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Damien Galanoa, Camille Galyg, Volker Kirschnera, Federico Landinid, Marco Romolie, Sergey

Shestovc, Cédric Thizyg, Jorg Versluysa, and Andrei Zhukovc

aEuropean Space Research and Technology Center, European Space Agency, Keplerlaan 1,
2201 Noordwijk, The Netherlands
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ABSTRACT

The ESA formation Flying mission Proba-3 will fly the giant solar coronagraph ASPIICS. The instrument is
composed of a 1.4 meter diameter external occulting disc mounted on the Occulter Spacecraft and a Lyot-style
solar coronagraph of 50mm diameter aperture carried by the Coronagraph Spacecraft positioned 144 meters
behind. The system will observe the inner corona of the Sun, as close as 1.1 solar radius. For a solar coronagraph,
the most critical source of straylight is the residual diffracted sunlight, which drives the scientific performance
of the observation. This is especially the case for ASPIICS because of its reduced field-of-view close to the
solar limb. The light from the Sun is first diffracted by the edge of the external occulter, and then propagates
and scatters inside the instrument. There is a crucial need to estimate both intensity and distribution of the
diffraction on the focal plane. Because of the very large size of the coronagraph, one cannot rely on representative
full scale test campaign. Moreover, usual optics software package are not designed to perform such diffraction
computation, with the required accuracy. Therefore, dedicated approaches have been developed in the frame
of ASPIICS. First, novel numerical models compute the diffraction profile on the entrance pupil plane and
instrument detector plane (Landini et al., Rougeot et al.), assuming perfect optics in the sense of multi-reflection
and scattering. Results are confronted to experimental measurements of diffraction. The paper reports the
results of the different approaches.
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1. INTRODUCTION

The corona of the Sun is a hot, fully magnetized plasma, which governs the quiescence of the Sun and the space
weather. Our knowledge about the heating mechanism in the corona, the dynamics of the coronal plasma, the
acceleration process of the solar wind or the Coronal Mass ejections (CME), is still subject to active research.
Among others, observation of the solar corona in white light is of first importance. However, its brightness is
much fainter in this spectral band compared to the one of the solar disc itself. In fact, the K-coronal brightness
ranges from 10−6 around 1.1R� to 10−10 around 3R� [1], with respect to the mean solar brightness, where R� is
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the radius of the Sun. Therefore, almost perfect eclipse conditions are required, and high-contrast performance
must be achieved to acquire relevant scientific data.
In the 1930s, Lyot proposed the novel concept of the coronagraph [2], which consists of focusing the light from
the solar disc by a lens onto an occulting mask, and letting the faint coronal light propagating up to the detec-
tor. The development of coronagraphy has been continuously improving the straylight rejection performance.
Evans [3] and Purcell and Koomen [4] investigated the use of an external occulter to block the sunlight before
the entrance aperture of the imaging system. More advanced techniques for occultation were experimentally
studied by Fort et al. [5] and Bout et al. [6]. The coronagraph LASCO C2 (Large Angle and Spectrometric
Coronagraph) on the NASA mission SOHO [7] can be held as a successful example. We refer the interested
reader to the review paper of Koutchmy [8] about the advent of spaceborne solar coronagraphy.
The coronagraph ASPIICS (Association de Satellites Pour l’Imagerie et l’Interférométrie de la Couronne Solaire)
will fly on the ESA Formation Flying mission Proba-3 [9,10]. This novel mission concept will to virtually enlarge
the instrument to unprecedented size. Both satellites will maintain a fixed Intersatellite Distance (ISD) of 144m,
a millimeter accuracy, and will remain co-aligned with the Sun-pointing direction during the 6-hours apogee
phase of a highly elliptical orbit 600km× 60500km. ASPIICS is composed of an external occulter of 1.4m diam-
eter mounted on the Occulter Spacecraft (OSC), and a Lyot-style solar coronagraph carried by the Coronagraph
Spacecraft (CSC). The refractive imaging system is based on the concept of Lyot, including an internal occulter
and a Lyot stop aperture. ASPIICS will observe the corona in white light 540nm − 570nm, with a plate scale
resolution of 2.8arcsec. We refer the reader to the paper of Galano et al. [11] for a detailed description of the
complete design of the instrument, and to the paper of Galy [12] for the optical design.
the major issue for coronagraphy, where high-contrast is required, is the straylight, and more particularly the
diffraction of the bright light from the Sun. Because of the wave nature of light, diffraction effects occur from
the edges of mechanical elements, especially occulters and apertures. Even if the occultation design is such that
the light rays from the Sun are geometrically blocked, residual diffracted sunlight propagates and reaches the
detector. This degradation of the quality of the observation is critical and thus must be assessed, in order to
evaluate the scientific end-to-end performance of the instrument.
In the frame of the development of ASPIICS, several approaches have been conducted in parallel, in order to as-
sess the diffraction straylight. First, a novel and dedicated analytical model has been developed in Matlab, based
on Fresnel theory and Fourier optics formalism. This model analyses the diffraction wave propagation up to the
detector plane. Second, numerical simulations were performed using the optical software package VirtualLab by
Lightrans, to compute the umbra/penumbra level casted by the external occulter. In particular, this method
allows analyze the optimized shape of ASPIICS external occulter. Finally, an experimental approach on an
optical test-bench, using linear edges, was conducted. The present paper summarizes these different approaches
and reports the results.
The paper is organized as follows. The first section contains this introduction. In the second section, we give a
qualitative brief description of the straylight rejection design for ASPIICS. The third section treats the study of
the umbra/penumbra casted by the external occulter. The fourth section presents the wave propagation model
inside the Lyot-style coronagraph and reports the main results. Conclusions are given in the forth section.

