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ABSTRACT

Context. The solar coronagraph ASPIICS will fly on the future ESA formation flying mission Proba-3. The instrument combines an
external occulter of diameter 1.42m and a Lyot solar coronagraph of 5cm diameter, located downstream at a distance of 144m.
Aims. The theoretical performance of the externally occulted Lyot coronagraph has been computed by assuming perfect optics. In
this paper, we improve related modelling by introducing roughness scattering effects from the telescope. We have computed the
diffraction at the detector, that we compare to the ideal case without perturbation to estimate the performance degradation. We have
also investigated the influence of sizing the internal occulter and the Lyot stop, and we performed a sensitivity analysis on the
roughness.
Methods. We have built on a recently published numerical model of diffraction propagation. The micro-structures of the telescope are
built by filtering a white noise with a power spectral density following an isotropic ABC function, suggested by Harvey scatter theory.
The parameters were tuned to fit experimental data measured on ASPIICS lenses. The computed wave front error was included in the
Fresnel wave propagation of the coronagraph. A circular integration over the solar disk was performed to reconstruct the complete
diffraction intensity.
Results. The level of micro-roughness is 1.92nm root-mean-square. Compared to the ideal case, in the plane of the internal occulter,
the diffraction peak intensity is reduced by ' 0.001%. However, the intensity outside the peak increases by 12% on average, up to
20% at 3R�, where the mask does not filter out the diffraction. At detector level, the diffraction peak remains ' 10−6 at 1.1R�, similar
to the ideal case, but the diffraction tail at large solar radius is much higher, up to one order of magnitude. Sizing the internal occulter
and the Lyot stop does not improve the rejection, as opposed to the ideal case.
Conclusions. Besides these results, this paper provides a methodology to implement roughness scattering in the wave propagation
model for the solar coronagraph.
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1. Introduction

The study of the corona of the Sun in white light requires high-
contrast, as the coronal brightness in this spectral band ranges
from 10−6 to 10−10 with respect to the mean solar brightness
(Cox 2000). Perfect eclipse conditions are thus needed to pre-
vent the sunlight from blinding the observation. Moreover, high
angular resolution is also a key aspect - in the order of the arcsec-
ond, when aiming to capture fine coronal structures or Coronal
Mass Ejections (Zhukov et al. 2000; Peter et al. 1965).

The first actual observation of the corona of the Sun in the
absence of a natural eclipse was performed by the French as-
tronomer Bernard Lyot (Lyot 1939). The basic principle of his
novel concept consisted in focusing the solar image on a mask
set in the focal plane of the telescope, while letting the coro-
nal light propagate further. From this, solar coronagraphy was
further developed with the external occultation technique intro-
duced by Evans (1948), and the use of serrated or multiple disks
(Purcell & Koomen 1962; Newkirk & Bohlin 1965). Koutchmy
(1988) gives a review of the early advent of spaceborne solar
coronagraphy and associated development.

The future ESA Formation Flying mission Proba-3 will fly
the advanced solar coronagraph ASPIICS (Association de Satel-
lites Pour l’Imagerie et l’Interférométrie de la Couronne Solaire)
(Lamy et al. 2010; Renotte et al. 2015; Galano et al. 2018).
The novelty of this instrument is that it is split over the two
spacecrafts. The occulter separation and diameter reach unprece-
dented dimensions for a space coronagraph, reducing the size of
the vignetted zone, close to the solar limb. The Occulter Space-
craft will carry a large external occulting disk of diameter 1.42m,
while the telescope, with an aperture of 5cm diameter, is located
downstream at a distance of 144m, in the Coronagraph Space-
craft. The complete optical system is a hybrid Lyot-style solar
coronagraph, described in Galy et al. (2015).

Performance in coronagraphy is mostly driven by straylight,
in particular the residual diffracted light of the bright source.
Dedicated analysis is required to predict the level of contrast that
can be achieved by the instrument, which also governs its design.
The estimation of diffraction produced by the edge of an (exter-
nal) occulter remains a delicate problem. One first approach re-
lies on experimental measurements, as in the work of Bout et al.
(2000) for the LASCO C2 coronagraph (Brueckner et al. 1995),
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or measurements on the real sky with a small-scale model as
done by Venêt et al. (2010) for the ASPIICS coronagraph. How-
ever, the very large size of the latter instrument prevents us from
performing any full-scale experimental characterization. Landini
et al. (2010) propose a scaled setup to measure the diffraction
produced by the edge of occulters of various shapes. This sec-
ond approach consists of numerical computations based on the
Fresnel diffraction theory (Born & Wolf 2006). In stellar coron-
agraphy, this subject has been very prolific and resulted in opti-
mized shapes of external occulters (Cash 2006; Vanderbei et al.
2007; Cady 2012). The case of solar coronagraphy brings the
additional difficulty that the Sun is an extended light source. The
work of Lenskii (1981) can be held as an example, and more re-
cently Verroi et al. (2008); Aime (2013); Rougeot et al. (2018a)
studied the solar case with ASPIICS dimensions.

As described above, several studies investigated the com-
putation of the diffraction by an external occulter on the one
hand. On the other hand, the light propagation of the wave fronts
through the entire coronagraphic system is a complementary
problem that must be solved in order to estimate the intensity of
the residual diffracted sunlight at the detector. Aime et al. (2002)
study this problem for the classic Lyot coronagraph. Rougeot et
al. (2017) propose a model for the case of the hybrid Lyot-style
solar coronagraph. These computations all rely on the strong as-
sumptions that the optics are ideal, and the system is perfectly
centered and co-aligned. Therefore, the demonstrated straylight
rejection remains theoretical and should be considered as a best
case scenario. The degradation of performance when deviating
from such an ideal case must be addressed. As an example,
Shestov & Zhukov (2018) treated the problem of misalignments
and tilts between the coronagraph and the external occulter for
ASPIICS, and how they influences the intensity and the spa-
tial distribution of the diffraction on the detector. Rougeot et al.
(2018b) report an overview of the different diffraction models
and computations made for ASPIICS.

In this paper, we present the study of a specific type of per-
turbation, that is the scattering of light induced by surface rough-
ness. We built upon the model of Rougeot et al. (2017), which
we improved by implementing the wave-front error induced by
surface micro-structures, following the theory of Harvey et al.
(2007). Our analysis focuses on the telescope, that is, the first
optical element, as it is known to be the most stringent for stray-
light in coronagraphy (Brueckner et al. 1995). To better rep-
resent the ASPIICS system, the modeled micro-structures were
derived by fitting the actual model used in the optical design of
ASPIICS coronagraph. Furthermore, our paper aims to provide a
practical method with which to implement the wave perturbation
in the light propagation model.

