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Abstract

Including spatial information is a key step for successful remote sensing image classification.

Especially when dealing with high spatial resolution (in both multi- and hyperspectral data), if local

variability is strongly reduced by spatial filtering, the classification performance results are boosted. In

this paper we consider the triple objective of designing a spatial/spectral classifier which is compact

(uses as few features as possible), discriminative (enhance class separation) and robust (works well in

small sample situations). We achieve this triple objective by discovering the relevant features in the

(possibly infinite) space of spatial filters by optimizing a margin maximization criterion. Instead of

imposing a filterbank with pre-defined filter types and parameters, we let the model figure out which

set of filters is optimal for class separation. To do so, we randomly generate spatial filterbanks and use

an active set criterion to rank the candidate features according to their benefits to margin maximization

(and thus to generalization) if added to the model. Experiments on multispectral VHR and hyperspectral

VHR data show that the proposed algorithm, which is sparse and linear, finds discriminative features
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and achieve at least the same performances as models using a large filterbank defined in advance by

prior knowledge.

Index Terms

Feature selection, Classification, Hyperspectral, Very high resolution, Mathematical morphology,

Texture, Attribute profiles

I. INTRODUCTION

Recent advances in optical remote sensing opened new highways for spatial analysis and

geographical applications. Urban planning, crops monitoring, disaster management: all these

applications are nowadays aided by the use of satellite images that provide a large scale and

non-intrusive observation of the surface of the Earth.

Two types of new generation sensors have attracted great attention from the research com-

munity: very high spatial resolution (VHR) and hyperspectral sensors (HS). VHR images have

the advantage of providing pixels with meter or even sub-meter geometrical resolution (ground

sample distance), and thus permit to observe fine objects in urban environments, such as details

on buildings or cars, with enhanced precision in their spatial description [1]–[5]. Typically, VHR

images are characterized by a limited spectral resolution since they can only acquire few spectral

channels (a single one for panchromatic images, and less than ten for multispectral ones). On

the contrary, HS images are capable of a finer sampling of the continuous electromagnetic

spectrum, sensing the surveyed surface in up to hundreds of narrow contiguous spectral ranges

(typically, each band has a range of about 5-20 nm). This type of imagery can be very useful for

agriculture [6], [7] or forestry [8], [9], since it allows to discriminate types of vegetation and it

inspects their conditions by fully exploiting subtle differences in their spectral reflectance [10]–

[12]. However, the enhanced spectral resolution of HS imagery does not generally allow a very

high spatial resolution: for satellite HS, resolution is typically of the order of decameters. On the

contrary, airborne new generation sensors, such as APEX [13], or more recent solutions based

on unmanned aerial vehicles [14], allow nowadays to obtain VHR HS imagery, thus combining

the advantages (and drawbacks) of both types of sensors.

Despite the potential of new generation remote sensing, the complexity of imagery of high

resolution (either spatial or spectral) greatly limits their complete exploitation by the application
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communities in a daily use. Considering a classification task, on the one hand VHR images

tend to increase the intraclass spectral variance, as each type of landcover is contaminated by

the signature of the objects composing it. For instance, antennas or flowers on a roof can mix

the signature of the tiles composing the roof with the one of metal or vegetation. Furthermore,

even if these objects are correctly classified thanks to the high spatial resolution, their presence

makes the extraction of their semantic class (e.g., the whole rooftop) more difficult.

On the other hand, HS images are confronted to problems in the efficiency of data handling due

to computational and memory issues related to the large number of bands acquired. Moreover,

high dimensionality makes the modeling of the class distributions more difficult to achieve,

typically resulting in degenerate solutions given by small sample scenarios. For all these reasons,

classifiers exploiting spatial information extracted from hyperspectral data, but also applying

dimension reduction, tend to achieve better results than purely spectral classifier applied on high

dimensional feature spaces [10], [15].

These two problems have been tackled by two contradictory, but related solutions: the first

problem by the inclusion of spatial information [2], [15]–[17], i.e. the augmentation of the

feature space by adding some spatial (e.g. contextual) features enhancing the discrimination

between spectrally similar classes. Contextual features typically provide information about the

distribution of greylevels in a spatial neighborhood of the pixel. There is a plethora of spatial

features that have been considered in the literature, the main being textural [3], [4], [18]–[20],

morphological [16], [17], [21]–[26], Gabor [27], [28], wavelets [29], [30] and shape indexes [31],

[32]. The second issue related to the high dimensionality of the input data has mainly been tackled

by feature selection [2], [33]–[35] or extraction [16], [36]–[39] techniques, i.e. the reduction of

the feature space to a subspace containing only the features which are considered to be the most

important to solve the problem.

When dealing with VHR HS images, the two aspects appear simultaneously. In this case,

the common practice is to apply a predefined filterbank using prior knowledge on global, low

frequency features (for example a panchromatic image [4], the first PCAs [16] or other features

extracted with supervised or unsupervised approaches [40]). Subsequently, the enriched input

space (the spatial features only [2], [4], [16] or a combination of the spatial and spectral

features [24], [41], [42]) is entered into a classifier, often applying an additional feature se-

lection/extraction phase to reduce the dimensionality of the enriched space [4], [24].
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However, this procedure has many drawbacks: first, the filterbank is predefined and thus scale

and image dependent. As a consequence, the creation of such a specific set requires expert

knowledge from the user. Second, in the case of HS images, the first feature extraction step

is compulsory and also imposed, as it is not possible to extract all the contextual features

from each spectral band. The choice of the feature extraction technique directly influences

classifier accuracy, since the retained features or the criteria they optimize might be suboptimal

for class discrimination. Lastly, the optimization of a classifier with integrated feature selection,

in particular when dealing with a large filterbanks, is often computationally very costly.

