contains groups of sensors in W: » W= 135" w, is the average
m
Sensor 1 Sensor p classifier across tasks
wi={ T [ [ [1] \\ [ T T T ] » Minimize the variance of the
- Group 1 - : Groupp classifiers
wa={_ [ [ [ || K‘\\ L [ [ 11 [Evgeniou and Pontil, 2004].
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Optimization Framework  Algorithm

Algorithm

Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [Beck and Teboulle, 2009]

Can be used whenever the objective function can be expressed as:
fi(w) + fH2(w)
with:
» fi(-) a gradient Lipschitz continuous term.

» f(-) a non-differentiable term having a closed form proximal operator:

Prox(v) = argmin,, |lv — w||* 4 f2(w)

Advantages

> Simple and efficient algorithm.
» Convergence properties.

> Fast regularization path thanks to warm-start.
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Optimization Framework  Algorithm

Algorithmic implementation
Sensor selection problem
> fi(w)=>7L(yi, x; w + b), with the squared hinge loss is gradient Lipschitz
continuous term.
> fr(w) = Q(w), has a closed form proximal for the proposed regularization terms.

Example for the ¢1 norm:

Proxg, (v)i = 0 i fvil <A
BUTZ A v = Asign(vi)  if |vi > A

Multi-task problem
> f(w) = 37" L(yie, ] we + be) + 37 [|we — W3, that is provably gradient
Lipschitz continuous.
> f(w) = Qi1_2(W), has a closed form proximal for the proposed regularization terms.

Example for the ¢; — £ norm:

0 it vgll2 < A
Proco(e ={ w1 2y it Il o a
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Numerical Experiments Datasets description

P300 datasets
EPFL Dataset [Hoffmann et al., 2008]
PN

» P300 with 3 x 2i ! .-
wi image - ﬁ’
selection. Or@a@r@r®

76D rea @ @ et @

> 8 subjects. D@ @ e @ o

> 32 electrodes. 1o @ ora €2 %2 € s ) 1 .
v (73) P1 (P P2 (72) s 17
> 3000 examples, 1000 for W oz m J;«,_[fl
training/validation. 1

UAM Dataset [Ledesma Ramirez et al., 2010]

» P300 Speller with
standard 6 x 6 virtual
keyboard.

Fpt P2 Fp2
AF7 AFS
AF3 APz apg

F8
7 F5 ks n@Fz F4 F8

FT7 Fos Fos Fot Foz Foo Fos FOB FTO

7 cs@c‘@czcs T8

Pz CP2
1py CPS CP3 GPT CPz CP2 GP4 Gpg ppg

o7 Psp‘FZPB P

. PO3  po, PO4
@ o1 02 &

» 30 subjects.

» 10 electrodes.

» 3000 examples, 1000 for
training/validation.
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Numerical Experiments Datasets description

Error Related Potential dataset

Experimental setup

> Subjects asked to memorize the position of 2 to 9 digits.
» They had to recall the position of one of these digits.

> Signal recorded after the visualization of the result (correct/error) .

Dataset
> ErrP Event Related Potential. @ @AHF‘@F: r
> 8 subjects. Oe@r@w@
T7 CS@C\ @02 CG T8
» 31 electrodes. ors @) o1 @) 72 @) o
. . . . PS5 P\PZ P
> 72 examples, 57 for training/validation. Woa o "“poe
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Numerical Experiments Methods evaluation

Methods evaluation

Sensor selection methods Multi-task methods
| Method | Reg. | Groups | | Method | Reg. | Groups
SVM 62 - SVM-Full 52 -
SVM-1 | 4 feature MGSVM-2 | ¢, — 4, sensor
GSVM-2 | 41 — 0> sensor MGSVM-2s | ¢; — £> and Sim. | sensor
GSVM-p | 41 — ¢, sensor
GSVM-a | Adapt. 1 — (> | sensor » Classification performance measured

with Area Under the ROC Curve.

» Classification performance measured
) » Groups correspond to sensors (across
with Area Under the ROC Curve. tasks)
> Groups correspond to sensors. » Use a small number of examples .
, .
Dataset randomly split (10x). > ) and ), selected through
> )\ selected through Cross-Validation. Cross-Validation.
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Numerical Experiments

Sensor selection results

Classification performances for P300

| Datasets || EPFL Dataset (8 Sub., 32 Ch.) [[ UAM Dataset (30 Sub., 10 Ch.) |
Methods || Avg AUC | Avg Sel | p-value || Avg AUC | Avg Sel | p-value
SVM 80.35 100.00 - 84.47 100.00 -
SVM-1 79.88 87.66 0.15 84.45 96.27 0.5577
GSVM-2 80.53 78.24 0.31 84.94 88.77 0.0001
GSVM-p 80.38 77.81 0.74 84.94 90.80 0.0001
GSVM-a 79.01 26.60 0.01 84.12 45.07 0.1109

Performance Results

» AUC, percent of selected sensors and Signrank Wilcoxon test p-value.
» GSVM-2 gives the best performance but uses 80-90% of the sensors.
» GSVM-a provides the best selection with a slight performance loss.