The paper is organized as follows. Section 1 contains this in-
troduction. In Sect. 2 we introduce the model of diffraction and
light propagation. Section 3 presents the numerical implementa-
tion of the roughness scattering in the diffraction model. Results
are discussed in Sect. 4. Conclusions are given in Sect. 5.

2. Presentation of the propagation model

In this section we summarize the propagation model for the ex-
ternally occulted Lyot-style solar coronagraphe. All notations
are as in Rougeot et al. (2017), and we refer the reader to this
paper for further details.

2.1. Description of the coronagraph

The coronagraph is made of six successive key planes denoted
as O, A, B, O’, C, and D. Figure 2.1 illustrates the system - not to
scale. The external occulter is modeled as a perfect sharp-edged
disk of radius R = 710mm located in plane O. We note that the
real occulter for ASPIICS will have a toroidal shape. Plane A
is positioned at a distance z0 = 144.348m downstream, where
the entrance aperture of radius Rp = 25mm is set. The sun,
at infinity, has an angular radius of R� = 0.0046542rad, being
≈ 16.2arcmin. Therefore, the geometric radius of the external
occulter, as viewed from the centre of the pupil, is 1.0568 times
the size of the sun. We have assumed that the primary objective
L1 of focal length f1 = 330.348mm coincides with the pupil.
Plane B is the focal plane, where the image of the sun is focused
in the absence of external occulter. In the classical Lyot corona-
graph, the Lyot mask is set there (Aime et al. 2002). Plane O’
denotes the image plane of plane O made by the primary objec-
tive. It is located at a distance

z1 =
z0 × f1
z0 − f1

(1)

from plane A. Equation (1) is simply derived from the thin lens
formula. We have z1 = 331.106mm, so plane O’ is further than
plane B. The internal occulter is set in the plane O’, because
this is where the diffracted light from the edge of the external
occulter is focused (Rougeot et al. 2017). The second objective
L2 of focal f2 is also located at plane O’. Plane C consists of the
image of plane A made by L2, located at z2 from plane O’. The
Lyot stop and the final relay lenses L3 of effective focal length f3
are in this plane. Finally, plane D is the final focal plane where
the detector is located.

The internal occulter is modeled as a simple disk of radius
Rio. Because plane O’ is the conjugate of plane O, related unit
system is preferably in terms of unit of external occulter image.
However, it is more convenient and understandable to speak in
terms of angular or metric units. A simple proportionality rule
gives the relation between the different units - from R, z0 and z1.
In our study, Rio = 1.662mm, which corresponds to 1.079R� or
to 1.021 times the image of the radius of the external occulter.
Additionally, there is a circular hole inside the internal occulter,
in order to image LEDs positioned on the external occulter - this
optical metrology is described in Loreggia (2015). Its radius
is fixed to 0.489mm, about 30% of Rio. The size of the Lyot
stop Rls is expressed in units of pupil. In our study, we fixed
Rls = 0.97Rp, which gives Rls = 24.25cm.

2.2. Analytical framework

We set a Cartesian reference frame (x, y, z), where the z-axis
defines the optical axis. We also defined the transverse radius
r =

√
x2 + y2 and polar angle θ, i.e., x = r cos θ and y = r sin θ.

In the following, both notations will be used. A point source is
located in the sky by two angular coordinates (α, β), which refer
to the azimuth and elevation respectively. The sun is modeled as
a disk made of a collection of point sources, and its center lies on
the z-axis. We used the same center-to-limb variations function
B� as in Rougeot et al. (2017) to model the brightness of the
solar disk, which was derived from Hamme (1993).

Our study focuses on monochromatic light at the wavelength
λ = 550nm, to be representative of the spectral band-pass of
ASPIICS [540nm, 570nm]. We expect no significant difference
in the spatial distribution of observed diffraction intensities over
the spectral width ∆λ = 30nm. The reason is the following. Aime

Article number, page 2 of 14



R.Rougeot et al: Influence of surface roughness on diffraction in the externally occulted Lyot solar coronagraph

A CO’B DO

L1 L2

Lyot stop Focal planePupil

L3

External occulter

Focal plane

Internal Occulter

z0

f1

z1

Rp
R

RIO
RLS

z2

f2 f3

Fig. 1. Schematic representation of the hybrid externally occulted Lyot solar coronagraph, adapted from Rougeot et al. (2017) - Figure not to
scale. The six key planes O, A, B, O’, C, and D, and key geometrical parameters are reported.The dotted lines illustrate geometrical optical paths.
The variables are as follows: R radius of the external occulter; z0, z1 and z2 the distances from plane O to A, plane A to O’ and plane O’ to C
respectively; Rp radius of the entrance pupil; f1, f2, and f3 the focal lengths of the objectives L1, L2, and L3 respectively; Rio radius of the internal
occulter; Rls radius of the Lyot stop. See text for the detailed description.

(2013) studied the diffraction pattern behind the external occul-
ter from the on-axis point source, known as the Arago spot. The
author showed that the central bright spot has a width of the order
of ' 150λ. For λ = 550nm, the width is 82.5µm, and a variation
of 4.5µm across ASPIICS spectral range. In the case of solar
observations, the point source diffraction pattern is convolved
with the stenope image of the Sun (see Eq.(8) later), which has
a radius of 671mm in the geometry of ASPIICS (Rougeot et
al. 2018a). Therefore, the small variation of the spatial distri-
bution of the diffraction with the wavelength becomes negligible
when performing such integration, and a monochromatic study
remains sufficient. We note that the influence of the wavelength
is different for the stellar case.