In this paper, we consider these drawbacks in detail and propose a joint solution: we let

the model discover the good features by itself. A desirable model is compact (contains as few

features as possible), discriminative (the features enhance class separation) and robust (works

well in situations characterized by the availability of few labeled samples). Achieving these

three objectives simultaneously is extremely challenging, especially since the space of possible

spatial filters and feature extraction methods is potentially infinite. We tackle the first and last

objective by proposing the use of a sparse `1 linear support vector machine [43], which naturally

performs feature selection without recurring to specific heuristics. Contrary to standard support

vector machines, which minimize the `2 norm of the model weights, the proposed classifier

minimizes the `1 norm, which forces most of the weights of the features to be zero and thus

performs selection of the relevant features among a pre-defined set. Then, by extending the

optimality conditions of the sparse `1 norm support vector machine, we are able to provide a

sound theoretical condition to assess whether a novel feature would improve the model after

inclusion. This permits the exploration of a potentially infinite number of features. The proposed

algorithm bears resemblance to the online feature selection algorithm described in [44]. While

both approaches alternate between the optimization of a model given a finite set of features

followed by the selection of a novel feature, [44] uses an heuristic for assessing the goodness

of the new feature. This strategy has also been used in remote sensing classification [45]. In

this contribution, they tend to separate the feature selection step and classifier learning step

by proposing several criteria for feature selection (hill climbing, best fit, grafting), whereas we

focus on a global regularized empirical risk minimization problem leading to a unique criterion

(optimal w.r.t the risk). Moreover their results suggest that the use of `1 regularization leads to

the best feature selection, which emphasize the interest of our approach. Another related paper
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is [46], where the authors use genetic algorithms to select features from a possibly infinite bag

of randomly generated features. In this case, the feature selection phase is prior to classification.

The second problem is the most complex and is the main contribution of this article. We do

not want the model only to be sparse on the current set of features, but also to automatically

discover a relevant set of features without imposing it in advance. By relevant, we mean a set

of features enhancing class separation in a margin-maximization sense. To discover the relevant

features, we explore the possibly infinite space of spatial filters, and assess whether one of the

features considered would improve class separation if added to the model. The relevant features

are discovered within a random subset of the infinite set of possible ones, queried iteratively: the

size and richness of such set defines the portion of the filter space that has been screened. To avoid

trial-and-error or recursive strategies involving model re-training for each feature assessment, we

propose to use a large margin-based fitness function and an active set algorithm proposed by the

authors in [47]. Since we do not make assumptions on which band is to be filtered, the type of

features to be generated, or their parameters, we explore the high dimensional (and continuous,

thus possibly infinite) space of features and retrieve the optimal set of filters for classification.

Unlike recursive strategies, the SVM is retrained only when a new feature has been highlighted

as relevant and has been added to the current input space.

Finally, it is worth underlining that the feature optimization is performed separately for

each class, as the relevant spatial variables might be different for classes with varying spatial

characteristics (e.g., roads can be better enhanced by spatially anisotropic filters whereas crops

by textural ones).

Experiments conducted on a multi-spectral VHR and VHR HS images confirm these hypothesis

and allow one to identify and qualify the important filters to efficiently classify the scenes. The

proposed method constructs class-specific filterbanks that maximize the margin with respect to

the other classes, in a one-against-all discrimination setting.

A significant improvement in accuracy with respect to `2 SVM with predefined sets of features

was not the principal aim. Indeed, the main advantage of the proposed approach is the ability to

select automatically from an extremely large set of potential features, hence alleviating the work

of the user. We believe that it is easier for a non-specialist to define a sensible interval of values

instead of a fixed sampling for feature extraction parameters. The conjunction of a sparse SVM

with this automatic feature selector provides a reduced amount of filters that maximizes class
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separation, which is thus desirable from both the prediction and model compactness perspectives.

We also show that the selected features can be efficiently re-used in a traditional `2 SVM, thus

leading to additional boosts in performance . Finally, the discovery of the compact discriminative

set of filters from the large input space is also beneficial in scenarios dealing with a limited

number of training samples, since the amount of sparsity can be controlled.

The reminder of the paper is as follows: Section II presents the proposed methodology and

the active set algorithm. Section III presents the VHR and HS data used in the experiments, that

are detailed and discussed in Section IV. Finally, Section V concludes the paper.

II. LEARNING WITH INFINITELY MANY FEATURES

Consider a set of n training examples {xi, yi}ni=1 where xi ∈ Rb corresponds to the vector

characterizing a pixel in the image with b bands and yi ∈ {−1, 1} to its label. We define a

θ-parametrized function φθ(·) that maps a given pixel into some feature space (the output of a

filter or feature extraction).

Let F be the set of all possible finite subset of features and ϕ an element of F composed

of d features {φθj}di=1, in the following called active set. For a given x, we denote as Φϕ(x)

the vector of Rd whose j-th component is φθj(x). Note that the vector Φϕ(x) only involves a

finite number of feature maps d with associated parameters {θj}dj=1. We also suppose in the

sequel that
∑

i φθj(xi)
2 = 1, ∀θj which means that the vector resulting from the application of

a feature map to all the pixels is unit-norm. This normalization is necessary in order to compare

fairly features with different range of values.

In this framework, we are looking for a decision function f(·) of the form

f(x) =
d∑
j=1

wjφθj(x) = wTΦϕ(x) (1)

with w = [w1, . . . , wd]
T the vector of all weights in the decision function.

We propose to learn both the best finite set of feature maps ϕ (i.e., φs and θs) and the f(·)

function by jointly optimizing the following problem:

min
ϕ∈F

min
w

n∑
i=1

H(yi,w
TΦϕ(xi)) + λ‖w‖1 (2)

where H(y, f(x)) = max(0, 1 − yf(x))2 is the squared hinge loss and λ is a regularization

parameter. The squared hinge loss is selected for optimization reasons. Indeed, since it is
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differentiable, it allows us to use efficient gradient descent optimization in the primal as discussed

in [48]. This is a bilevel optimization problem but for a fixed ϕ, optimizing the inner problem

boils down to a `1 regularized linear SVM.

The optimality conditions of the problem (2) are [43]:

rθj + λ sign(wi) = 0 ∀j wj 6= 0 (3)

|rθj | ≤ λ ∀j wj = 0 (4)

|rθ| ≤ λ ∀φθ 6∈ ϕ (5)

with

rθ = −2
∑
i

φθ(xi) max(0, 1− yiwTΦϕ(xi)) (6)

the scalar product between feature φθ(·) and the hinge loss error, which can be interpreted as the

alignment between the current prediction error and the feature under consideration. Optimality

conditions (3) and (4) are the usual conditions for a `1 regularized SVM, i.e. for the inner

problem of (2), while condition (5) is the optimality condition related to features that are not

included in the active set ϕ. Interestingly, this last condition shows that at optimality, if a feature

is not included in the active set, then it has the same optimality condition as if it were included

in the active with a 0 weight.

