SVM Multi-Task learning and non-convex sparsity measure

FLAMARY Remi², RAKOTOMAMONJY Alain², GASSO Gilles¹ and CANU Stéphane²

 1 NEC Labs America 4, Independence way, Princeton, NJ 08540 2 LITIS, EA 4108 Avenue de l'Université F-76801 St Etienne du Rouvray Cedex - France Email: gilles@necs-lab.com, {remi.flamary, alain.rakoto, stephane.canu}@insa-rouen.fr

Multi-task Learning

- Assume T classification tasks with T datasets $\mathcal{D}_t = \{(x_i^t, y_i^t)\}_{i=1, \cdots, n_t}$ where $t = 1, \dots, n_t, x_i \in \mathcal{X}, y_i \in \{-1, 1\}$
- Tasks are considered similar enough or related in a certain sense
- Aim: learn the decision functions $f_t(x), t = 1, \dots, T$ in a joint manner
- How to do it? Tasks share a common subset of relevant features
- Way to ensure this constraint? Use adequate regularization that favors joint features sparsity pattern across tasks
- Our contributions
- -Application of multi-task learning principle to SVM framework by the selection of joint relevant kernels (multiple kernel learning coupled with multi-task learning)

SVM multi-task learning: convex problem formulation

• \min_{f_1,\cdots,f_T} $C \cdot \sum_{t=1}^T \sum_{i \in \mathcal{D}_t} L(f_t(x_i^t), y_i^t) + \Omega(f_1, \cdots, f_T)$ (1) $L(y, f(x)) = \max(0, 1 - yf(x))$: hinge loss function and $\Omega(f_1, \dots, f_T)$: joint sparsity regularizer

• Multiple kernel framework

Each decision function is expressed as $f_t(x) = \sum_{k=1}^M f_{t,k}(x) + b_t$

- $f_{.,k}$: function belonging to the Hilbert space \mathcal{H}_k induced by kernel K_k
- Joint sparsity regularization

 $\Omega(f_1, \cdots, f_T) = \sum_{k=1}^{M} \left(\sum_{t=1}^{T} \|f_{t,k}\|_{\mathcal{H}_k}^2 \right)^{1/2}$

- Equivalent to $\ell_1 \ell_2$ penalization (group lasso type regularization)

SVM multi-task, multiple kernel learning • Let $||f_{\cdot,k}|| = \left(\sum_{t=1}^T ||f_{t,k}||_{\mathcal{H}_k}^2\right)^{1/2}$. The variational formulation is $\min_{\substack{f_1, \cdots, f_T, \mathbf{d} \\ \text{s.t}}} C \sum_{t=1}^T \sum_{i \in \mathcal{D}} L(f_t(x_i^t), y_i^t) + \sum_{k=1}^M \frac{\|f_{\cdot, k}\|}{d_k}$

Variables d_k : extra-parameters introduced to cope with the block-norm regularization. The values of d_k stress the importance of the corresponding kernels K_k in the SVM solution. $d_k = 0$ means kernel K_k discarded from the solution.

• Optimization problem

 $\min_{\mathbf{d}} J(\mathbf{d}) = \sum_{t} J_t(\mathbf{d})$ s.t $\sum_k d_k = 1, \quad d_k \ge 0 \quad \forall k$ (2)with $J_t(\mathbf{d}) = \min_{f_t} C \sum_{i \in \mathbf{D}_t} L(f_t(x_i^t), y_i^t) + \sum_k \frac{\|f_{t,k}\|^2}{d_k}$ • The parameters d_k are optimized by a projected gradient algorithm • Knowing **d**, each decision function f_t is retrieved from the solution of the SVM

 $\max_{\alpha_i^t} -\frac{1}{2} \sum_{i,j} \alpha_i^t \alpha_j^t y_i^t y_j^t \sum_k d_k K_k(x_i^t, x_j^t) + \sum_i \alpha_i^t$