In the geometry of ASPIICS, the Fresnel number N f =

R2/λz0 is about 6400, so the diffraction by a thin sharp-edged
disk is correctly described by the Fresnel regime. This problem
for long baseline solar coronagraph has been treated by Aime
(2013). Light propagation is based on Fresnel free-space prop-
agation along the z-axis (Born & Wolf 2006). In a given trans-
verse plane K , the scalar wave front is represented by its com-
plex amplitude ΨK (x, y). For a point source awith coordinates
(α, β) in the sky, the complex amplitude of the diffracted wave
front in plane A – at a distance z0 – is given by

ΨA,α,β (x, y) = Qα,β × Tα,β(x, y) × ΨA,0,0 (x + αz0, y + βz0), (2)

where

Tα,β(x, y) = exp
(
−2iπ

αx + βy
λ

)
(Tilt)

Qα,β = exp
(
−iπ

(α2 + β2)z0

λ

)
(Offset)

ΨA,0,0 (x, y) = 1−
1

iλz0

∫ ∫
η2+ξ2≤R2

exp
(
iπ

(x − ξ)2+(y − η)2

λz0

)
dξdη, (3)

ΨA,0,0 is the complex amplitude of the diffracted wave front
from the on-axis point source. It is computed here as a radial

Hankel transformation, but alternative methods can be imple-
mented, such as the Lommel series (Aime 2013), or the Maggi-
Rubinowicz representation (Rougeot et al. 2018a). The intensity
|ΨA,0,0|

2 produces the famous Arago bright spot.
The light propagation inside the coronagraph is based on

paraxial Fourier optics (Goodman 2005) from one plane to the
next one. We refer to the radial transmission functions of the en-
trance pupil in plane A, the internal occulter in plane O’, and
the Lyot stop in plane C as P(r), M(r), and L(r), respectively.
The wave fronts ΨB,α,β, ΨO′,α,β, ΨC,α,β and ΨD,α,β, in the planes
B, O’, C, and D respectively, are computed following the model
of Rougeot et al. (2017)

ΨB,α,β (x, y) =
1

iλ f1
× Fλ f1

[
ΨA,α,β × P

]
(4)

ΨO′,α,β (x, y) =
1

iλz1
× Fλz1

[
ΨA,α,β × P × ϕ−z0

]
(5)

ΨC,α,β (x, y) =
1

iλz2
× Fλz2

[
ΨO′,α,β ×M

]
× ϕ+z0 (r) (6)

ΨD,α,β (x, y) =
1

iλ f3
× Fλ f3

[
ΨC,α,β × L

]
(7)

where ϕz(r) = exp(iπr2/λz), and r =
√

x2 + y2 is the transverse
radius, and z2 is the distance from plane O’ to plane C. We note
that in the model, the actual values of f2 and z2 are not relevant,
because plane C is the image of plane A, and f3 is chosen equal
to f1 for simplicity . Fλz denotes the 2D Fourier transformation
with spatial frequencies u = x/λz and v = y/λz. In Eqs.(4) to (7),
we simplified the quadratic phase factors that should remain in
front of the Fourier transformations, by assuming that the optical
layout is such that they cancel from one plane to to the next one
(Aime et al. 2002). We note that, in Eq.(5), the quadratic phase
factor ϕ−z0 results from the propagation from plane A to O’, in-
stead of plane B. The factor ϕ+z0 in Eq.(6) cancels this factor, in
order to retrieve the exact image of plane A in plane C. Again,
we refer the reader to Rougeot et al. (2017) for the detailed rea-
soning and derivation.

To compute the integrated intensities over the solar disk, for
convenience we changed to polar coordinates (ρ, φ) in place of
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(α, β), i.e., α = ρ cos φ and β = ρ sin φ. The intensity IK in the
plane K results from the integration over all the point source
responses, weighted by the limb darkening B�(ρ) written as a
radial function.

IK (x, y) = GK ×

∫ R�

0

∫ 2π

0
B�(ρ) × |ΨK ,ρ,φ(x, y)|2ρdρdφ (8)

where G is a normalization constant - discussed below, and
K=A, B, O’, C, or D. To compute Eq.(8), 1000 points along
a solar radius are used in the simulation, which defined dρ, and
a circular integration method is used, as described in Rougeot et
al. (2017).

The numerical computation of the wave fronts in the succes-
sive planes is performed using standard two dimensional FFT
routines in Matlab. Large arrays of size N × N are used, to per-
form zero padding. To derive the spatial sampling sA in plane A,
we followed the approach of (Rougeot et al. 2017, Sect. 4.1 and
Eq.(13)). The reasoning is to set the same number of points in
the pupil radius Rp in plane A and in the image of the external
occulter in plane O’.

Particular care must be taken regarding the normalization for
the computed intensities. In Rougeot et al. (2017), a systematic
normalization was performed with respect to the raw image of
the solar disk, computed for every planeK . This method had the
strong disadvantage of requiring additional computations with-
out the coronagraphic masks. For this study, we improved the
implementation such that the flux which propagates is conserved
from one plane to the next one. First, we imposed that the inte-
grated intensity over the pupil for a single point source is equal
to 1. Second, since the elementary solar sources have a certain
angular extent, given by ρdρdφ (or similarly dαdβ), the étendue
must also be conserved. The intensity after propagation through
the plane A must be scaled by the solid angle element (λ/Nsa)2.
Finally, from plane C to plane D, the Lyot stop actually reduces
the throughput by R2

ls. We thus derived

GK =
1
πR2

p
× (λ/Nsa)−2 for K = B, O’, C (9)

GD =
1
πR2

p
× (λ/Nsa)−2 ×

1
R2

ls

. (10)

The results of the computation reported in this paper have
been made using a machine two 14 core Intel Xeon processors
and 512 GB of RAM. We used N = 213 = 8192, which gives
sA = 18.5µm. The diameter of pupil P(r) in plane A is thus 33%
of the total spatial field of 15.6cm. Table 1 recaps the parameters
of the study.

We validated our improved model by reproducing the
results of Rougeot et al. (2017). As a reference for the study,
Figure 2 plots the radial integrated intensity ID(r) in plane D, in
logarithmic scale, computed for the ideal case, that is, without
any perturbation. The red curve shows the residual diffracted
sunlight, with a 10−6 diffraction fringe located at r ' 1.1R�,
which corresponds to the size of the internal occulter. Diffracted
light decreases rapidly with r but remains at a level higher than
10−11. As a comparison, the K-corona ranges from 10−6 to 10−9

in [1R�; 3R�]. The black curve shows the raw image of the Sun,
correctly normalized to one at its center, which validates our
coefficient G.

Table 1. Main parameters of the numerical study - based on ASPIICS.
† See Sect. 2 for explanations.