These optimality conditions suggest the use of an active set algorithm that solves iteratively

the inner problem, restricted to the features in the current active set ϕ. At each iteration, if a

feature not in the active set violates optimality constraint (5), it is added to the active set of

the next iteration, leading to a decrease of the cost after re-optimization of the inner problem.

In addition, if the ith feature in the active set has a zero weight after re-optimization (i.e.,

wi = 0) it can be removed from the active set in order to keep small the size of the inner

problem. Note that Equation (6) demonstrates the necessity of normalized features. Without

unit-norm normalization, feature will be selected by their norm and not by their alignment with

the classification residuals.

With continuously parametrized filters, the number of possible features could be infinite, so

a comprehensive test of the candidate features is intractable. In this situation, [49] proposed to

randomly sample a finite number of features and add to the active set the one violating the most

constraint (5). Furthermore, in order to ensure convergence in a finite number of iteration, we
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Algorithm 1 Active set algorithm
Inputs

- Initial active set ϕ

1: repeat

2: Solve a `1 SVM with current active set ϕ

3: Generate a new feature bank {φθj}
p
j=1 /∈ ϕ

4: Compute rθj as in (6) ∀j = 1 . . . p

5: Find feature φ∗θj maximizing |rθj |

6: If |rθ∗j | > λ+ ε, then ϕ = φ∗θj ∪ ϕ

7: until stopping criterion is met

choose to use an ε−approximate condition for updating the active set. A feature φθ is added to

the active set only if |rθ| > λ+ ε. The resulting approach is provided in Algorithm 1.

Note that the algorithm is designed to handle large scale datasets. Indeed checking the

optimality conditions and selecting a new feature has complexity O(n) and solving the inner

problem is performed only on a small number of features di using an accelerated gradient

algorithm combined with a warm-starting scheme (see [49]). Note that the active set strategy

allows to solve several small scale problems with a number of features di � d. The iteration

complexity of the inner problem solver at iteration i of Algorithm 1, line 2 is O(ndi) for the

gradient and O(d3i ) for the linear SVM solver. For comparison, using a classical linear SVM on

d features requires the computation of a O(nd) gradient at each iteration, and a O(d3) matrix

inversion for a second order solver such as the one in [48]. Moreover, a warm starting scheme

is used at each iteration in the incremental algorithm. This means that a reasonable solution is

provided to the `1 SVM solver as starting point, thus providing faster convergence with respect

to a random or zero initialization.

III. DATA AND SETUP

A. Datasets

Experiments have been carried out on two classification tasks, the former considering a VHR

urban problem and the latter an agricultural scene sensed with a HS sensor.

July 2, 2014 DRAFT



PREPRIN
T

PREPRINT - PAPER PUBLISHED IN IEEE TGARS 2014, DOI: 10.1109/TGRS.2013.2294724 9

(a) (b)

Fig. 1. Zurich Brüttisellen QuickBird data. (a) RGB composition and (b) ground truth. Color references are in Tab. I (unlabeled

samples are in black).

TABLE I

LEGEND AND NUMBER OF LABELED SAMPLES AVAILABLE FOR THE BRÜTTISELLEN 2002 DATA

ID Color Class name No samples

1 Residential 6746

2 Commercial 5277

3 Meadows 14225

4 Harvested vegetation 2523

5 Bare soil 3822

6 Roads 6158

7 Pools 283

8 Parkings 1749

9 Trees 2615

a) Brüttisellen 2002 (QuickBird sensor, VHR): the first image is a 4-bands optical image of

a residential neighborhood of the city of Zurich (Switzerland), named Brüttisellen, acquired

in 2002 (Fig. 1). The image has a size of 329 × 347 pixels, and a geometrical resolution

of 2.4m. Nine classes of interest have been highlighted by photointerpretation and 40, 762

pixels are available (see Tab I). Spatial context is necessary to discriminate spectrally similar

classes such as ‘trees’ – ‘meadows’ and ‘roads’ – ‘parking lots’.

b) Indian Pines 2010 (ProSpecTIR spectrometer, VHR HS): the ProSpecTIR system ac-

quired multiple flightlines near Purdue University, Indiana, on May 24-25, 2010 (Fig. 2).

The image subset analyzed in this study contains 445×750 pixels at 2m spatial resolution,

with 360 spectral bands of 5nm width. Sixteen land cover classes were identified by field
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(a) (b)

Fig. 2. Indian Pines 2010 SpecTIR data.(a) RGB composition and (b) ground truth. Color references are in Tab. II (unlabeled

samples are in black).

surveys, which included fields of different crop residue covers, vegetated areas, and man-

made structures. Many classes have regular geometry associated with fields, while others

are related with roads and isolated man-made structures. Table II shows class labels and

number of training samples per class.

B. Experimental setup

In the experiments, we tested different initial setups, to assess stability of the method with

respect to initial conditions. In all cases, we report average results over five independent starting

training sets. We run the active set algorithm (AS) for 200 iterations for each class, thus

discovering the discriminant features for each class separately. This means that we extract at

most 200 features per class. The algorithm stops according to two criteria: i) either the 200

iterations are met or ii) 40 filter generations have not provided a single feature violating the

constraint of Eq. (5) by ε.

a) Brüttisellen 2002: we extracted 5% of the available training samples randomly and used

them to optimize the `1 linear one-against-all SVM in the proposed active set algorithm.