2. QUALITATIVE DESCRIPTION OF ASPIICS STRAYLIGHT REJECTION

As briefly introduced in the previous section, the main objective of a solar coronagraph is to prevent the bright
light of the Sun from reaching the detector. The fundamental concept of the Lyot solar coronagraph [2], as
designed in the 1930s, consists of focusing the solar image on an occulting disc, named the Lyot mask, located
at the focal plane of the telescope. The entrance aperture remains however fully illuminated, and produces
unwanted diffraction straylight. The second idea of Lyot was to set a reduced stop aperture, named Lyot stop,
in the image plane of the entrance pupil, where the diffraction annular fringe is focused.
The coronagraph ASPIICS improves that latter concept. The straylight rejection design uses first an external
occulter, to cast an umbra cone on the entrance aperture of the instrument. This 710mm radius disc has a
toroidal edge, whose radius of curvature is such that it mitigates the impact of potential tip/tilt. Nevertheless,
diffraction effects occur because of the presence of the occulter which, in contradiction with pure geometrical
predictions, makes the umbra be not perfectly dark. A preliminary interpretation is that, as viewed from the



instrument, the edge of the occulting disc seems to act as a virtual straylight source.
As such, it is expected that this diffracted light is imaged by the coronograph telescope optics as a bright cir-
cle which coincides with the geometrical image of the external occulter edge. The telescope focusses it on the
conjugated plane of the external occulter, as defined by the laws of geometrical optics. This particular plane
is located further then the focal plane of the telescope, because the disc is set at a finite distance. At this
conjugated plane, a second occulting disc, named the internal occulter is located which serves as a mask to block
the diffraction annular fringe. This reasonning has been confirmed by our dedicated diffraction modelling [13].
Finally, ASPIICS comprises also a Lyot stop to surpress additional diffraction effects from the pupil as described
above.
The straylight performance of the complete system is thus driven by the rejection from the external occulter, i.e.
how dark the umbra is, and the efficiency to cut diffraction of the internal occulter and the Lyot stop.