Parameter Value
Wavelength λ = 550nm
Angular radius of the Sun R� = 0.0046542rad

= 960arcsec
Radius of the external occulter R = 710mm
Distance plane O - plane A z0 = 144.348m
Radius of the pupil Rp = 25mm
Focal length of the telescope f1 = 330.348mm
Radius of the internal occulter Rio = 1.662mm

= 1.079R�
Hole radius of the internal occulter 0.489mm
Radius of the Lyot stop Rls = 0.97Rp

= 24.25cm
Size of the array for FFT N = 213 = 8192
Sampling in plane A sA = 18.5µm
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Fig. 2. Radial integrated intensity ID(r) in plane D, in logarithmic scale,
in the ideal case without any perturbation, with the parameters of the
study. The radius r is given in units of R�. The blackline shows the raw
image of the solar disk - without occulting masks. The red line shows
residual diffracted sunlight. From Rougeot et al. (2017).

3. Model of scattering from surface roughness

Surface roughness of polished lenses undeniably induce scatter-
ing, which is a diffraction process caused by the micro-structures
of the surface. The light is then scattered away from the specu-
lar direction. In optics engineering, the scattered light behavior
is usually described by the Bi-dimensional transmission distri-
bution function (BTDF). We note that we work here in transmis-
sion as we consider lenses, as opposed to the case using mirrors.
The BTDF is commonly defined in a radiometric approach, as
the ratio of the radiance (power per unit of solid angle per unit of
area) of the transmitted scattered light, to the irradiance (power
per unit of area) of the incoming light. It is a function of the
scatter direction, counted from the specular direction, and it is
expressed in sr−1. Additionally, the incoming irradiance can also
be function of the incidence angle. We refer the reader to Mc
Cluney (1994) for an extensive description of such function.
Nevertheless, this strict radiometric formalism is not adapted to
our wave propagation models. This section presents the model
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we developed to account for these effects.
For our study, we investigated only the scattering from the

primary objective, that is, plane A because it is known as the
most critical for coronagraphy, as shown from past instruments
(Lyot 1939; Brueckner et al. 1995). The reason is that this op-
tical surface receives the most diffracted sunlight, after the ex-
ternal occulter. A similar analysis considering the other lenses –
planes O’ and C – can easily be performed, following the exact
same methodology.

3.1. Theoretical considerations

Our approach is based on Harvey surface scatter theory, pre-
sented in Harvey et al. (2007) and Harvey et al. (2009) for
instance. In this section, we explain the methodology we devel-
oped, and the related numerical implementation using a discrete
representation.

The surface roughness is modeled by a two dimension dis-
tribution function h(x, y) which gives the algebraic height of any
point (x, y) with respect to the reference surface. The wave front
perturbationWr associated with the surface roughness is written
as

Wr(x, y) = exp
(

2iπ
λ

(n − 1) × h(x, y)
)

(11)

where n is the refractive index of the lens, fixed to n = 1.5 here.
In most applications, the roughness structure is assumed

isotropic and normally distributed, but is spatially correlated in
a way depending on the manufacturing and polishing processes.
The roughness h(x, y) is thus computed as the convolution prod-
uct of an uncorrelated white noise huc(x, y) by a spatial filter
g(x, y). Alternatively, h(x, y) can be computed by filtering in the
frequency domain with the filter G = F

[
g
]
:

h(x, y) = huc(x, y) ~ g(x, y)

= F −1
[
F [huc] ( fx, fy) ×G( fx, fy)

]
(x, y) (12)

where ( fx, fy) are the spatial frequencies. In practice, the spa-
tial spectrum of the roughness is band-limited (Harvey et al.
2012). For scattering, the range is [1/D; 1/λ], where D is the
characteristic dimension of the surface - the pupil diameter for
instance. Lower frequencies are related to conventional optical
aberrations, while frequencies above 1/λ are irrelevant.

In order to simulate numerically a surface height that is con-
sistent with a prescribed target roughness, we need to deter-
mine the correct filter impulse response g(x, y), or equivalently
its transfer function G( fx, fy). In addition, special care must be
taken because our model is based on a discrete representation.
Considering a random surface structure h(x, y) sampled on a reg-
ular grid of N × N points with sampling s, its power spectral
density (PSD) Ph is defined as

Ph( fx, fy) =
1

N2 × 〈
∣∣∣F [h] ( fx, fy)

∣∣∣2 〉 (13)

where 〈·〉 denotes the expected value. The PSD of the filtered dis-
crete process h is related to that of the white noise input process
huc by

Ph( fx, fy) = Phuc ( fx, fy) ×
∣∣∣G( fx, fy)

∣∣∣2 (14)

where Phuc ( fx, fy) = 1 is the PSD of a sampled white noise -
we note that Eq.(13) also applies to huc. As already stated, the
roughness is assumed isotropic. The PSD is thus even and radial

in the Fourier space, so G is, by construction. The filter g is thus
necessarily real.

Our goal is to find G in (14) so that the PSD of the sampled
surface h matches the PSD provided by a specific model denoted
by Pmod( fx, fy). We note that Eq.(14) only constrains |G|2, which
means that solution for G is up to a complex phase factor. We are
however not interested in describing the whole set of solutions,
because we only need to find one filter which guarantees that the
resulting PSD correspond to the targeted one, i.e., Pmod.

In the literature, Pmod( fx, fy) is often provided in the form of
the PSD of a continuous random process, instead of a sampled
one. Because the PSD of a sampled process is equal to the PSD
of the continuous process multiplied by the total bandwidth, i.e.,
(1/s)2 in our case, we write

Ph( fx, fy) =
1
s2Pmod( fx, fy) (15)

and thus we obtain from (14)

G( fx, fy) =

√
Pmod( fx, fy)

s
. (16)

We note that in this discrete representation, the sampling step in
the Fourier space is given by s f = 1/(Ns), and the highest fre-
quency in fx and fy is fl = ±1/2s.

The root-mean-square (RMS) roughness σr, which is char-
acteristic of the finishing of the surface, is defined by

σ2
r =

1
S
×

∫ ∫
S

h2(x, y)dxdy (17)

where S is the considered area - the entrance aperture for in-
stance. Numerically, this value can be obtained by replacing the
integral by a discrete sum over the grid, by replacing dxdy by s2

and 1
S by 1/(N2s2), leading to the sample variance of h. We note

that Eq.(17) provides a value of the roughness corresponding to
one particular realization of h. The related theoretical value, of
which Eq.(15) is an estimate, can be obtained from the Parseval-
Plancherel theorem

σ2
r =

∫∫
Pmod( fx, fy)d fxd fy (18)

where the integration is over the considered frequency band.
This theoretical variance can be evaluated by replacing the in-
tegral by a discrete sum over all frequencies of the discrete grid,
and by replacing d fxd fy by 1/(N2s2).