We extract filters from one of the four original bands (AS-Bands) and add to the learned

feature set the one most violating the constraint of Eq. (5). At each iteration, a new set
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TABLE II

LEGEND AND NUMBER OF LABELED SAMPLES AVAILABLE FOR THE INDIAN PINES 2010 DATA

ID Color Class name No. samples

1 Corn-high 3387

2 Corn-mid 1740

3 Corn-low 356

4 Soy-bean-high 1365

5 Soy-bean-mid 37865

6 Soy-bean-low 29210

7 Residues 5795

8 Wheat 3387

9 Hay 50045

10 Grass/Pasture 5544

11 Cover crop 1 2746

12 Cover crop 2 2164

13 Woodlands 48559

14 Highway 4863

15 Local road 502

16 Houses/Buildings 546

of features (from which the most beneficial feature is elected) is randomly generated by

filtering the selected band with j random filters θj ∈ Θ.

b) Indian Pines 2010: in the hyperspectral case, we preferred to opt for balanced classes

and thus used 100 labeled pixels per class. This choice was led by the presence of mixed

and highly unbalanced classes in the data. Additionally to the AS-Bands setting, we also

tested a second one extracting the filters from the first 50 PCA projections as base “images”

(AS-PCAs). This is closer to a classical hyperspectral classification setting. However, we

do not limit the extraction to the first principal components, but to a large number to study

if relevant information is contained in the projections related to lower variance. Since the

input space is higher dimensional (360 in the AS-Bands case and 50 in the AS-PCAs case,

against only 4 in the Brüttisellen experiment), we considered many variables at the same

time. Each filterbank contains the selected filters applied on 20 randomly selected bands

(respectively PCs). This ensures a sufficient exploration of the wider input space. In this

case, we allow the model to select more than one feature per bank: we do not re-generate the
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filterbank at each iteration, but we only remove the selected feature, re-optimize the SVM

and add the variable most violating the updated constraints. We generate a new filterbank

if no feature violates the constraints or if a sufficient number of features has been extracted

from the current filterbank (in the experiments reported, we set the maximum number of

features to be selected in a same filterbank to 5).

For each experiment, the spatial filters library contains three features types, namely texture

TXT, morphological MOR and attribute ATT filters. The set of filters considered and the range

of possible parameters is reported in Table III. Inertia and standard deviation ATT filters are not

included in the HS experiment, for computational reasons. Note that the procedure is general

and any type of filter / variable can be added to Θ (such as wavelet decompositions, Gabor,

vegetation indices, etc.). For the AS experiments, the same features are used, but with parameters

unrestricted, thus allowing the method to scan a wider space of possible filters.

For each one of the settings presented above, we report results obtained i) by using the AS

algorithm as is and ii) by training a `2 SVM with the features selected by the AS algorithm (`+2
in the Tables).

As goodness reference, we compare the AS algorithm with SVM results using predefined

filterbanks: the original bands (Bands), the 10 first PCAs (PCA, only in the hyperspectral case),

the ensemble of possible morphological filters, whose parameters are given in Table III (MOR)

and the same for attribute filters (ATT) and the totality of filterbanks in the filters library (ALL)1.

For each precomputed filterbank family (Bands, PCA, MOR, ATT and ALL), we consider three

SVMs:

1) `1 SVM on all the input features,

2) `2 SVM on the features selected by the `1 SVM (reported as `◦2 in the tables)

3) `2 SVM trained on all the input features.

For the hyperspectral case (Indian Pines), the level of sparsity is varied for cases 1) and

consequently to 2) by varying the λ parameter (λ = 100 for a very sparse solution and λ = 1

for a less sparse one).

1Results considering texture features alone (TXT) are not reported for space reasons, especially since these features alone

were always outperformed by the other contextual features (MOR and ATT). Nonetheless, TXT features are included in the ALL

set and in the proposed AS.
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The AS model is allowed to generate features with all possible filters in the Table and

unrestricted parameters, while the experiments with predefined filterbanks generate a smaller

set of filters beforehand, considering a disk structuring element only (as a consequence, no

angular features are considered2). For example, in the MOR case and for the Brüttisellen dataset,

a predefined filterbank will include six scales from 1 to 11 pixels with steps of 2 (in short

[1 : 2 : 11]), eight types of filters and one structuring element type (disk), which makes

6∗ 8∗ 1 = 48 features per band. Since we have four bands, that makes 48∗ 4 = 192 filters. Each

OAA subproblem considers these features in conjunction with the original bands, which makes

a total of 192 + 4 = 196 features per class (Tab. IV).

We compare the average Kappa of the AS- methods, κ̄AS with those obtained with pre-defined

features, κ̄PRE (where PRE can stand for Bands, PCA, MOR, ATT and ALL) using a standard

single tailed mean-test. For a given confidence level α, κ̄AS is significantly higher than κ̄PRE if

(κ̄AS − κ̄PRE)
√
nAS + nPRE − 2√

( 1
nAS

+ 1
nPRE

)(nASσ2
AS + nPREσ2

PRE)
> t1−α[nAS + nPRE − 2] (7)

where t1−α[nAS+nPRE−2] is the Student’s t-distribution. In our case, nAS = nPRE = 5 (number

of experiments), σ are observed standard deviation among the five runs and α = 5%. All the

comparisons reported in Tables IV and V are performed solely between models considering

the same `-norm and illustrated by three color codes: Yes (AS outperforms significantly the

method with pre-defined library), Same (the Kappas are equivalent) and No (PRE outperforms

significantly the proposed method).

IV. RESULTS AND DISCUSSION

A. VHR image of Brüttisellen

Numerical assessment. Averaged numerical accuracies for the Brüttisellen dataset are reported

in Table IV. The different settings introduced in Section III aim at comparing the proposed active

set feature discovery with standard SVM classification OAA schemes using `1 and `2 norms. We

first consider the result obtained by the standard models. As expected, by using only the original

image composed by the 4 spectral bands, accuracies are generally lower than when adding the

2Moreover, as their parameters are continuous, there would be an infinity of them
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TABLE III

FILTERS LIBRARY USED IN THE EXPERIMENTS, ALONG WITH THEIR PARAMETERS AND POSSIBLE VALUES

Bank Filters Parameters Type Search range

Brüttisellen Indian Pines

All filters - Band (or PCA) int [1 : b]

Opening, Closing, Opening top-hat, - Shape of structuring element str {disk, diamond∗,

Closing top-hat, Opening by recon- square∗, line∗}
Morphological

struction, Closing by reconstruction, - Size of structuring element int [1 : 2 : 11] [1 : 2 : 21]
(MOR [16])

Opening by reconstruction top-hat

and Closing by reconstruction top-hat

- Angle∗ (if Shape = ‘line’) float [0, π]