3. UMBRA FROM THE EXTERNAL OCCULTER

As explained above, the first part of the overall straylight analysis deals with the rejection by the external occulter.
Here, we must estimate the umbra level, so the residual straylight power which enters the coronagraph. Three
approaches were used concurrently in the frame of ASPIICS: an analytical model based on Fresnel diffraction
theory, numerical simulations using the optical software VirtualLab by LightTrans, and a dedicated experimental
study.

3.1 Fresnel diffraction

The Fresnel diffraction theory is based on wave optics, where the light is described by wave fronts following
Fresnel free-space propagation [14]. The formulation requires paraxial approximation, i.e. small angles. Having
an occulter of 1.4m located at 144m makes this assumption perfectly valid - the angles involved are ' 10−2rad.
This theory thus fits well our problem.
Our model is analytical, and follows the work of Aime [15]. The external occulter is assumed to be a perfect
thin disc of radius R = 710mm, located at a distance z0 = 144.348m from the entrance aperture plane, where z0
corresponds to the ISD of Proba-3. Note that the value indicated in the text was used for the computation, but
the ISD will actually have seasonal variations during the mission. The Sun is modeled as an extended incoherent
light source of angular radius R� = 16.2arcmin. We used monochromatic light at a wavelength λ = 550nm, and
wavelength does not play a substantial role [16]. A solar limb darkening function is also implemented.
First, we computed the diffraction intensity pattern for the unitary on-axis point source at infinity, making use of
Babinet’s principle [14]. We denote by Ψ0 the complex amplitude of the wavefront at the distance z0 downstream
to the external occulter. Taking advantage of the cylindrical symmetry of the geometry, Ψ0 is written as a Hankel
transformation:

Ψ0(r) = 1− eiπ
r2

λz0

iλz0
×
∫ R

0

2πρ exp

(
iπ

ρ2

λz0

)
J0

(
2π

rρ

λz0

)
dρ, (1)

where r is the radial coordinate on the plane, counted from the center of the umbra, and J0(.) the Bessel function
of the first kind. We performed an analytical computation, using the function NIntegrate of Mathematica [17].
The obtained diffraction intensity pattern |Ψ0(r)|2 is the famous bright spot of Arago, where the intensity is
equal to 1 at the center of the umbra r = 0. This illustrates well the counter-intuitive nature of diffraction, being
contradictory with the pure geometrical point of view.
To compute the penumbra profile at the distance z0, we must integrate all the elementary diffraction intensity
patterns from the solar point sources. Because of the small angular size of the Sun, we assumed that the
diffraction pattern |Ψ0|2 is shift-invariant from one solar point source to another. It means that the intensity is
shifted by a quantity z0× tan ρ ' z0× ρ, where ρ is the angular high of the considered off-axis point source with
respect to the center of the Sun.The penumbra is thus computed by performing a convolution of |Ψ0(x, y)|2 with
the stenope image of the solar disc. Based on considerations of symmetry, the convolution can be reduced to a
first integration along one solar radius, and then a circular integration. Denoting by P (r) the radial penumbra
intensity, we write

P (r) =

∫ 2π

0

dθ

∫ R�

0

B(ρ)|Ψ0(r + z0 × ρ, θ)|2ρdρ, (2)