We now consider an incoming planar wave with normal in-
cidence onto the plane with a roughness h. The BTDF is the
diffraction at infinity of this wave front by the rough surface. In
other words, it consists of the angular spectrum of the perturba-
tion Wr(x, y) (Goodman 2005), whose frequencies are given
by sin γx/λ and sin γy/λ, where γx, γy denote the two scatter
angles from the direction of propagation z, in the x- and y- di-
rections, respectively. Using the small angle approximation, we
have sin γx ≈ γx and sin γy ≈ γy. Moreover, since we assumed
the roughness is isotropic, the BTDF is statistically axisymmet-
ric in expectation, and we can reduce the problem to a single

scatter angle γr =
√
γ2

x + γ2
y . The BTDF is thus written as

BT DF(γr) = 〈
1
λ2 |Fλ [Wr]|2〉. (19)

In fact, h is very small in astronomical application (Harvey et al.
2007) - a fraction of λ, and the complex exponential in Eq.(19)
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can be expanded. Injecting this expansion in Eq.(17), and leaving
apart the specular component term, we obtain

BT DF(γr) = 〈
1
λ2

∣∣∣∣∣2iπ
λ

(n − 1) × Fλ [h]
∣∣∣∣∣2〉

=
4π2(n − 1)2

λ4 × Pmod

(
γr

λ

)
(20)

Our Eq.(20) is consistent with Eq.(1) of Harvey et al. (2007) -
working in reflection instead of transmission replaces the factor
(n − 1) with 2.

3.2. Definition of the PSD model Pmod

Based on studies of the nature of the micro-structure, Harvey et
al. (2009) proposed a model for the PSD using an isotropic ABC
function (or K-correlation) of the form

Pmod( fr) = K ×
AB(

1 + (B fr)2) C+1
2

(21)

with K =
1

2
√
π

Γ
(

C+1
2

)
Γ
(

C
2

) and fr =

√
f 2
x + f 2

y

where Γ(·) is the usual Gamma function, and A, B and C the
three parameters of the model. A drives the amplitude of the
PSD curve, or the "plateau", B defines the "knee" and C the
slope. Such a PSD defines a low-pass filter G.

We chose the following formulation for our study. In order
to estimate A, B, and C for ASPIICS, our approach consisted in
fitting the BTDF curve computed using Eq.(20) to a given curve
of the primary objective L1, which was based on experimental
measurements performed on a demonstration model of the
lens. The derived parameters are A = 3.75 × 10−1nm2.mm,
B = 179µm and C = 0.82. These values are of the same orders
of magnitude as the ones described in Harvey et al. (2012). The
RMS roughness is σr = 1.92nm from Eq.(16), about λ/286.
This value is well in line with our expectations, in other words,
a few nanometers.

3.3. Numerical implementation

The numerical implementation was done as follows. From a
given PSD model Pmod, we computed the filter G from Eq.(16).
We also computed a single realization of white noise huc with
a variance 1 on the sampling grid N × N. The micro-structures
h(x, y) were then computed following Eq.(12), using standard
two dimensional FFT routines in Matlab, and taking care of
the normalization factor 1/N due to the discrete representation.
The negligible imaginary residuals were eliminated. Finally, the
wave front error in plane A is given by Eq.(11). For the sake
of reproducible research, we provide the numerical code (Mat-
lab/Octave) online, with the seed used for the simulation - url at
the end of the paper.

The band-limitation [1/D; 1/λ] mentioned above must be
discussed. To comply with the upper limit, we should theoreti-
cally consider a sampling in plane A sA = 2λ = 1.1µm, which is
numerically very costly. For instance, this would require 45455
points only to pad the entrance aperture - without accounting
for zero-padding. With our sampling of 18.5µm chosen for the
study, we get fl = ±2.70 × 104m−1, which gives a maximum

scattered angle of γr = 1.71 degrees. The total field-of-view of
ASPIICS is 1.6 degrees, i.e., 6R�. Therefore, we considered the
inherent band-limitation of our model acceptable, since involved
scatter angles are sufficient. Regarding the lower boundary, the
first non-null frequency is s f = 6.6 × 10−1m−1, which is thus
lower than 1/D.

Finally, we remind the reader that the sampling sA, and so
the frequency domain, is function of the size of the arrays N,
as given in Rougeot et al. (2017). This is an inherent feature
of our model, which is of importance to understand and repro-
duce the results reported in this paper. The domain the PSD is
defined on is ±1/(2sA), and thus depends on N. Since σ2

r is the
integral of the PSD in the frequency domain, changing the value
of N causes a change of the computed value of σr. This can
yet be avoided by fixing the value of sA independently, in other
words, not using the mentioned approach so that the domain of
the PSD no longer depends on the size of the array N used in the
simulation. We note that the value N = 213 was determined in
Rougeot et al. (2017) as a compromise between computational
time and precision, governed by aliasing. Here, we chose to keep
this value, even if the aliasing is expected to have a bigger im-
pact because of the scattering. If one seeks for a much accurate
computation, a larger value of N is preferable. We compared our
results with a computation using N = 215, and the relative dif-
ference is less than 10% in the useful field-of-view of ASPIICS.
Moreover, our curves are smooth, while this would not be the
case with N = 212.

In Fig. 3, we plot the PSD model Pmod, and we superim-
posed a radial cut of the single random realization of the PSD
Ph( fx, fy), computed by Eq.(14), and a statistical average of
100 other random realizations using different seeds, to simulate
Eq.(13). As observed, the curves coincide well, and the expecta-
tion correctly converges to the theoretical model.

In Fig.4, we show the micro-structures h(x, y) over an area
of 4mm by 4mm. The spatial correlation is clearly visible, with
a characteristic length ' 150µm, which is consistent with the
value of B.

Finally, we illustrate in Fig.5 the speckles induced by the
wave front error. Here, we enhanced the observed effect by tak-
ing 100 × A instead of A, for sake of qualitative illustration. The
related RMS roughness is σr = 21nm, which is very high with
respect to the typical value used in the application described in
this paper. Figure 5 plots a radial cut of the PSF of the on-axis
point source in the focal plane of the telescope, that is, plane B.
We superimposed the ideal PSF, for direct comparison. We show
the corresponding two dimension images in Fig. A.1.

