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Introduction Brain-Computer Interfaces

Brain-Computer Interfaces

Signal processing
& Acquisition

Signal Classification Application Output

Aim
Providing a direct communication channel between the human brain and an external
device.

Challenges

I Providing robust classifiers.

I Learning quickly (time and learning examples).

BCI Types

I Motor Imagery.

I Event-Related Potential.
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Introduction Brain-Computer Interfaces

Event Related Potential (ERP)

ERP-based BCI [Luck, 2005]

I ERP: signal emitted by the brain after a given event occurs.

I Recording done with ElectroEncephalograms: noisy signal.

I Usually linear classifiers are sufficient.

P300 Speller

I P300 ERP occurs 300 ms after a rare event.

I The subject focuses on a letter.

I The columns and lines of the keyboard are
flashed randomly.

I P300 appears when the column/line is flashed.

I The classifier output for all colmuns/lines are
added in order to find the selected letter.
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Introduction Sensor selection

Sensor selection

Why ?

I All sensors are not relevant.

I Reduce implementation cost (short setup time,
smaller EEG cap).

How is it done?

I Prior knowledge (discriminant areas of the brain).

I Recursive Feature Elimination (RFE) maximizing performances through
Cross-Validation [Rakotomamonjy and Guigue, 2008].

I RFE using a relevance criterion (SSNR) [Rivet et al., 2010].

I Discriminant framework with sparsity inducing
regularization [Tomioka and Müller, 2010].
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Introduction Multi-task learning

Multi-task learning

Why?

I In BCI, learning a classifier for one subject is one task.

I A way to transfer knowledge between subjects (transfer learning).

I Good results obtained for Motor Imagery in BCI [Alamgir et al., 2010].

I Better performances for a small number of training samples.

How is it done?
Learning jointly all the tasks and promoting similarity between them by:

I Minimizing the variance of the classifiers [Evgeniou and Pontil, 2004].

I Forcing the classifier to lie on a low dimensional space [Argyriou et al., 2008].

I Selecting jointly the relevant features [Rakotomamonjy et al., tted].
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Optimization Framework Sensor Selection

Definitions for sensor selection

Learning set

I {xi , yi}i∈{1...n} the n training examples.

I xi ∈ Rd with d = r × p (r temporal features for each of the p sensors)

Linear classifier

f (x) = xTw + b (1)

with w ∈ Rd the separating hyperplane and b ∈ R the bias term.
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Optimization Framework Sensor Selection

Optimization framework

Discriminative framework

min
w,b

n∑
i

L(yi , x
T
i w + b) + λΩ(w) (2)

where:

I L(·, ·) is a loss function measuring the discrepancy between actual and predicted
labels.

I In this work, L(y , ŷ) = max(0, 1− y ŷ)2 is the squared hinge loss.

I Ω(·) is the regularization term.

I Regularization controlled by λ.

Regularization term

I Avoid over-fitting.

I Select relevant sensors through sparsity.
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Optimization Framework Sensor Selection

Regularization terms I

`2 − norm

Ω2(w) = ||w||22
Where || · ||2 is the euclidean norm.

I Not sparse.

I All components are regularized
independently.

Feasible region for Ω2(w) ≤ 1

`1 − norm

Ω1(w) =
d∑

i=1

|wi |

I Sparsity on the features of w.

I All components are regularized
independently. Feasible region for Ω1(w) ≤ 1
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Optimization Framework Sensor Selection

Regularization terms II

`1 − `p mixed norm

Ω1−p(w) =
∑
g∈G

||wg ||p

where G contains non-overlapping groups of

{1..d}, 1 ≤ p ≤ 2 and ||x||p =
(∑

i x
p
i

)1/p
.

I `1 norm on the vector containing the `p
norm of each group.

I p controls regularization between
`1 − `1 = `1 and `1 − `2 also known as
group-lasso.

I We group the features by sensor.

Feasible region for Ω1−2(w) ≤ 1

Feasible region for Ω1−p(w) ≤ 1
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Optimization Framework Sensor Selection

Regularization terms III

Adaptive `1 − `2 mixed norm
Ωa:1−2(w) =

∑
g∈G

βg ||wg ||2

where the weights βg are selected to enhance
sparsity.

I Problem solved with βg = 1.

I Then problem is solved iteratively with
βg = 1/||w∗g ||2 , w∗ being the optimal
classifier from last iteration.

I Stop when convergence or after max
number of iterations.

I Sparser results as groups with small norms
are more penalized.

I Better theoretical properties [Bach, 2008].

Feasible region for Ω1−2(w) ≤ 1

Similar for Ωa:1−2(w) with a scaling
βi on each dimension.
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Optimization Framework Multi-task learning

Definitions for multi-task learning

Learning set

I {xi,t , yi,t}i∈{1...n} for each task t ∈ 1 . . .m.