where B(ρ) is the radial centre-to-limb darkening function of the solar disc.
The computation was performed by a numerical integration in Matlab. The solar radius was sampled using 1000
points, which proved to be sufficient for the convergence of the integral.
Figure 1 plots the penumbra profile at z0 P (r) in black. The intensity is given in logarithmic scale, and normal-
ized to 1 in full Sun, i.e. at r = R + z0 × R� = 1.381m. The curve shows a dark inner region which extends
up to r = 38mm: it defines the umbra cone. This radius perfectly matches to the geometrical size of the umbra
given by R − z0 × R�, plotted as a dotted vertical line in the plot. Here, the achieved umbra level is 10−3.9.
Outside this central umbra region, the penumbra profile coincides to what a geometrical calculation would give,
without any diffraction consideration, as shown in 13.
As a conclusion, this analysis showed that the external occulter, supposed with knife edge, already enables to
decrease the solar irradiance by four order of magnitude at the entrance aperture of ASPIICS.
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Figure 1. Penumbra profile P (r) in logarithmic scale, function of the radius r in mm. The intensity is normalized to 1
in full sun. Black: analytical model from Fresnel diffraction theory, Sect.3.1. Red dashed: computation from VirtualLab,
Sect.3.2. Plain vertical line: radius Rp of ASPIICS pupil. Dotted vertical line: umbra radius.

3.2 Computation using VirtualLab

An independent numerical approach was pursued by using the commercial optics design software VirtualLab
Fusion [18].
A series of point sources evenly distributed over the solar disk were considered in order to simulate the pho-
tosphere. Each point source generates a plane wave that impinges on the external occulter with a certain
inclination. The Spectrum of Plane Wave (SPW) operator included in the VirtualLab library was used to calcu-
late the diffraction on the pupil plane as generated by the external occulter knife edge for each plane wave. Then,
the patterns have been combined together. Using the same notation as previously, if Ψ�(x, y) is the impinging



plane wave, the propagation with the SPW operator can be written as:

PSPWz0 Ψ0 = F−1
[

exp

[
i2π

√
n2

λ2
− x̂2 − ŷ2 × z0

]
F [Ψ�(x, y)]

]
, (3)

where λ = 550 nm is the wavelength, z0 is the ISD, n =1 is the refractive index of the vacuum, x̂ and ŷ are the
orthonormal coordinates in a spatial frequency frame of reference and F is the Fourier transform operator.
The result of the computation is plotted in dashed red in Fig.1, for a direct comparison to the Fresnel method.
Despite both numerical approaches are rather different, the results coincide rather well in the umbra, which
is governed by diffraction. The umbra level at the center is very similar - less than 5% of relative difference.
Nevertheless, we note a discrepancy in the penumbra, starting from r > 20mm. The reason found is the following
one.
In fact, the number of solar point sources drives the numerical accuracy and the computational time. We aimed
to use VirtualLab simulation to compute the propagation of the fields through a much complex occulter design.
Therefore, it was chosen to keep the number of point sources as low as possible in order to limit the required
computation time while still having something physically and numerically comparable with the Fresnel diffrac-
tion formulation. We used a number of point sources that samples well the solar disk as far as the calculation
in the umbra is concerned. It unfortunately leads to a slight overestimate of the penumbra. We verified that
increasing the number of points actually decreases the observed discrepancy in the penumbra, at the price of a
non-negligible increase of computational time.In conclusion, the implemented VirtualLab method proved to give
reliable results in the umbra, which is the region of interest.
In case the diffraction behind a toroidal edge is concerned, a recent VirtualLab simulation performed according
to the theory described in [19], whose results are subject of a forthcoming publication, showed that such toroidal
occulter reduces the straylight in the umbra of about 68%, with respect to the knife-edged occulter.