Texture [4] Mean, Range, Entropy and Std. dev. - moving window size int [3 : 2 : 21]

Attribute Area - Area int [100 : 1000 : 10000]

(ATT [25]) Diagonal - Diagonal of bounding box int [10 : 10 : 100]

Inertia - Moment of inertia float [0.1 : 0.1 : 1] N/A

Standard deviation - Standard deviation float [0.5 : 5 : 50] N/A

∗ used only in the AS experiment

spatial context to the feature vector. In the `1 SVM, which naturally performs feature selection,

the estimated Cohen’s Kappa statistic (κ) increases from 0.61 to 0.90 when considering spatial

context in the classification. The appropriateness of feature selection is underlined by the close

(but slightly higher) accuracy of the standard `◦2 linear SVM. In this case, κ scores increase from

0.65 to 0.93. The slightly higher accuracy for the `◦2 strategy is related to a better weighting

of the features: when using the `1 regularization, the model forces many features to go to

zero, while naturally non-zero weights deviate significantly from zero. However, the optimality

of these models is emphasized by the results of the `2 SVM (not enforcing selection of the

features and known to be less biased than `1). In this case, the estimated κ grows from 0.66 to

0.95. Nonetheless, note that all the approaches discussed so far require as input a precomputed

filterbank of up to 556 variables per each OAA subproblem, while the proposed AS models

require on average 23 features per class.

Now consider the proposed method. By observing the `1 AS-Bands results in Table IV it

appears clearly that the proposed feature learning converges to both accurate and sparse solution,

without exploiting any precomputed set of features. The only information given to the AS-Bands
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TABLE IV

AVERAGED NUMERICAL FIGURES OF MERIT OF THE CONSIDERED STRATEGIES FOR THE BRÜTTISELLEN DATASET. RESULTS

ARE COMPARED TO `1 AND `2 SVMS USING THE ORIGINAL BANDS (BANDS , NO SPATIAL INFORMATION) AND CONTEXTUAL

FILTERS GENERATED FROM THE 3 FIRST PCS AND THE WHOLE SET OF POSSIBLE FEATURES IN TABLE III (THE ALL SET

CONTAINS ALL MORPHOLOGICAL, ATTRIBUTE AND TEXTURE FILTERS).

Pre-generated filterbanks library Active set

SVM Model `1 `◦2 `2 `1 `+
2

Feature set Bands MOR ATT ALL Bands MOR ATT ALL Bands MOR ATT ALL AS-Bands AS-Bands

Residential 76.71 87.60 92.44 88.75 77.78 90.93 91.76 92.15 76.50 93.65 92.64 94.24 96.71 95.89

Commercial 51.49 76.08 66.42 87.66 50.88 79.50 71.35 90.84 50.11 87.92 79.97 93.88 83.73 87.82

Meadows 99.93 87.76 99.58 97.63 99.80 96.13 99.18 99.25 99.80 98.83 99.43 99.64 99.60 99.37

Harvested 0 98.61 83.24 97.13 0.25 97.58 97.99 98.26 0.53 97.73 98.80 98.91 97.51 99.61

Bare soil 49.53 96.86 99.41 99.95 70.76 99.82 99.97 99.97 82.48 99.93 99.93 99.98 99.91 99.98

Roads 88.92 76.56 84.32 83.44 86.74 80.55 84.67 88.15 86.40 85.58 86.46 90.42 89.39 89.73

Pools 21.09 99.92 98.28 100.0 92.89 99.14 99.92 98.09 92.96 90.85 99.61 97.30 96.40 98.75

Parking 0 74.93 31.26 80.67 0 73.55 44.59 82.28 0 81.96 72.38 87.03 51.99 71.37

Trees 0 94.21 12.81 93.93 19.21 93.52 34.25 92.22 20.05 94.60 76.33 94.64 65.93 88.61

Overall accuracy 69.75 85.27 85.50 92.16 72.47 90.20 88.08 94.41 73.25 93.67 92.06 95.90 92.46 94.42

Cohen’s Kappa 0.613 0.816 0.819 0.903 0.650 0.879 0.852 0.931 0.660 0.922 0.902 0.950 0.907 0.931

# features per class 4 196 324 556 4 196 324 556 4 196 324 556 ∞

Active features (µ) 4 10 13 20 4 10 13 20 4 196 324 556 23

Is AS-Bands better? Yes Yes Yes Same Yes Yes Yes Same Yes Same Yes No – –

+ = on features selected by the active set algorithm only
◦ = on features selected by the l1 SVM only

SVM is the list of possible filters: the algorithm automatically retrieves features optimizing

the SVM separating margin for the OAA classification sub-problems, by evaluating randomly

generated variables. In this case, the `1 AS-bands model converges to an estimated average κ

statistic of 0.91, thus slightly higher and comparable to the one obtained with the standard `1

SVM on the predefined filterbank. Also, the `+
2 approach – plugging the features selected by the

`1 AS-Bands into an `2 linear SVM – provided the same accuracy of the `◦2 setting (using the

features selected from the pre-defined filterbank). This confirms that the retained features possess

the same discriminative power of the ones selected from a very large and manually predefined

filterbank. The proposed method significantly outperforms most of the other experiments (Yes in

the Table) or performs at least equivalently (Same, situations with large predefined banks, where
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the relevant features are present from the beginning). The only case outperforming AS-Bands

is the `2 SVM using the complete filterbank in Θ. The average number of active features for all

the OAA sub-problems from the `1 AS-Bands is 23, thus slightly higher than the 20 features

selected by a standard `1 SVM. Note that some features may not be available in the precomputed

setting, while the AS-Bands strategy could have retrieved them (typically the angular features,

that would have increased the size of the pre-computed sets beyond reason).

A last issue with the numerical assessment is related to the dependence between training and

testing samples: in the setting discussed above, the test pixels are all the labeled pixels not

contained in the training set. Therefore, and especially since we are using mostly spatial filters

based on moving windows, the values of adjacent pixels can be highly correlated, which biases

positively the results. To study this phenomenon, we eliminated from the test set pixels located

in the spatial proximity of the training samples, by applying a buffer of increasing size around

all the training samples. Figure 3 compares the performance of the proposed AS-Bands with

the ALL `1 linear SVM: the positive bias is clearly observed, since the Kappa score decreases

for buffers of increasing size. This is related both to the dependence between training and testing

samples, but also to the fact that, for large buffers, almost the entirety of the test set is located

at the borders of the labeled polygons in the ground reference; these areas are those with the

highest degree of spectral mixing and are more complex to classify. However, the gain of the

proposed system on the method using pre-defined filterbanks is constant, showing consistency

over the competing methods.