4. Effects of scattering

4.1. Analysis of the intensity

To provide a complete understanding of the effects of scattering,
we analyzed the intensities in the successive planes O’, C, and
D of the coronagraph, and compared them to the reference case
without scattering.
In Fig.6 panel (a), we plot in red the radial intensity IO′ (r) in
plane O’ in logarithmic scale. The diffraction appears as a nar-
row fringe located at the position of the image of the external
occulter edge, i.e., 1.057R�, as explained in Fig.7 of Rougeot et
al. (2017). The reference curve of the ideal case without scat-
tering is also given in black, for direct comparison. As first,
no noticeable difference is observed between the two curves.
Panel (b) gives the relative difference, in logarithmic scale. The
color of the dots indicate the sign of the relative difference -
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Fig. 3. Power spectral density of the simulated micro-roughness struc-
ture, as a function of spatial frequency fr. The frequency domain is re-
stricted to fl = 1/2sA = 2.70 × 104m−1 - for N = 213 and sA = 18.5µm.
The red line shows the model curve (1/sA)2×Pmod, with our selected A,
B, and C parameters. Light gray: radial cut of one random realization
Ph. The dark gray line shows the average of 100 random realizations.
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Fig. 4. Height h(x, y) of the micro-structures in plane A, in nanometers.
The area is 4mm by 4mm. The spatial sampling is sA = 18.5µm

see the caption of Fig. 6. When introducing the wave front error
Wr in plane A, the intensity IO′ (r) around the diffraction peak
1.057 ± 0.005R� is reduced by ' 0.01%, compared to the ideal
case. Even if this loss is very small in percentage, the high dy-
namic range of the diffraction intensity makes the impact more
noticeable in the rest of the field-of-view - the peak intensity is
higher by several orders of magnitude. Accordingly, the inten-
sity outside the peak increases from 1% at 1.2R� to almost 20%
at 3R�, with an average of 12%. We checked that the total inte-
grated intensity over the complete plane O’ is identical in both
cases without and with scattering.

The effect of the perturbations from surface roughness in
plane A is to spread the diffraction intensity IO′ over the plane
O’. The diffraction peak becomes slightly less bright. The direct
consequence is that the internal occulter cuts out less diffraction.
To quantify that, we looked the integrated flux that is not blocked

Fig. 5. Radial cut of the PSF |ΨB,0,0(r)|2 in plane B, in logarithmic scale.
The radius r is given in units of R�. In red we show the PSF with speck-
les, due to scattering in plane A (σr = 21nm). In black we show the
ideal PSF.

by the occulter

ΦO′ =

∫ 2π

0

∫ 3R�

0
IO′ (r) ×M(r)rdrdθ. (22)

The interesting value is in fact the ratio of ΦO′ between the case
with scattering and without. This ratio is 1.0071, which means
that 0.71% more diffraction flux will leak past the occulter.

Figure 7 presents the same results for plane C. There, the
diffraction is a peak located at the geometrical image of the
pupil radius (Rougeot et al. 2017). As shown in panel (a), the
intensity IC(r) has increased in the central region of the field
r < Rp, with respect to the ideal case. The relative difference
given in panel (b) shows that it is almost the double - a relative
difference of almost 100%. Because the Lyot stop does not filter
out this central region, a much bigger flux of diffracted light
will thus reach plane D. At last, we verified that the observed
difference of the total integrated intensity over the whole plane
C correctly matches to the observation made from plane O’.

Finally, in Fig. 8 we plots the radial intensity ID(r) in plane
D, in logarithmic scale, with the relative difference as well.
Whereas the peak around 1.05R� is not impacted much, the
diffraction at 3R� has increased by more than one order of
magnitude with respect to the ideal case. The degradation of the
performance is therefore significant.

4.2. Sizing the internal occulter and the Lyot stop

Based on the observation of the effects of scattering on the in-
tensities in planes O’ and C, we can intuit that sizing the internal
occulter and the Lyot stop will not mitigate the degradation of
the image much. We ran additional simulations using internal
occulters of 1.729mm (+100µm from R image) and 1.759mm
radius (+150µm from R image), and Lyot stops of 95% and 93%
the size of the pupil image, in order to verify this assumption.

In figures 9 and 10 we plot the radial intensity ID(r) in plane
D when sizing respectively the internal occulter and the Lyot
stop. These results are consistent with the study of Rougeot et al.
(2017), where it has been shown that increasing the internal oc-
culter reduces both the diffraction peak and diffraction tail, shifts
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Fig. 6. Panel (a): Radial intensity IO′ (r) in plane O’, in logarithmic scale. The radius r is given in units of R�. In red we show the case with scattering
in plane A. In black, the ideal case without scattering. The vertical line represents the internal occulter outer radius. Panel (b): Relative difference,
in absolute value. Blue dots indicate where the intensity IO′ (r) is higher in the case with scattering, and yellow dots indicate the contrary.

Fig. 7. Panel (a): Radial observed intensity IC(r) in plane C, in logarithmic scale. The radius r is given in units of Rp. In red we plot case with
scattering in plane A. Black shows the ideal case without scattering. The vertical line represents the Lyot stop radius. Panel (b): Relative difference,
in absolute value. Blue dots indicate where the intensity IC(r) is higher in the case with scattering, and yellow dots indicate the contrary.

Article number, page 8 of 14



R.Rougeot et al: Influence of surface roughness on diffraction in the externally occulted Lyot solar coronagraph

Fig. 8. Panel (a): Radial intensity ID(r) in plane D, in logarithmic scale. The radius r is given in units of R�. In red we show the case with scattering
in plane A. Black shows the ideal case without scattering. Panel (b): Relative difference, in absolute value. Blue dots indicate where the intensity
ID(r) is higher in the case with scattering, and yellow dots indicate the contrary.

the peak further in the field-of-view, and that reducing the Lyot
stop mostly acts on the diffraction tail. However, in the case with
the scattering, the effects on the the diffraction tail ≥ 1.5R� is
no longer present. Sizing the Lyot stop becomes thus ineffective;
sizing the internal occulter remains relevant only for the inner
field-of-view close to the solar limb.

This observed result is explained by the following reasoning,
and is similar to the study of speckles made by Aime & Soum-
mer (2004) in the case of the classical Lyot coronagraph. In
principle, in a coronagraph, the internal occulter acts as a high-
pass filter, as it cuts out the light in the central region of the fo-
cal plane. In a similar way, the Lyot stop acts as low-pass filter.
Their combined effects provide the rejection of the coronagraph.
However, this is only effective on perfect planar wave fronts. The
introduction of perturbations in the wave front deteriorate the re-
jection. The reasoning is as follows.