3.3 Experimental approach from Landini et al.

An experimental approach is essential because some aspects may be left unaddressed by a purely theoretical
study of diffraction. While a scaled model is under development, described in 20, the unique experimental data
available are for the giant occulter demonstrator manufactured during phase A of ASPIICS project [19]. This
experimental campaign demonstrated that a geometrical optimization of the occulter edge shape, even over a
very short distance along the optical axis, improved the diffraction reduction performance of the occulter. It
was the basis for the choice of a conical shape during the phase B and the definitive choice of a toroidal shape
in phase C/D (mainly due to the need for respecting the strict manufacturing and alignment tolerances). The
phase A external occulter demonstrator assumed that a small portion of the flight occulter could have been
approximated by a linear edge. The diffraction was measured about 1m behind the occulter in the solid angle
that would have been subtended by the flight pupil.
The accordance between data and simulation was great for the knife edge. The SPW operator of VirtualLab
Fusion (described in Sect.3.2) has been used to simulate the diffraction behind one of the linear toroidal occulters
of the phase A [21]. As shown in Fig.2, the toroidal shape of the linear edge is approximated by a series of 10
occulters, opportunely sized, over a finite distance of 20 mm, which corresponds to the length of the toroidal
linear occulter used for the tests: each occulter is in the shadow of the previous one with respect to the solar disc
light, and the toroidal surface is the envelope of the occulters edge. The diffraction propagation from a linear
knife edge plane to the next was performed by means of the VirtualLab Fusion split-step beam propagation
method described in [22]. The diffraction simulation behind the toroidal linear occulter has been the first ever
for a linear occulter with an optimization shape along the optical axis.
The result of the simulation, compared with the data and the knife edge results, is shown in Fig.3. This analysis
demonstrates that there actually is an improvement in the stray light reduction by properly modifying the
occulter shape. Moreover, we now know that VirtualLab Fusion is experimentally validated as a flexible and
reliable tool, provided that the sampling parameters are correctly set, to evaluate the diffraction behind both a
knife and optimized edge.



Figure 2. The toroidal linear edge was simulated by a series of linear knife edge occulters over a finite distance d, and he
diffraction pattern was studied at a distance z.

Figure 3. Comparison between the diffraction measured data for the linear knife edge and the linear toroidal edge. The
simulated profiles are included as well as solid lines.

4. WAVE PROPAGATION INSIDE THE CORONAGRAPH

The second part of the straylight analysis aims to compute the propagation of the diffracted wave front through
the the Lyot-style coronagraph up to the detector. A dedicated and novel numerical model has been developed
accordingly, presented in Rougeot et al. [13].

4.1 Presentation of the model

The model is based on Fourier wave optics formalism, presented in [23], and follows the same approach as Aime
et al. [24]. The coronagraph ASPIICS is represented by six remarkable successive planes along the optical z-axis:

• Plane O: the plane of the external occulter. The occulter is assumed a perfect thin disc located at
z0 = 144.348m upstream ASPIICS aperture, with a radius R = 710mm - like in Sect.3.1. As viewed
from the center of the pupil, the inner field-of-view starts at 1.057R�.



• Plane A: the plane of the entrance pupil. It is a circular aperture of radius Rp = 25mm. Here, we assume
that the telescope L1 of focal length f = 330.385mm coincides with this plane.

• Plane B: focal plane of the telescope L1. In the original design of the Lyot coronagraph 2, so without
external occulter, the image of the solar disc is focused in this plane, where the Lyot mask is set.

• Plane O’: plane where is formed the image of the external occulter made by the telescope. It is the con-
jugate plane of plane O, at a distance z1 = f2/(z0 − f) from plane A. In ASPIICS, the internal occulter
is set in this particular plane, instead of plane B. It is a perfect occulting disc of radius RIO = 1.642mm,
which gives to an over-occultation of 1.065R�. The second objective L2 of focal f2 also coincides with this
plane.

• Plane C: the conjugate image plane of plane A, with respect to plane O’. The Lyot stop (a stop aperture)
is located in this plane. Its radius is RL = 0.99Rp, which means 24.75mm with a 1:1 scale ratio between
plane A and plane C. The third objective L3 of focal f3 coincides with this plane - in the actual optical
design, L3 is composed of a field of lenses.

• Plane D: final focal plane, where the detector is set.

Figure 4, adapted from [13], schematizes the model and the different planes.
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Figure 4. Schematic representation of ASPIICS, made of the successive planes O, A, B, O’, C and D - adapted from [13].
The main parameters of the model are also reported. Figure not to scale.