Features discovered. We now analyze the features extracted by the AS approach for one

of the five runs performed (Fig. 4). We remind the reader that the AS method can generate

all possible filters of the type described in Table III and thus scans the wide space Θ of

the morphological, textural and attribute filters. As there are continuously parametrized filters

(angular filters, attribute filters), the space of valid filter functions is infinitely dimensional. The

first pie chart in Fig. 4(a) illustrates the proportion of filter types selected by the `1 AS-Bands

method. Morphological top hat, inertia and area attributes filters compose more the 55% of

the discovered features. This is clearly related to the object characteristics: top-hat provides

important information about the contrast of the objects (depending on the scale, locally dark or

bright objects are emphasized), while inertia is important for elongated objects (such as roads) and

area for wide smooth classes (such as bare soil). Since the process is run independently for each

July 2, 2014 DRAFT



PREPRIN
T

PREPRINT - PAPER PUBLISHED IN IEEE TGARS 2014, DOI: 10.1109/TGRS.2013.2294724 17

1 3 5 7 9 11
0.8

0.82

0.84

0.86

0.88

0.9

0.92

Size of the squared buffer around training samples
K

ap
pa

 c
oe

ffi
ce

nt
 

 
Standard l1 SVM
Proposed Active set

Fig. 3. Performance bias introduced by adjacency of training and testing samples. Comparison between the `1 SVM (ALL

feature set) and the proposed AS-Bands strategy.
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Fig. 4. Infinite active set algorithm: (a) selected filterbank per type and (b) number of retained features per class.

class, the classification sub-problems can be analyzed in terms of selected variables. Since the

proposed AS method extracts separate features for each class, it is possible to study the features

that have been selected specifically for a given land use discrimination problem. Figure 4(b)

depicts the number of active features for each OAA subproblem. This gives rough information

about the spatial complexity of the classes, as strongly textured classes will require more spatial

features to be discriminated. For instance, the class ‘commercial’ required 50 features to be

optimally discriminated from the rest: by observing the spatial arrangement of this class, this

choice results appropriate since the discrimination of commercial buildings with different spatial

arrangements (parkings on roofs, for example) mainly rely on the geometrical properties of

this class. Another spectrally ambiguous category are the ‘roads’. The separation of this class
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required the use of 49 features, again mainly composed by morphological top-hat and attribute

inertia (the objects are mainly elongated). Even more interestingly, a large portion of the latter

were directional filters, i.e. the structuring element was a line with a specific orientation. In

particular, three main orientations arise, as illustrated in Fig. 5(a): these correspond to the main

road directions in the image (three peaks in the angles). This observation can be coupled with the

plot depicting the frequency of the chosen size of the structuring elements of the morphological

operators for each class, in Fig. 5(b). By looking at the curve for the ‘road’ class, it appears

that these three main directions are selected among a uniform range of possible sizes of the

structuring element. It makes sense that longer structuring elements are oriented as the main

road directions, while the shortest are acting inside the road, to filter arbitrarily oriented roads.

Otherwise, for the other classes, the optimal size of the structuring elements is correlated to the

size of the objects represented in the ground, for instance 7 pixels for trees, from 8 to 14 for

bare soil and so on.

Summing up, the results illustrated that the proposed feature learning system selects auto-

matically the variables optimizing class discrimination, since their selection is based on the

maximization of the SVM margin. Note that these are not formally the best possible features,

as we do not consider the entirety of the generable possible filtered images in the infinitely

large filters space. Nonetheless, the features retained are those that optimized class separation

among the large amount of features considered. We recall that the only information provided

to the system, is the type and family of the possible filters Θ, from Tab. III. As a result,

extracted features related to characteristics directly observable on the ground cover are retained

for classification, in a completely automatic way. In addition, since the selection is performed

per class, the parameters of the transformations corrsponding to the selected features are directly

related to the geometrical, textural or spectral characteristics of the objects belonging to that

semantic class.

B. Hyperspectral image of Indiana

Numerical assessment. Table V presents the numerical accuracy for the Indian Pines 2010

dataset. Experiments are organized as for the previous case study, but the standard `1 SVM has

been run varying the value of the λ parameter: we report two cases, one obtained with a large

λ (λ = 100), thus enforcing strong sparsity and a second one with a small λ (λ = 1), thus
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Fig. 5. (a) Orientation of linear structuring elements for the class ‘roads’. (b) Structuring element size within the morphological

filters selected for five classes (for color legend, refer to Tab. IV).

allowing more features in the model. For the baseline methods, the choice of the regularizer λ is

driven by the need of compact vs accurate solution: at a first glance, the sparse model performs

much worse than the one obtained reducing the λ parameter: it shows a similar level of sparsity

as the proposed method (17 active features – 4% of the precomputed set – against 23 in the

AS results and 105 of the model with a smaller λ), but with results lower than those obtained

with a smaller λ (losses between 8% in ALL to 24% in Bands). As a first observation, we

can conclude that a strongly sparse `1 model produces heavy decreases in performance because

relevant informations have been discarded in the feature selection process.

Considering the proposed AS method, such decrease is not observed. The results are close

to the best for the `1 case (only the ALL `1 model outperforms it) and are the best for the `2

case. The performances are a κ of 0.922 per an average of 23 active features per class in the

AS-Bands case and of 0.960 per 22 active features per class in the AS-PCA respectively. In

light of these results, we observe that the AS strategies keep the level of sparsity of the `1 model

with a large λ, but with the numerical performance of the `1 model with small λ. The model

built on the subset of an average of 22 features per class discovered by the AS-PCA is always at

least significantly comparable (and the most often better) than the ones built with precomputed

libraries going up to 429 variables. The only exception is the ALL experiment with the `1 norm,

which outperforms our method in the `1 setting.
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Finally, remind that the AS results are obtained without bounding the search range of the

parameters in Θ: this lets the model explore several scales. This avoids the risk of missing the

relevant features, simply because the prior knowledge about scales was wrong and the good

features weren’t present Θ: this risk is real, since, for example, the performance of the `1 model

with small λ and the MOR features drops from 97.64% to 92.06% if the range of sizes of

structuring element is restricted to [1 : 2 : 11], instead of the [1 : 2 : 21] used for the experiments

reported in Tab. IV.