I xi,t ∈ Rd with d = r × p (r temporal features for each of the p sensors)

Tasks

I One task per subject.

I We learn jointly (wt , bt) for each task t.
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Optimization Framework Multi-task learning

Optimization framework for MTL

Discriminative framework for MTL

min
W,b

m∑
t

n∑
i

L(yi,t , x
T
i,twt + bt) + Ωmtl(W) (3)

where:

I W = [w1 . . .wm] ∈ Rd×m is a matrix concatenating all the classifiers.

I Ωmtl(W) is the regularization term.

Regularization term

I Avoid over-fitting.

I Select relevant sensors through sparsity.

I Promote similarity between tasks.
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Optimization Framework Multi-task learning

MTL Regularization

Regularization term

Ωmtl(W) = λr

∑
g∈G′
||Wg ||2︸ ︷︷ ︸

Mixed norm

+λs

m∑
t=1

||wt − ŵ||22︸ ︷︷ ︸
Similarity

(4)

where λr and λs weight the mixed norms and similarity regularization.

Mixed norm

G′ contains groups of sensors in W:

Similarity

I ŵ = 1
m

∑
t wt is the average

classifier across tasks

I Minimize the variance of the
classifiers
[Evgeniou and Pontil, 2004].

Rémi Flamary et al (LITIS) Mixed-norms for ERP-based BCI April 19, 2011 14 / 32



Optimization Framework Algorithm

Algorithm

Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [Beck and Teboulle, 2009]
Can be used whenever the objective function can be expressed as:

f1(w) + f2(w)

with:

I f1(·) a gradient Lipschitz continuous term.

I f2(·) a non-differentiable term having a closed form proximal operator:

Prox(v) = argminw‖v − w‖2 + f2(w)

Advantages

I Simple and efficient algorithm.

I Convergence properties.

I Fast regularization path thanks to warm-start.
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Optimization Framework Algorithm

Algorithmic implementation
Sensor selection problem

I f1(w) =
∑n

i L(yi , x
T
i w + b), with the squared hinge loss is gradient Lipschitz

continuous term.

I f2(w) = Ω(w), has a closed form proximal for the proposed regularization terms.

Example for the `1 norm:

ProxΩ1 (v)i =

{
0 if |vi | ≤ λ
vi − λsign(vi ) if |vi | > λ

Multi-task problem

I f1(w) =
∑m,n

t,i L(yi,t , x
T
i,twt + bt) +

∑m
t ||wt − ŵ||22, that is provably gradient

Lipschitz continuous.

I f2(w) = Ω1−2(W), has a closed form proximal for the proposed regularization terms.

Example for the `1 − `2 norm:

ProxΩ1−2 (v)g =

{
0 if ||vg ||2 ≤ λ
vg (1− λ

||vg ||2
) if ||vg ||2 > λ
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Numerical Experiments Datasets description

P300 datasets

EPFL Dataset [Hoffmann et al., 2008]

I P300 with 3× 2 image
selection.

I 8 subjects.

I 32 electrodes.

I 3000 examples, 1000 for
training/validation.
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UAM Dataset [Ledesma Ramirez et al., 2010]

I P300 Speller with
standard 6× 6 virtual
keyboard.

I 30 subjects.

I 10 electrodes.

I 3000 examples, 1000 for
training/validation.
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Numerical Experiments Datasets description

Error Related Potential dataset

Experimental setup

I Subjects asked to memorize the position of 2 to 9 digits.

I They had to recall the position of one of these digits.

I Signal recorded after the visualization of the result (correct/error) .

Dataset

I ErrP Event Related Potential.

I 8 subjects.

I 31 electrodes.

I 72 examples, 57 for training/validation.
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Numerical Experiments Methods evaluation

Methods evaluation

Sensor selection methods

Method Reg. Groups

SVM `2 -

SVM-1 `1 feature

GSVM-2 `1 − `2 sensor

GSVM-p `1 − `p sensor

GSVM-a Adapt. `1 − `2 sensor

I Classification performance measured
with Area Under the ROC Curve.

I Groups correspond to sensors.

I Dataset randomly split (10×).

I λ selected through Cross-Validation.

Multi-task methods

Method Reg. Groups

SVM-Full `2 -

MGSVM-2 `1 − `2 sensor

MGSVM-2s `1 − `2 and Sim. sensor

I Classification performance measured
with Area Under the ROC Curve.

I Groups correspond to sensors (across
tasks).

I Use a small number of examples .

I λr and λs selected through
Cross-Validation.
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Numerical Experiments Sensor selection results

Classification performances for P300

Datasets EPFL Dataset (8 Sub., 32 Ch.) UAM Dataset (30 Sub., 10 Ch.)