The model relies on few assumptions. The entire instrument is assumed co-aligned with the Sun. No tilt nor
lateral misalignment are yet considered - this will be introduced in the next section. In other words, the centers
of the Sun, of the external occulter, of the entrance pupil, of the internal occulter and of the Lyot stop lie on the
optical axis. All the defined planes are parallel with each others.
A second assumption is that the optics are perfect. No optical aberrations, nor surface roughness scattering is
investigated at this stage. Forthcoming works from Rougeot et al. foresee the study of these effects.
The complete description and mathematical derivation of the method is given in the paper of Rougeot et al.
[13]. Given one particular point source, the propagation of the wave front along the optical z−axis is computed
sequentially, from one plane to the next one. It is described by a complex amplitude function in the trans-
verse x, y-plane. We denote by ΨK(x, y;α, β) this complex amplitude of the wave front in the particular plane
K = A,B,O′, C,D from the point source located at the angular coordinates α, β in the sky. We have:

ΨA (x, y;α, β) = exp

(
−2iπ

αx+ βy

z0

)
×Ψ0(x+ αz0, y + βz0), (4)

ΨB (x, y;α, β) = Fλf1 [ΨA(ξ, η;α, β)× P(ρ)] , (5)

ΨO′ (x, y;α, β) = Fλz1 [ΨA(ξ, η;α, β)× P(ρ)× ϕ−z0(ρ)] , (6)

ΨC (x, y;α, β) = Fλz2 [ΨO′(ξ, η;α, β)×M(ρ)]× ϕ+z0(r), (7)

ΨD (x, y;α, β) = Fλf3 [ΨC(ξ, η;α, β)× L(ρ)] , (8)

where P(ρ), M(ρ) and L(ρ) are respectively the radial functions representing the entrance pupil in plane A,

the internal occulter in plane O’ and the Lyot stop in plane C, where ρ =
√
ξ2 + η2 and r =

√
x2 + y2 are the

transverse radii, ϕz(r) = exp(iπr2/λz) a quadratic phase term, and Ψ0(x, y) = Ψ0(r =
√
x2 + y2) is given by

Eq.(1). Here, Fλz is the two-dimension Fourier transformation with spatial frequency u = x/λz and v = y/λz.
Note that in the equations above (4) to (8), unnecessary propagation factors have been omitted.
The propagation described above was performed for one single point source. However, we are actually interested
in the integrated intensity from the whole Sun. The solar disc is modeled by a collection of incoherent point
sources. The axis-symmetry of the system makes the 2D image of one point source |ΨK(x, y;α, β|2 rotate
identically with its position on the solar disc. Consequently, instead of integrating over the full 2D solar disc, i.e.
over α, β, we can integrate along one single solar radius, and then circularly integrate the obtained 2D image. If
we denote by IK(r) the radial integrated intensity in the particular plane K, we have thus

IK(r) =

∫ 2π

0

dθ

∫ R�

0

B(α)|ΨK(r, θ;α, 0)|2αdα, (9)

where β has been arbitrary fixed to 0, and (r, θ) are the polar coordinates on plane K, i.e. x = r cos θ and
y = r sin θ. Note the weight coefficient α to account for the polar surface element.

4.2 Numerical computation and analysis of the results

The computation of Eqs.(5) to (8) was performed using 2D-FFT routines in Matlab. On every plane, the wave
front is sampled on large arrays of size N × N . N was fixed to 213 which proved to be accurate enough. The
spatial sampling in plane A was carefully set according to a dedicated reasoning described in [13] (their Eq.(13)).
The sampling on the other following planes is derived from FFT properties. The computation and related re-
sults presented in this paper was performed for the following set of parameters: R� = 16arcmin, z0 = 144.348m,
R = 710mm, Rp = 25mm, f = 330.385mm, RIO = 1.642mm and RL = 0.99Rp = 24.75mm.
Figure 5 plots in red a radial cut of the diffraction intensity IO′(r) in the plane O’, in logarithmic scale. As
reference, the black curve shows the raw image of the solar disc. Here, the diffraction is well focused as a bright
10−2-level peak. In two dimension, it consists of a circular fringe, located at r = 1.629mm. This radius corre-
sponds exactly to the geometrical image of the edge of the external occulter made by the telescope. Qualitatively,
it confirms that diffraction phenomenon acts as if the external occulter emits light, as discussed in Sect.2. The
integrated flux which lies at r < RIO is blocked by the internal occulter, and does not propagate further.
As first conclusion, we demonstrated here the importance of the internal occulter for external coronagraphs, as