Based on Eq.(6), the wave front in plane C is of the form,
with simplified notations

ΨC ∝ F [ΨO′ ×M] × ϕ+z0 (23)
ΨC ∝ F

[
F

[
ΨA × P × ϕ−z0 ×Wr

]
×M

]
× ϕ+z0 (24)

ΨC ∝
(
Ψ̃A ×Wr −

(
Ψ̃A ×Wr

)
~ F

[
M

])
× ϕ+z0 (25)

with Ψ̃A = ΨA × P × ϕ−z0 and M = 1 −M

M is the negative of the internal occulter mask.
In the ideal coronagraph, the wave front error is null so

Wr = 1 in Eq.(25). The principle of the coronagraph consists
of minimizing the term

Υ = Ψ̃A − Ψ̃A ~ F
[
M

]
(26)

inside the Lyot stop opening. In other words, as the Lyot stop
acts as low-pass filter, the coronagraphic rejection is obtained
when Ψ̃A and Ψ̃A ~ F

[
M

]
are similar in the low frequency do-

main (Ferrari et al. 2010) - the high frequencies are filtered out
anyway.

We now consider the wave front error Wr. The term given
in Eq.(26) is no longer correct. As we did in Eq.(20),Wr can be
expanded as

Wr ' 1 + iwr, (27)

and the term in Eq.(26) becomes

Υ′ = Υ + iwr × Ψ̃A −
(
iwr × Ψ̃A

)
~ F

[
M

]
. (28)

While the term Υ is minimized inside the Lyot stop opening,
as explained above, it is most likely not the case for the second
term including wr. Because of the random nature of wr, the
difference between the term wr × Ψ̃A and its convolution with
F

[
M

]
is relatively big, in the entire field and in particular

inside the Lyot stop. As a result, a substantial diffraction energy
is not cut-off, and propagates further to plane D.

This last result is consistent with Sect 4 of Aime & Soummer
(2004), even if these authors considered ground-based coron-
agraph coupled with adaptive optics. While the coronagraph
efficiently reduces the diffraction intensity produced by the
coherent part of the wave, it does not act on the contribution
from the random defects which perturb the coherency of the
wave - that is, the speckles.

The main mitigation to control the scattering consists in
fact of the polishing of the optics surface, to achieve the best
roughness possible. Nevertheless, it depends on several other
factors, such as the type of glass, or the polishing process.
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Fig. 9. Radial intensity ID(r) in plane D, in logarithmic scale, for differ-
ent sizes of the internal occulter. The radius r is given in units of R�. The
red line shows an internal occulter of 1.662mm, the blue line an internal
occulter of 1.729, and the black line an internal occulter of 1.779mm.

Fig. 10. Radial intensity ID(r) in plane D, in logarithmic scale, for dif-
ferent sizes of the Lyot stop. The radius r is given in units of R�. In red
we show a Lyot stop of 0.97Rp. In blue a Lyot stop of 0.95Rp, and in
black a Lyot stop of 0.93Rp.

4.3. Sensitivity analysis on the PSD parameters

Finally, we investigated the influence of each of the three com-
ponents of the PSD model Pmod. We varied independently their
values by 25%, 50%, 150% and 200% with respect to the defined
case ASPIICS. Table 2 reports the different study cases. Cases
A1 to A4 increase the amplitude A of the PSD. Cases B1 to B4
look at a variation of the location of the shoulder. Because B also
contributes to the amplitude of Pmod, see Eq.(21), we modified
the value of A accordingly in order to keep the amplitude of the
PSD unchanged. Finally, cases C1 to C4 vary the slope. Here

again, the value of A was tuned accordingly to compensate the
change of value of K. All these cases give a RMS roughness σr
of 1 − 2nm.

Results are given in Figs.11- 13, for cases A1 to A4, B1 to
B4, and C1 to C4 respectively. In the figures, the left panel plots
the PSD Pmod, computed by Eq.(21). The frequency domain is
limited to fl = 1/2sA = 2.70 × 104m−1. The right panel plots
the radial observed intensities ID(r) in plane D, in logarithmic
scale. We also superimposed as a black curve the case ASPIICS
with the nominal parameters A, B, and C, and as a gray curve
the ideal reference without scattering, for direct comparison. As
expected, the residual diffracted sunlight increases in the range
1.1R� - 3R� when the amplitude of the PSD increases (from case
A1 to A4), when the shoulder is located further in the frequency
domain (from case B4 to B1), and when the slope gets less steep
(from case C4 to C1).

Even if the variation of A acts on every frequency, the biggest
impact is observed for the cases B - for the same relative vari-
ations of the parameter. The total support of the PSD, and so
the total scatter energy, varies much more from case B1 to B4.
This is consistent with the corresponding values of σr - see Table
2. Therefore, modifying the shoulder impacts the scattering the
most, in comparison to the amplitude and the slope. We note that
the PSD plots in Fig.11, 12 and 13 are in log-log scale, which
may be misleading.

As a final analysis, we investigated the effect of the ac-
tual shape of the PSD on the diffraction intensity. We defined
two study cases with the following set of parameters: A =
9.91 × 10−1nm2.mm, B = 537µm and C = 1.5 for case Σ1,
and A = 2.99 × 10−1nm2.mm, B = 71.6µm and C = 1.0 for
case Σ2 - recalled in Table 2. For both, the values of B and C
were fixed arbitrarily, then the value of A was derived using a
proportionality law so that the associated σr is equal to the one
of the case ASPIICS. Doing so, the actual shape of the PSD is
different, but the RMS roughness remains identical. We note that
related BTDF curves do not match to any real experimental data
for these cases.

In the left panel of figure 14 we plot the PSD Pmod of cases
Σ1 and Σ2, together with the one of case ASPIICS. As shown,
all three curves are obviously of different shape. The figure plots
in the right panel the radial observed intensities ID(r) in plane D
of the cases, in logarithmic scale, and gives the ideal reference
without scattering as gray curve.

In the case Σ1, the diffraction intensity is bigger in the inner
region 1.1R� − 1.5R� compared to the case ASPIICS, but lower
in the outer field-of-view. For the case Σ2, it is the contrary: the
intensity is lower in the region 1.1R� − 1.8R�, but bigger in the
outer field-of-view.