> Some subjects in UAM dataset perform poorly for all methods (< 60% AUC).
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Numerical Experiments Sensor selection results

Classification performances for Error Related Potential

Datasets || ErrP Dataset (8 Sub., 32 Ch) |

Methods || Avg AUC | Avg Sel | p-value
SVM 76.96 100.00 -
SVM-1 63.84 45.85 0.3125
GSVM-2 77.29 29.84 0.5469
GSVM-p 76.84 37.18 | 0.7422
GSVM-a 67.25 7.14 0.1484

Performance Results

» AUC, percent of selected sensors and Signrank Wilcowon test p-value.
» GSVM-2 gives the best performance with 30% of the sensors.
» GSVM-a is statistically equivalent to SVM but loses 10% AUC.

» Difficult to select the regularization parameter on 57 examples!

Rémi Flamary et al (LITIS) Mixed-norms for ERP-based BCI April 19, 2011

21 /32



Numerical Experiments  Sensor selection results

Selected sensors for EPFL Dataset

Subject 2 Subject 3 Subject 4

@ AF3 E:?: 6
FCs @@FZ rcz“ FC6
) @ @ ©@ o

® ors (P P2 Ry
@

p7

Results for GSVM-a

» Selected sensors are highly dependent on the subject.
> Sensors from the occipital area [Krusienski et al., 2008].

» And other areas such as T7 and C3
[Rivet et al., 2010, Rakotomamonjy and Guigue, 2008].
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Numerical Experiments  Sensor selection results

Selected sensors for UAM dataset

Subject 7 Subject 20 Subject 6

Results for GSVM-a

» Classical P300 experimental setup.
> Less sensors selected.

> Sensors from the occipital area [Krusienski et al., 2008].
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Numerical Experiments  Sensor selection results

Selected sensors for ErrP dataset

Subject 2 Subject 3 Subject 4

Fp1 FPZ Fp2

Results for GSVM-2

» Important variances across subjects.

> Sensors in the central area selected in average [Dehaene et al., 1994].

» Small dataset.
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Numerical Experiments  Sensor selection results

Sensor selection performance for EPFL Dataset

Subject 1 Subject 2 Subject 4
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Results

» Performance vs sparsity plots.

» GSVM-a clearly outperforms the other methods for sensor selection.
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Numeri

cal Experiments

Sensor selection results

Sensor selection performance for UAM Dataset

Average AUC

Average AUC

Results

Subject 1

Subject 7
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> Performance vs sparsity plots (10 sensors).

5
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» GSVMe-a clearly outperforms the other methods for sensor selection.
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Numerical Experiments Multi-task learning results

Multi-task learning Results

Performance vs number of training points for EPFL dataset Performance vs number of training points for UAM dataset
085 0.85
0.8
o 0.8 =z~
o
2075 2
o °
g 8 0.75
2 07 g
< < —6—SWM
0.7 —+— GSVM-2
0.65 . —— MGSVM-2
—&— MGSVM-2s
— — —SVMFull
0.65
0 200 400 600 800 1000 0 200 400 600 800 1000
Nb of training points Nb of training points
Results

» Average performances for different number of training examples.

» MTL regularization leads to the best results.
» Promoting similarity drastically improves performances for UAM.
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Numerical Experiments Multi-task learning results

MTL results for difficult subjects

Method Sub. 28 | Sub. 25 | Sub. 4 | Sub. 8
SVM 0.5492 0.5643 0.6559 | 0.7198
MGSVM-2s 0.6417 0.6507 0.7144 | 0.7725

Results

Average AUC for the most difficult subjects of the UAM dataset.
500 training/validation examples.

Performance gain up to 15 % AUC.

vV V. v Vv

Ability to handle better " BCl illiteracy”.
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Conclusion

Conclusion

This work

» Discriminative optimization framework for sensor selection and multi-task learning.

» Comparison on several Datasets.
» Group-lasso for classification performances.
» Adaptive Group-lasso for sensor selection.

» Multi-task learning when small number of training examples available.

Future works

> Investigate different groups for MTL.

» Automatically perform pre-processing through sparsity.
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