the it further rejects a major part of the diffracted light by cutting the bright diffraction fringe. Increasing its
size RIO improves well the rejection, but also degrades the inner field of view of the coronagraph. Finally, for
the effective rejection of the straylight, one should well co-align both external and and internal occulters. In the
case of Proba-3, the co-alignment of the of the two spacecraft flying in formation is thus critical for the scientific
performance of ASPIICS.
Figure 6 gives the radial intensity IC(r) in plane C, in function of the radius given in units of pupil image.
Similarly, the diffracted light focuses where the image of the edge of the entrance pupil is located. As shown,
the Lyot stop is effective when its radius RL is smaller than 1, in pupil image units. Although reducing the Lyot
stop provides a substantial gain in rejection, it also reduces the overall throughput and resolution of instrument.
Figure 7 plots the final residual diffraction intensity ID(r) in plane D, in logarithmic scale. The radial pattern
appears as a wide and defocused peak, as plane D is conjugated to infinity, i.e. the Sun, and not to plane O, since
it was the case for plane O’. In the studied configuration, the diffraction fringe is about 10−6, so comparable to
the coronal brightness close to the solar limb.
Further analysis were performed by Rougeot et al. [13] about the impact of sizing the internal occulter and the
Lyot stop on the residual diffracted sunlight on the final focal plane. The results showed that enlarging the inter-
nal occulter tends to decrease only the diffraction peak, while reducing the Lyot stop diminishes the straylight
level over the whole field of view. Finally, we recall that the above diffraction curves were computed for an ideal
geometry, and considering perfect optics. Therefore, the performance remains a theoretical upper boundary.
Scattering from surface roughness or any misalignments of the formation should degrade these straylight levels.
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Figure 5. Radial intensity IO′(r) in plane O’, normalized to mean solar brightness, in logarithmic scale. The radius r
is reported in unit of equivalent angular solar radius R�. Red: diffraction intensity, from the external occulter. Blue:
raw image of the Sun, i.e. without external occulter, as reference. Vertical line: radius of the internal occulter. Figure
adapted from [13].
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Figure 6. Radial intensity IC(r) in plane C, normalized to mean solar brightness, in logarithmic scale. The radius r is
reported in unit of pupil image. Vertical line: radius of the Lyot stop. Figure adapted from [13].