Features discovered. To further analyze the good performances of the AS-Bands and

AS-PCA schemes, we detail some of the results by analyzing the retained active features. Recall

that, as in the previous case study, no information about the feature is provided to the AS method

beforehand: the features are discovered iteratively by the algorithm itself.

In each experiment, the retained features correspond to a specific filter (family, type and

parameters) computed on a selected spectral band or on one of the first 50 PCs. In Fig. 6, the

sampling frequency of a specific variable to be filtered (from either the original channels or the

PCs) is illustrated for the average of the five runs reported in the numerical assessment. The

single runs results are relatively consistent between each other, thus showing that, even if the

selection of the bands to be filtered is random, the algorithm tends to select the same (or adjacent,

thus highly correlated) channels. Two main observation can be made. When starting from the
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Fig. 6. Variables selected for filtering in one run of the (a) AS-Bands and (b) AS-PCA experiments, respectively, for the

Indian Pines dataset. The plots report the average of the bands selected by five runs of the algorithm with different initializations.
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original image, feature composing the final set are not redundant one to each other. This is

especially interesting, since we aim at compact models with few features. In Fig. 6(a), it appears

that the retained group of bands are concentrated around specific wavelengths far one from each

other. Class-specific histograms are reported in the second column of Fig. 7. The wavelengths

selected are directly related with the class to be discriminated. Observing the plot in Fig. 6(b)

and by following the aforementioned considerations, we can state that the first components of

the PCA, corresponding to a high empirical variance, are not the only ones contributing to

the discrimination. On the contrary, many features corresponding to higher frequencies (lower

variance) are retained, suggesting that very useful information is still present in the small-

eigenvalue spectrum part of the PCA components, as observed in previous literature [50], [51].

These interesting statements are further detailed in Fig. 7 and Fig. 8. In the former, examples of

features retained for three different OAA subproblems are detailed. The class ‘Hay’ corresponds

to large patches of dense vegetation. This specific class is outlined in red in the RGB image,

as well as to the retained filtered variables. By looking at the plot illustrating the frequency of

selection of the bands along the 5 experiments, a preference on the spectral wavelength useful to

discriminate this class did not appear. The filters applied to these spectral bands are in the form

of smoothing operations, such as the opening by reconstruction (together take more than the 66%

of the squared cumulative weights). Also, top-hat morphological operations are used (24.53% of

the weights), particularly useful to reduce ambiguity with the other densely vegetated class, such

as the ‘Woodlands’, which is detailed in the second row of the figure. This time, a series of top-

hat morphological operations with different structuring elements and texture indicators (entropy)

contribute in the squared cumulative weight scoring for the 72.15%. This time, the systems

take advantage of the texture that characterize the forest. The last example for the AS-Bands

is related to the ‘Houses / Buildings’ class. The highest feature weight has been assigned to

a closing by reconstruction top-hat morphological filter, clearly emphasizing the locally dark

behaviour of the buildings. However, note that this feature did not only discriminate houses, but

also other small objects characterized by similar structure / contrast. For this reason, two other

features are kept, in particular to discriminate between houses and other similar structures. Note

how, for the three classes, different spectral ranges are selected for the bands to be filtered.

Figure 8 illustrates the retained features in the AS-PCA experiments. The first example pro-

vides insights for the discrimination of the ‘Grass/Pasture’ class. Interestingly, the 13th principal
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Fig. 7. Examples of selected features for three classes of the Indian Pines data and one run of the AS-Bands experiment.
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component has been selected 5 times and the second PC 4 times. Observing in detail the features,

the outlined class is clearly discriminated from similar regions, in particular by the moving

average feature, computed on the 21st principal component taking the 25.65% of the squared

cumulative SVM weights. It is worth emphasizing that many principal components higher than

the 21st are the base information for the retained filters, suggesting again that higher frequencies

/ low variance components still carry discriminative information for the classification problem,

rather than just noise, as it is usually admitted in remote sensing literature. By analyzing the

next example, the ‘Woodlands’ class, it appears that features discriminating well this class are

computed from the lower frequencies of the PCA. 3rd, are selected 4 times.

The last example is related to the class ‘Road’. This ground cover is spatially well structured,

a fact that is reflected in the choice of the attribute area features computed over low frequency

components. It results that the first two features, that sum to 96.69% for the squared weight

contribution, easily discriminate the roads by assigning to them very low values. The remaining

features, less important, filter out additional ambiguities related to this specific OAA problem.

Summing up, we observed that the AS feature learning scheme is able to discover spatial

and contextual variables that optimize the classification problem. From both the accuracy and

the visual points of view, these features appear consistent with both VHR and HS classification

problems.

Is this better than random selection? In these last experiments, we would like to compare

the proposed AS scheme to a random inclusion of spatial filters. This would prove that the active

set criterion of Eq. (5) is valid and, while providing a decrease of the SVM cost by definition,

in our case, it also helps in improving the SVM global classification performance.

To do so, we compared the active set feature selection-based approach with a random ‘sam-

pling’ of the spatial filter, in which a randomly selected feature φθj is added at each iteration

to the active set ϕ, without checking whether it violates its optimality conditions. The `1 SVM

is retrained after each iteration. This type of validation is standard when considering active

learning methods [52], [53], which sample the most informative samples (contrarily to features

here) among a large amount of unlabeled pixels.

In Fig. 9 this process is illustrated in terms of estimated κ statistic. The plot shows clearly that

the AS-PCA constantly increases the classification accuracy by encoding a margin maximization

strategy, while the random strategy is stable until the point, where a feature destroying the
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Fig. 8. Examples of selected features for three classes of the Indian Pines data and one run of the AS-PCA experiment.

structure of a main class is added to the model. At this point, the classification accuracy drops.

