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Introduction

Sequence labeling (1)

Definition
To obtain a label for each sample of the signal while taking into account the
sequentiality of the samples.

PSD features
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Example

Multi-class mental state decoding in BCI

I Subject thinking about the movement of his right arm, left arm or his feet

I PSD features along time
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Introduction

Sequence labeling (2)

Existing methods

I Hidden Markov Models [CMR05] ,Conditional Random Fields [LMP01]

I Structural SVM [TTHA05]

I Maximum Margin Markov Networks [TGK04]

I Structured Learning Ensemble[NG07]

Applications

I Automatic Speech Recognition

I Brain Computer Interfaces
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Introduction

Sequence labeling (3)

Structured Learning Ensemble[NG07]
Find the optimal sequence y∗ ∈ {1, 2, . . . ,Nc}T using results from M sequence labeling
methods (y1, y2, . . . , yM).

y∗ = arg min
y
L(y, y1, y2, . . . , yM) (1)

with L a loss function that takes into account the label provided by each method and all
label transitions.

Our contribution

I Use scores instead of discrete labels (similar to soft decision[MZ06]).

I Express this problem in a variational framework (sum of functionals).

I Simple criterions proposed as functional

I Propose a general approximate algorithm to solve the problem
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Variational sequence labeling Variational approach

Variational approach

Variational framework
We cast the problem as a weighted sum of functionals:

min
y

NfX
i=1

λiJi (y,X , y
tr ,X tr ) (2)

with each functional Ji ∈ IR is balanced by λi ∈ IR+, X ∈ IRT×d feature matrix and
(ytr ,X tr ) is the training set.

Key ideas

I Each functional:criterion to optimize (Data, a priori)

I Straightforward to fuse several methods, to add prior information

I Focus on the variation of the functionals

→ Need to express existing methods as a sum of functionals.
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Variational sequence labeling Data-based functionals

Labeling functional

I Functional corresponding to a
supervised learning

I Needs functions fn returning a class n
membership score:

fn = arg min
f
Ln(ytr , f (X tr )) + λΩ(f )

I If used alone, leads to winner takes all
strategy
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Labeling functional

Jclass(y,X ) = −
TX

i=1

fyi (Xi ) (3)

By minimizing this functional, we choose for each sample the class with the maximum
score
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Variational sequence labeling Other functionals

Other functionals

I a priori concerning the length of regions (large)

I Widely used in signal and image processing

Total Variation functional

JTV (y) =
T−1X
i=1

‖yi+1 − yi‖0 (4)

where ||.||0 is the `0 norm.

Other functionals

I Jedge to add information from change detection methods

I JMM to add Markov Model prior information
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Algorithm Discussion

Discussion

Our algorithm

I Based on the Region Growing algorithm widely used in image processing

I Can handle any sum of functionals, even with non-differentiable ones

I We focus on the variation of the functionals and not in their value.

Variation of functionals

I Variation of Jclass for changing the class of the ith sample from c1 to c2 is:

∆Jclass(X , i , c1, c2) = fc1 (Xi )− fc2 (Xi )

I Variation of JTV for changing the class of the ith sample from c1 to c2 is:

∆JTV (y, i , c1, c2) = ‖c2 − yi−1‖0 + ‖yi+1 − c2‖0 − ‖c1 − yi−1‖0 − ‖yi+1 − c1‖0
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Algorithm VSLA

Algorithm (VSLA)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

Example of the algorithm:

I 1-dimensional 2-class problem

I Jclass is used with fn svm
classification functions.

I λclass = 1.

I JTV is used with λTV = 5

Training sequence:

1

2

Y

Training signal:
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X
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Algorithm Example

Algorithm Example (0)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible
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Initialization is done by solving a simple
version of J:

y0 = arg min
y

Jclass(y, X )

with the scores fn:
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leading to this initialization:
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0
, acc=0.78
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Algorithm Example

Algorithm Example (1)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

1

2

y, acc=0.78

Edge number 1:
movement left none right

∆Jclass 1.99 0 0.68
∆JTV 0 0 -2

∆J 1.99 0 -9.31
⇒Edge moved to the right:

1

2

y, acc=0.79
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Algorithm Example

Algorithm Example (1)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

1

2

y, acc=0.79

Edge number 2:
movement left none right

∆Jclass 1.86 0 1.95
∆JTV 0 0 -2

∆J 1.86 0 -8.04
⇒Edge moved to the right:

1

2

y, acc=0.80
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Algorithm Example

Algorithm Example (1)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

Every edge in the current y is tested
once:

1

2

y, acc=0.83

1

2

y, acc=0.89

which leads to this y at the end of (1):

1

2

y, acc=0.96

Rémi Flamary (LITIS) VARIATIONAL SEQUENCE LABELING Wednesday September 2, 2009 11 / 16



Algorithm Example

Algorithm Example (2)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

1

2

y, acc=0.96

Region 1:

switch to 1 2
∆Jclass 0 12.7
∆JTV 0 -1

∆J 0 7.2

⇒ Region not switched

1

2

y, acc=0.96

Same for Region 2
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Algorithm Example

Algorithm Example (2)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

1

2

y, acc=0.96

Region 3:

switch to 1 2
∆Jclass 0 4.02
∆JTV 0 -2

∆J 0 -5.97

⇒ Region 3 switched to class 2

1

2

y, acc=0.98
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Algorithm Example

Algorithm Example (2)

Initialization of y0 (0)

Edge moving (1)

For all edges:
I Compute ∆J for moving edge to

left or right

I Move edge if ∆J < 0

Region switching (2)

For all regions:

I Compute ∆J for switching regions
to every other classes

I Change region if ∆J < 0

Repeat (1) and (2)

until no minimization is possible

Every region in the current y is tested
once

1

2

y, acc=0.98

1

2

y, acc=0.98

which leads to this y at the end of (2):

1

2

y, acc=1.00
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Results Toy dataset

Toy Dataset
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Class 1
Class 2
Class 3

Jclass SVM MG KRR

∅ 0.7111 0.7393 0.7343
+JTV 0.8677 0.9311 0.9155
+JMM 0.8138 0.9005 0.8775

Toy Problem

I 1-Dimensional noisy signal

I Non linear (2 different values possible per class)

I SVM, MG, KRR classification methods for scores of Jclass
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Results BCI Dataset

BCI Dataset

Functionals Sub. 1 Sub. 2 Sub. 3

Jclass 0.7392 0.6262 0.4931

. . . +JTV 0.9843 0.8531 0.5932
. . . +JMM 0.9783 0.7955 0.4455

BCI III Res. 0.9598 0.7949 0.6743

Dataset

I BCI Competition III Dataset: 3 classes, 3 sessions training, 1 session test

I λ selected by validation on the third training session

I Classification scores obtained by linear regression with channel selection [Rak09].
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Conclusion

Conclusion

Conclusion

I General framework for combining several sequence labeling criterions

I Easy integrating of prior knowledge

I Algorithm proposed based on Region Growing

I Promising results on a real life example

Future works

I Express other sequence labeling methods (Structural SVM, CRF) in the variational
framework and fuse them

I Comparison of VSLA with other methods/fusion methods
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Conclusion
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