VARIATIONAL SEQUENCE LABELING

R. Flamary, S. Canu, A. Rakotomamonjy, J.L. Rose

LITIS EA 4108, INSA-Université de Rouen
76800 Saint Etienne du Rouvray, France

Wednesday September 2, 2009

Sequence labeling (1)

Definition

To obtain a label for each sample of the signal while taking into account the sequentiality of the samples.

Example

Multi-class mental state decoding in BCl

- Subject thinking about the movement of his right arm, left arm or his feet
- PSD features along time

Sequence labeling (2)

Existing methods

- Hidden Markov Models [CMR05] ,Conditional Random Fields [LMP01]
- Structural SVM [TTHA05]
- Maximum Margin Markov Networks [TGK04]
- Structured Learning Ensemble[NG07]

Applications

- Automatic Speech Recognition
- Brain Computer Interfaces

Sequence labeling (3)

Structured Learning Ensemble[NG07]

Find the optimal sequence $\mathbf{y}^{*} \in\left\{1,2, \ldots, N_{c}\right\}^{\top}$ using results from M sequence labeling methods $\left(\mathbf{y}^{1}, \mathbf{y}^{2}, \ldots, \mathbf{y}^{M}\right)$.

$$
\begin{equation*}
\mathbf{y}^{*}=\arg \min _{\mathbf{y}} \mathcal{L}\left(\mathbf{y}, \mathbf{y}^{1}, \mathbf{y}^{2}, \ldots, \mathbf{y}^{M}\right) \tag{1}
\end{equation*}
$$

with \mathcal{L} a loss function that takes into account the label provided by each method and all label transitions.

Our contribution

- Use scores instead of discrete labels (similar to soft decision[MZ06]).
- Express this problem in a variational framework (sum of functionals).
- Simple criterions proposed as functional
- Propose a general approximate algorithm to solve the problem

Variational approach

Variational framework

We cast the problem as a weighted sum of functionals:

$$
\begin{equation*}
\min _{\mathbf{y}} \sum_{i=1}^{N_{f}} \lambda_{i} J_{i}\left(\mathbf{y}, X, \mathbf{y}^{t r}, X^{t r}\right) \tag{2}
\end{equation*}
$$

with each functional $J_{i} \in \mathbb{R}$ is balanced by $\lambda_{i} \in \mathbb{R}^{+}, X \in \mathbb{R}^{T \times d}$ feature matrix and $\left(\mathbf{y}^{t r}, X^{t r}\right)$ is the training set.

Key ideas

- Each functional:criterion to optimize (Data, a priori)
- Straightforward to fuse several methods, to add prior information
- Focus on the variation of the functionals
\rightarrow Need to express existing methods as a sum of functionals.

Labeling functional

- Functional corresponding to a supervised learning
- Needs functions f_{n} returning a class n membership score:

$$
f_{n}=\arg \min _{f} \mathcal{L}_{n}\left(\mathbf{y}^{t r}, f\left(X^{t r}\right)\right)+\lambda \Omega(f)
$$

- If used alone, leads to winner takes all

 strategy

Labeling functional

$$
\begin{equation*}
J_{c l a s s}(\mathbf{y}, X)=-\sum_{i=1}^{T} f_{y_{i}}\left(X_{i}\right) \tag{3}
\end{equation*}
$$

By minimizing this functional, we choose for each sample the class with the maximum score

Other functionals

- a priori concerning the length of regions (large)
- Widely used in signal and image processing

Total Variation functional

$$
\begin{equation*}
J_{T V}(\mathbf{y})=\sum_{i=1}^{T-1}\left\|\mathbf{y}_{i+1}-\mathbf{y}_{i}\right\|_{0} \tag{4}
\end{equation*}
$$

where $\|.\|_{0}$ is the ℓ_{0} norm.

Other functionals

- Jedge to add information from change detection methods
- $J_{M M}$ to add Markov Model prior information

Discussion

Our algorithm

- Based on the Region Growing algorithm widely used in image processing
- Can handle any sum of functionals, even with non-differentiable ones
- We focus on the variation of the functionals and not in their value.