4.3 Effects of misalignment and tilts

In a recent study, Shestov and Zhukov [16] built upon this model to include misalignments and tilts of the
coronagraph. Only small angles were considered, of a tens of arcseconds, and lateral or longitudinal shifts of a
few millimeters, in adequacy to Proba-3 formation flying requirements. In particular, they explained that any
misaligned configuration can be reduced to the superposition of just two cases: a tilt of the telescope and a
de-centering of the Sun.
For the numerical implementation, the integration over the solar disc must be performed using two dimension
sampling, and the circular integration in Eq.(9) is no more applicable, since the axis-symmetry is now broken.
When considering a lateral misalignment of an element, the occulter or the pupil for instance, related numerical
mask is simply modeled with a spatial shift with respect to the optical axis. When considering a tilt by an angle
φ in a certain direction −→u in the x, y-plane, a phase term of the form exp (2iπ/λφ−→u ) is multiplied accordingly.
The simulation used the following parameters: f = 330.348mm, RIO = 1.662mm and RL = 24.25mm.
Figure 8 shows a cut of the intensity ID(x, y) of the residual diffracted sunlight in plane D for few misaligned or
tilted configurations. The black dashed curve is the reference curve, where the coronagraphic system is perfectly
co-aligned with the Sun. The blue curve accounts for an angular shift of 10arcsec of the Sun, with respect to
the optical axis. The yellow curve accounts for the same tilt of 10arcsec of the telescope, the pupil remaining
centered in the umbra cone. In both case, the straylight level increases, but not of the same amount. In fact, in
the first case of a shift of the Sun, the angular apparent radius of the external occulter, i.e. 1.057R�, remains
bigger than the angular solar radius R� incremented by 10arcsec. The external occultation is still effective. In
the second case, the tilt of the telescope laterally shifts the location of the annular diffraction fringe in plane
O’. Thus, the internal occulter is no more correctly positioned with respect to the diffraction pattern, so it does
not block the straylight as it should. In other words, there is a leakage of diffracted light. This impact is much
bigger. Finally, the red curve shows the diffraction intensity when the internal occulter is mispositioned along the
optical axis, by a quantity δz1 = 60µm. The impact on the straylight level remains small. Here, the diffraction
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Figure 7. Radial intensity ID(r) in plane D, normalized to mean solar brightness, in logarithmic scale. The radius r is
reported in unit of equivalent angular solar radius R�. Red: diffraction intensity, from the external occulter. Black: raw
image of the Sun, i.e. without any occulters, as reference. Figure adapted from [13].

fringe is no more focused in the plane of the internal occulter, and is thus more spread over this plane. The mask
cut less flux, and the rejection performance is degraded.
We refer to the paper [16] for more study cases and further results.

5. CONCLUSION

In this paper, we presented and gave an overview of the different approaches to asses the straylight produced
by the diffraction of the sunlight, in the frame of the externally occulted Lyot solar coronagraph ASPIICS. The
thin external occulting disc produces an umbra with an intensity of 10−3.9 in the plane of the entrance apertrue
[13,15,19]. A forthcoming publication, based on the implementation of [21] will present that the optimize toroidal
shape reduces the straylight in the umbra of about 68%. The internal occulter and the Lyot stop rejects diffrac-
tion up to a level of 10−6 at 1.1R� in the plane of the detector [13], so the same order of magnitude as the
corona. The sensitivity of tilts and misalignments has been studied in [16].
As of now, there is no one particular method that enables, to itself only, analyzing the complete end-to-end
straylight performance, considering the specificities of ASPIICS - large size, toroidal occulter, sensitivity and
difficulty of experimental studies on diffraction. Then, applying, confronting and combining all the present
methods remain necessary to address all the aspects of this problem.
At this stage of the project, the results of this overall straylight analysis is of crucial importance. First, as we
showed, it supports the instrument design by driving the needed size of the internal occulter and the Lyot stop.
Second, it enters in the definition of the scientific performance budget of ASPIICS. Finally, these models will
support the post-processing of the science data.
Regarding the future activities, a scaled model to measure the diffraction pattern on the pupil plane has been
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Figure 8. Radial cut of the intensity ID(x, y) in plane D, in logarithmic scale. The radius r is reported in unit of
equivalent angular solar radius R�. Dashed black: co-aligned system. Blue: angular shift of the Sun of 10 arcesc. Yellow:
tilt of the telescope of 10arcsec. Red: longitudinal shift of the internal occulter (plane O’) by a quantity δz1 = 60µm.

designed and will be soon implemented as described in [20]. Moreover, a work combining experimental measure-
ments and VirtualLab simulation on the toroidal occulter will be presented in a forthcoming paper. In parallel,
the wave propagation model is currently improved in order to take into account optical aberration effects and
scattering from surface roughness on the diffraction.
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