This is illustrated by classification maps generated from two points on each curve. Maps at
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Fig. 9. Top: comparison between the thirty first iterations of one run of the AS-PCA algorithm and a random selection of the

spatial filters. Bottom, classification maps obtained at points [1, 2, 3, 4] on the respective curves.

points •1 and •2 show a clear increase in the map quality, while in this example •3 and •4

show a degradation in the map coherence. This process can be seen as an active learning of the

optimal feature space for classification, and the violating constraint as the contribution to the

error reduction if the feature is included in the current active set.

V. CONCLUSIONS

We proposed an active set algorithm to discover the contextual features that are important

to solve a remote sensing image classification task. The algorithm screens randomly generated

filterbanks, without any prior knowledge on the filter parameters (which are specific to the filter

type, image contents and they are potentially continuous and thus related to an infinity of possible
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features). Based on a sparse `1 linear SVM, the algorithm evaluates if a feature would lead to

a decrease in the SVM decision function if added to the current features.

Experiments on VHR multi- and hyperspectral images confirmed the interest of the method,

which is capable of retrieving for each class the most discriminant features in a large search

space (possibly infinite for continuous parametrized filter types). Visual inspection allows one

to appreciate the discriminative power of the top ranked features.

Based on this subset, an `2 SVM can also be trained, leading to additional boosts in classifica-

tion performance. In both cases (`1 and `2 SVMs), the models trained on the features discovered

reach comparable or better performance as SVM trained with predefined filterbanks defined by

user prior knowledge. Moreover, the progression of the accuracy is almost monotonic, in contrast

to inclusion of some randomly generated features, where a non-discriminative feature can lead

to degradation of performances.

Future research will consider weighting of the bands (or projections) to be filtered, in order

to let the algorithm gradually ignore regions of the input space that lead to uninteresting spatial

features not contributing to the model improvement. Such a weighting must be handled with care,

since it may lead to trapping in local minima and consequent ignorance of relevant subspaces

that contain discriminative features. Semi-supervised extensions will also be topics of interest, to

enforce even more the desirable properties of the algorithm in extremely small sample scenarios.
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TABLE V

RESULTS OF THE PROPOSED ACTIVE SET ALGORITHM USING ORIGINAL BANDS (AS-BANDS) OR THE 50 FIRST PCS

(AS-PCA). RESULTS ARE COMPARED TO `1 AND `2 SVMS USING THE ORIGINAL BANDS (BANDS , NO SPATIAL

INFORMATION), THE TEN FIRST PCS (PCA, NO SPATIAL INFORMATION) AND CONTEXTUAL FILTERS GENERATED FROM THE

3 FIRST PCS AND THE WHOLE SET OF POSSIBLE FEATURES IN TABLE III (THE ALL SET CONTAINS ALL MORPHOLOGICAL,

ATTRIBUTE AND TEXTURE FILTERS). THE NUMBER OF ACTIVE FEATURES REPORTED IS THE AVERAGE PER CLASS.

SVM Input features Active features Overall Accuracy Cohen’s Kappa Is AS better ?

λ type Feature set # per class µ σ µ σ µ σ AS-Bands AS-PCA

A
ct

iv
e

se
t `1

AS-Bands * 23 3 93.57 2.74 0.922 0.033 – No

AS-PCA * 22 2 96.72 1.98 0.960 0.024 Yes –

`+
2

AS-Bands * 23 3 97.69 0.29 0.972 0.004 – No

AS-PCA * 22 2 99.29 0.22 0.991 0.003 Yes –

Pr
e-

ge
ne

ra
te

d
fil

te
rb

an
k

lib
ra

ry L
ar

ge
λ

(s
pa

rs
e)

`1

Bands 360 22 4 65.85 1.71 0.606 0.018 Yes Yes

PCA (10 PCs) 10 7 1 78.70 0.30 0.747 0.003 Yes Yes

MOR (from 3 PCs) 267 13 1 94.48 0.28 0.933 0.003 Same Yes

ATT (from 3 PCs) 123 10 3 79.33 0.64 0.754 0.007 Yes Yes

ALL (from 3 PCs) 429 17 5 93.84 1.07 0.925 0.013 Same Yes

`◦2

Bands 360 22 4 80.76 1.02 0.771 0.012 Yes Yes

PCA (10 PCs) 10 7 1 85.04 1.18 0.821 0.014 Yes Yes

MOR (from 3 PCs) 267 13 1 95.71 0.54 0.948 0.007 Yes Yes

ATT (from 3 PCs) 123 10 3 85.77 0.55 0.828 0.007 Yes Yes

ALL (from 3 PCs) 429 17 5 97.53 0.73 0.970 0.009 Same Yes

Sm
al

l
λ

`1

Bands 360 200 11 89.15 0.53 0.869 0.006 Yes Yes

PCA (10 PCs) 10 9 1 89.03 0.61 0.868 0.007 Yes Yes

MOR (from 3 PCs) 267 76 9 97.64 0.90 0.971 0.011 No Same

ATT (from 3 PCs) 123 48 11 90.87 0.81 0.889 0.010 Yes Yes

ALL (from 3 PCs) 429 105 13 98.69 0.63 0.984 0.008 No No

`◦2

Bands 360 200 11 93.43 0.45 0.920 0.005 Yes Yes

PCA (10 PCs) 10 9 1 87.17 0.70 0.846 0.008 Yes Yes

MOR (from 3 PCs) 267 76 9 98.19 0.52 0.978 0.006 Same Yes

ATT (from 3 PCs) 123 48 11 92.39 0.67 0.907 0.008 Yes Yes

ALL (from 3 PCs) 429 105 13 98.88 0.42 0.986 0.005 No Same

`2

Bands 360 360 0 94.23 0.54 0.930 0.006 Yes Yes

PCA (10 PCs) 10 10 0 87.24 0.72 0.846 0.008 Yes Yes

MOR (from 3 PCs) 267 267 0 98.18 0.58 0.978 0.007 Same Yes

ATT (from 3 PCs) 123 123 0 92.99 0.52 0.914 0.006 Yes Yes

ALL (from 3 PCs) 429 429 0 99.13 0.24 0.989 0.003 No Same

+ = on features selected by the active set algorithm only
◦ = on features selected by the `1 SVM only
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