Set $\mathbf{d}^1 = \frac{1}{M} \mathbb{I}$ for $n = 1, 2, \cdots$ do Solve each SVM task with kernel $K = \sum_{k=1}^{M} d_k K_k$. Compute the gradient $\frac{\partial J}{\partial d_k}$ for $k = 1, \cdots, M$ as

$$\nabla_{d_k} J(\mathbf{d}) = -\frac{1}{2} \sum_{t=1}^T \sum_{i,j} \alpha_i^t \alpha_j^t y_i^t y_j^t K_k(x_i^t, x_j^t)$$

Algorithm: $\ell_1 - \ell_2$ sparse Multi-task learning solver

Compute descent direction D_n and optimal step γ_n such that $\mathbf{d}^{n+1} \leftarrow \mathbf{d}^n + \gamma_n D_n$ and constraints (2) satisfied if stopping criterion then break end if end for

s.t $\sum_{i} \alpha_{i}^{t} y_{i}^{t} = 0$, and $0 \leq \alpha_{i}^{t} \leq C \quad \forall i$

Handling non-convex joint sparsity regularizer

Non-convex regularization

- Instead of the $\ell_1 \ell_2$ penalty, consider a non-convex "pseudo-norm" $\ell_p \ell_2$ penalty with p < 1
- Aim: emphasize the sparse behavior of the solution
- Proposed regularization closely related to the spirit of non-convex group lasso algorithms that was issued from consistency results of the convex group lasso
- Non-convex regularizer: $\Omega(f_1, \dots, f_T) = \sum_{k=1}^M g(\|f_{\cdot,k}\|)$ with $g(u) = u^p$, p < 1, and $u \ge 0$

Remark: any other penalty function g(u) could be used as well

Proposed solution

- DC programming Principles
 - -Assume the optimization problem $\min_{\theta} J(\theta) = \min_{\theta} J_1(\theta) J_2(\theta)$
 - -Solve iteratively $\theta^{(i+1)} = \operatorname{argmin}_{\theta} J_1(\theta) \langle \nabla_{\theta} J_2(\theta^{(i)}), \theta \theta^{(i)} \rangle$ until convergence
- Application: use of the decomposition $g(u) = u (u u^p)$
- It leads to $J_1 = C \sum_{t,i} L(f_t(x_i^t), y_i^t) + \sum_k \|f_{\cdot,k}\|$ and $J_2 = \sum_k (-\|f_{\cdot,k}\| + \|f_{\cdot,k}\|^p)$
- Applying the DC algorithm, the non-convex joint sparsity optimization problem boils down to solve iteratively a reweigthed $\ell_1 - \ell_2$ multi-task problem

 $\min_{\substack{f_1, \cdots, f_T, \mathbf{d} \\ \mathbf{s.t}}} C \sum_t \sum_{i \in \mathcal{D}} L(f_t(x_i^t), y_i^t) + \sum_k \beta_k \frac{\|f_{\cdot, k}\|}{d_k}$ $\mathbf{s.t} \quad \sum_k d_k = 1, \quad d_k \ge 0 \quad \forall k$

• At each iteratation, the weights are given by $\beta_k = \frac{p}{\|f_{k}^{(i)}\|^{1-p}}$

Experimental results

Example 1: Toy problem

- T binary classification tasks with n samples $x \in \mathbb{R}^d$ for each task
- The classes follow gaussian distributions with means μ , $-\mu$ and random covariance matrix in \mathbb{R}^r where r is the number of relevant variables. The remaining d - r variables are generated randomly and are considered as spurious variables
- Kernels: each dimension defined a kernel K_k , $k = 1, \dots, d$

- P300 Speller dataset acquired from 11 sessions
- Each session characterized by 400 to 950 EEG signals issued from 64 channels
- After preprocessing, 896 variables are generated
- Tasks: 4 acquisitions sessions (with the goal to handle inter-session variability)

			Higher AUC is, better is the algorithm
Algorithms	AUC	# variables	MTL_1 and $MTL_{0.5}$: multi-task learning with $p = 1$
MTL ₁	85.72 ± 1.8	192 ± 11	and $p = 0.5$
$\mathbf{MTL}_{0.5}$	86.37 ± 1.3	43 ± 6	FullMKL: multiple kernel SVM trained on the en- tire available training set
FullMKL	86.17 ± 1.8	214 ± 12	
SepMKL	84.15 ± 1.8	272 ± 13	
,			SepMKL: tasks are trained separately