Variation of functionals

- Variation of $J_{\text {class }}$ for changing the class of the i th sample from c_{1} to c_{2} is:

$$
\Delta J_{\text {class }}\left(X, i, c_{1}, c_{2}\right)=f_{c_{1}}\left(X_{i}\right)-f_{c_{2}}\left(X_{i}\right)
$$

- Variation of $J_{T V}$ for changing the class of the ith sample from c_{1} to c_{2} is:

$$
\Delta J_{T V}\left(\mathbf{y}, i, c_{1}, c_{2}\right)=\left\|c_{2}-\mathbf{y}_{i-1}\right\|_{0}+\left\|\mathbf{y}_{i+1}-c_{2}\right\|_{0}-\left\|c_{1}-\mathbf{y}_{i-1}\right\|_{0}-\left\|\mathbf{y}_{i+1}-c_{1}\right\|_{0}
$$

Algorithm (VSLA)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Repeat (1) and (2)

until no minimization is possible

Example of the algorithm:

- 1-dimensional 2-class problem
- $J_{\text {class }}$ is used with f_{n} svm classification functions.
- $\lambda_{\text {class }}=1$.
- $J_{T V}$ is used with $\lambda_{T V}=5$

Training sequence:

Training signal:

Algorithm Example (0)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Repeat (1) and (2)

until no minimization is possible

Initialization is done by solving a simple version of J:

$$
\mathbf{y}^{0}=\arg \min _{\mathbf{y}} J_{\text {class }}(\mathbf{y}, X)
$$

with the scores f_{n} :

leading to this initialization:

$$
\mathrm{y}_{0}, \text { acc }=0.78
$$

Algorithm Example (1)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Edge number 1:

movement	left	none	right
$\Delta J_{\text {class }}$	1.99	0	0.68
$\Delta J_{T V}$	0	0	-2
ΔJ	1.99	0	-9.31

\Rightarrow Edge moved to the right:
$y, a c c=0.79$

Repeat (1) and (2)

until no minimization is possible

Algorithm Example (1)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Edge number 2:

movement	left	none	right
$\Delta J_{\text {class }}$	1.86	0	1.95
$\Delta J_{T V}$	0	0	-2
ΔJ	1.86	0	-8.04

\Rightarrow Edge moved to the right:
$y, a c c=0.80$

Repeat (1) and (2)

until no minimization is possible

Algorithm Example (1)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Repeat (1) and (2)

Every edge in the current \mathbf{y} is tested once:
$y, a c c=0.83$

$y, a c c=0.89$

which leads to this \mathbf{y} at the end of (1):
$y, a c c=0.96$

until no minimization is possible

Algorithm Example (2)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Repeat (1) and (2)

until no minimization is possible

Region 1:

switch to	1	2
$\Delta J_{\text {class }}$	0	12.7
$\Delta J_{T V}$	0	-1
ΔJ	0	7.2

\Rightarrow Region not switched

Same for Region 2

Algorithm Example (2)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Repeat (1) and (2)

Region 3:

switch to	1	2
$\Delta J_{\text {class }}$	0	4.02
$\Delta J_{T V}$	0	-2
ΔJ	0	-5.97

\Rightarrow Region 3 switched to class 2
y , acc=0.98

until no minimization is possible

Algorithm Example (2)

Initialization of \mathbf{y}^{0}

Edge moving

For all edges:

- Compute ΔJ for moving edge to left or right
- Move edge if $\Delta J<0$

Region switching

For all regions:

- Compute ΔJ for switching regions to every other classes
- Change region if $\Delta J<0$

Repeat (1) and (2)

Every region in the current \mathbf{y} is tested once

which leads to this \mathbf{y} at the end of (2):
$y, a c c=1.00$

until no minimization is possible

Toy Dataset

$J_{\text {class }}$	SVM	MG	KRR
\varnothing	0.7111	0.7393	0.7343
$+J_{T V}$	0.8677	0.9311	0.9155
$+J_{M M}$	0.8138	0.9005	0.8775

Toy Problem

- 1-Dimensional noisy signal
- Non linear (2 different values possible per class)
- SVM, MG, KRR classification methods for scores of $J_{\text {class }}$

BCI Dataset

Functionals	Sub. 1	Sub. 2	Sub. 3
$J_{\text {class }}$	0.7392	0.6262	0.4931
$\ldots+J_{T V}$	$\mathbf{0 . 9 8 4 3}$	$\mathbf{0 . 8 5 3 1}$	$\mathbf{0 . 5 9 3 2}$
$\ldots+J_{M M}$	0.9783	0.7955	0.4455
BCI III Res.	0.9598	0.7949	0.6743

Dataset

- BCI Competition III Dataset: 3 classes, 3 sessions training, 1 session test
- λ selected by validation on the third training session
- Classification scores obtained by linear regression with channel selection [Rak09].

Conclusion

Conclusion

- General framework for combining several sequence labeling criterions
- Easy integrating of prior knowledge
- Algorithm proposed based on Region Growing
- Promising results on a real life example

Future works

- Express other sequence labeling methods (Structural SVM, CRF) in the variational framework and fuse them
- Comparison of VSLA with other methods/fusion methods

Bibliography

[TTHA05] I. Tsochantaridis, J. Thorsten, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent output variables.
In Journal Of Machine Learning Research, volume 6, pages 1453-1484, Cambridge, MA, USA, 2005. MIT Press.