Methods Avg AUC Avg Sel p-value Avg AUC Avg Sel p-value

SVM 80.35 100.00 - 84.47 100.00 -
SVM-1 79.88 87.66 0.15 84.45 96.27 0.5577
GSVM-2 80.53 78.24 0.31 84.94 88.77 0.0001
GSVM-p 80.38 77.81 0.74 84.94 90.80 0.0001
GSVM-a 79.01 26.60 0.01 84.12 45.07 0.1109

Performance Results

I AUC, percent of selected sensors and Signrank Wilcoxon test p-value.

I GSVM-2 gives the best performance but uses 80-90% of the sensors.

I GSVM-a provides the best selection with a slight performance loss.

I Some subjects in UAM dataset perform poorly for all methods (< 60% AUC).
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Numerical Experiments Sensor selection results

Classification performances for Error Related Potential

Datasets ErrP Dataset (8 Sub., 32 Ch)

Methods Avg AUC Avg Sel p-value

SVM 76.96 100.00 -
SVM-1 68.84 45.85 0.3125
GSVM-2 77.29 29.84 0.5469
GSVM-p 76.84 37.18 0.7422
GSVM-a 67.25 7.14 0.1484

Performance Results

I AUC, percent of selected sensors and Signrank Wilcowon test p-value.

I GSVM-2 gives the best performance with 30% of the sensors.

I GSVM-a is statistically equivalent to SVM but loses 10% AUC.

I Difficult to select the regularization parameter on 57 examples!
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Numerical Experiments Sensor selection results

Selected sensors for EPFL Dataset
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Results for GSVM-a

I Selected sensors are highly dependent on the subject.

I Sensors from the occipital area [Krusienski et al., 2008].

I And other areas such as T7 and C3
[Rivet et al., 2010, Rakotomamonjy and Guigue, 2008].

Rémi Flamary et al (LITIS) Mixed-norms for ERP-based BCI April 19, 2011 22 / 32



Numerical Experiments Sensor selection results

Selected sensors for UAM dataset
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Results for GSVM-a

I Classical P300 experimental setup.

I Less sensors selected.

I Sensors from the occipital area [Krusienski et al., 2008].
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Numerical Experiments Sensor selection results

Selected sensors for ErrP dataset
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Results for GSVM-2

I Important variances across subjects.

I Sensors in the central area selected in average [Dehaene et al., 1994].

I Small dataset.
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Numerical Experiments Sensor selection results

Sensor selection performance for EPFL Dataset
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Results

I Performance vs sparsity plots.

I GSVM-a clearly outperforms the other methods for sensor selection.
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Numerical Experiments Sensor selection results

Sensor selection performance for UAM Dataset

0 5 10
0.6

0.7

0.8

0.9

Subject 1

Nb Selected Sensors

A
v
e

ra
g

e
 A

U
C

 

 

SVM

SVM−1

GSVM−2

GSVM−p

GSVM−a

0 5 10
0.6

0.7

0.8

0.9

Subject 7

A
v
e

ra
g

e
 A

U
C

Nb Selected Sensors
0 5 10

0.6

0.7

0.8

0.9

1
Subject 20

A
v
e

ra
g

e
 A

U
C

Nb Selected Sensors

0 5 10
0.6

0.7

0.8

0.9

Subject 6

A
v
e

ra
g

e
 A

U
C

Nb Selected Sensors
0 5 10

0.6

0.65

0.7

0.75

0.8

0.85

Subject 24

A
v
e

ra
g

e
 A

U
C

Nb Selected Sensors

Results

I Performance vs sparsity plots (10 sensors).

I GSVM-a clearly outperforms the other methods for sensor selection.
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Numerical Experiments Multi-task learning results

Multi-task learning Results
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Results

I Average performances for different number of training examples.

I MTL regularization leads to the best results.

I Promoting similarity drastically improves performances for UAM.
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Numerical Experiments Multi-task learning results

MTL results for difficult subjects

Method Sub. 28 Sub. 25 Sub. 4 Sub. 8

SVM 0.5492 0.5643 0.6559 0.7198
MGSVM-2s 0.6417 0.6507 0.7144 0.7725

Results

I Average AUC for the most difficult subjects of the UAM dataset.

I 500 training/validation examples.

I Performance gain up to 15 % AUC.

I Ability to handle better ”BCI illiteracy”.
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Conclusion

Conclusion

This work

I Discriminative optimization framework for sensor selection and multi-task learning.

I Comparison on several Datasets.

I Group-lasso for classification performances.

I Adaptive Group-lasso for sensor selection.

I Multi-task learning when small number of training examples available.

Future works

I Investigate different groups for MTL.

I Automatically perform pre-processing through sparsity.
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