The explanation of this observation is the following. As we
presented, the scattering behavior is described by the BTDF,
which gives the scattered power as a function of the scatter angle.
This function is related to the PSD model as written in Eq.(20).
The more power contained at low frequencies in the PSD, the
more scattering at low scatter angles. Looking at the shapes of
the PSD in Fig.14 (left panel), we deduce that the scattering be-
havior is predominant at low scatter angle for case Σ1, and at
larger scatter angle for case Σ2, with respect to the case ASPI-
ICS. This is what we observe in the spatial distribution of the
diffraction intensity in the right panel of Fig.14. The scattered
intensity is brighter close to the diffraction peak for case Σ1, and
brighter at large solar radius for case Σ2.
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Fig. 11. Study cases A1 to A4 - see Table 2. Left: Power spectral density Pmod( fr), in logarithmic scale. Right: Radial intensity ID(r) in plane D, in
logarithmic scale. The black curve represents the case ASPIICS. The gray curve represents the ideal reference without scattering.

Fig. 12. Study cases A1 to A4 - see Table 2. Left: Power spectral density Pmod( fr), in logarithmic scale. Right: Radial intensity ID(r) in plane D, in
logarithmic scale. The black curve represents the case ASPIICS. The gray curve represents the ideal reference without scattering.

Fig. 13. Study cases A1 to A4 - see Table 2. Left: Power spectral density Pmod( fr), in logarithmic scale. Right: Radial intensity ID(r) in plane D, in
logarithmic scale. The black curve represents the case ASPIICS. The gray curve represents the ideal reference without scattering.
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Fig. 14. Study cases Σ1 and Σ2 - see Table 2. Left: Power spectral density Pmod( fr), in logarithmic scale. Right: Radial intensity ID(r) in plane D,
in logarithmic scale. The black curve represents the case ASPIICS. The gray curve represents the ideal reference without scattering.

Table 2. Study cases for the influence of A, B, and C parameters of
the Harvey model of the PSD Pmod. Related RMS roughness σr is also
given, computed for sA = 18.5µm.

Case A (nm2.mm) B (µm) C σr (nm)
ASPIICS 3.75 × 10−1 179 0.82 1.92 (λ/286)
A1 9.38 × 10−2 179 0.82 0.953 (λ/577)
A2 1.875 × 10−1 179 0.82 1.35 (λ/408)
A3 5.625 × 10−1 179 0.82 2.35 (λ/235)
A4 7.50 × 10−1 179 0.82 2.70 (λ/204)
B1 1.50 44.7 0.82 4.00 (λ/138)
B2 7.50 × 10−1 89.5 0.82 2.92 (λ/188)
B3 2.50 × 10−1 269 0.82 1.44 (λ/382)
B4 1.875 × 10−1 358 0.82 1.16 (λ/474)
C1 1.149 179 0.205 2.57 (λ/214)
C2 6.375 × 10−1 179 0.41 2.32 (λ/237)
C3 2.832 × 10−1 179 1.23 1.60 (λ/344)
C4 2.359 × 10−1 179 1.64 1.37 (λ/401)
Σ1 9.91 × 10−1 537 1.5 1.92 (λ/286)
Σ2 2.99 ×10−1 71.6 1.0 1.92 (λ/286)

5. Conclusion

In this paper, we investigated the influence of surface roughness
of the telescope on the diffracted residual sunlight for the
externally occulted Lyot solar coronagraph. The roughness is
controlled by three parameters and is in the order of the nanome-
ter (RMS). While the diffraction peak intensity observed on the
detector at ' 1.1R� is not impacted, the scattered diffraction
tail significantly increases, up to one order of magnitude at
large solar radius. The degradation of performance in the outer
field-of-view of the coronagraph is thus noticeable. We show
that the actual shape of the power spectral density of the surface
roughness drives the the scattering behavior, and how the spatial
distribution of diffraction intensity across the field-of-view is
impacted.

We can compare these observed effects to the ones caused by
a misalignment or off-pointing of the externally occulted solar
coronagraph, as studied by Shestov & Zhukov (2018). These
authors show that the residual diffraction intensity increases
evenly in the entire field-of-view for such effects, and not

only at large R� as we observed for scattering. This is the first
difference. The second difference is the level of degradation:
Shestov & Zhukov (2018) computed an increase of about 15%
for a typical shift of the Sun of 5arcsec, which corresponds
to a lateral displacement of the pupil from the umbra center
of about 3.5mm at 144m from the occulting disk - see their
Fig.8. In case of a typical off-pointing of the coronagraph by
10arcsec, the computed increase is about three times: their Fig.
9. Considering the typical values for ASPIICS, the influence of
surface roughness on performance is thus much more stringent,
as we found an increase of the diffraction of up to one order of
magnitude.

Finally, we also show that sizing the internal occulter or
the Lyot stop does not provide any substantial effects on the
scattering. The coronagraph acts indeed efficiently on perfect
wave fronts, and any defects, seen as perturbation of the light
coherency, will degrade the desired rejection effect. This result
is consistent with that of Aime & Soummer (2004).

Besides the results, we provide a methodology to implement
the roughness scattering in the wave propagation model of
Rougeot et al. (2017). Similar analysis can be performed on
the second and third optics, but these optics are known to be
less critical for what concerns scattering in the final focal plane.
This work is part of the overall end-to-end performance analysis
for the ASPIICS solar coronagraph. Future work is foreseen to
investigate the influence of the edge manufacturing tolerances
of the external occulter.

Matlab/Octave toolbox: https://github.com/rrougeot/FourierOptics.
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Appendix A: Two dimension image of the PSF

In this appendix, we show the two dimension image of the PSF
|ΨB,0,0(x, y)|2 from the on-axis point source in the focal plane of
the telescope, that us, plane B. The area is 5.3arcmin × 2arcmin,
and the center of the field-of-view is on the left boundary of the
image.

In palel (a) of figure A.1 we plots the ideal PSF, that is, the
classical Airy disk pattern, and in panel (b) the same PSF in-
cluding the speckles, induced by the wave front error from the
surface roughness in plane A. We enhanced these effects by in-
creasing the roughness to σr = 21nm, for illustration purpose.
Here, the disturbances of the PSF start being visible from about
4arcmin.
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Fig. A.1. Two dimension PSF intensity |ΨB,0,0(x, y)|2 from the on-axis point source in plane B, in logarithmic scale. The area is 5.3arcmin×2arcmin.
Panel (a): Ideal PSF, without scattering. Panel (b): PSF with speckles, visible from 4arcmin, because of the wave front error from surface roughness
in plane A.
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