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Abstract—Re-using models trained on a specific image acqui-
sition to classify landcover in another image is no easy task.
Illumination effects, specific angular configurations, abrupt and
simple seasonal changes make that the spectra observed, even
though representing the same kind of surface, drift in a way that
prevents a non-adapted model to perform well. In this paper we
propose a relative normalization technique to perform domain
adaptation, i.e. to make the data distribution in the images more
similar before classification. We study optimal transport as a
way to match the image-specific distributions and propose two
regularization schemes, one supervised and one semi-supervised,
to obtain more robust and semantic matchings. Code is available
at http://remi.flamary.com/soft/soft-transp.html. Experiments a
challenging triplet of WorldView2 images, comparing three
neighborhoods of the city of Zurich at different time instants
confirm the effectiveness of the proposed method, that can
perform adaptation in these non-coregistered and very different
urban case studies.

I. INTRODUCTION

Providing labeled information for each remote sensing
image acquired is not an option for efficient multitemporal
processing. Especially now that satellites have daily revisit
periods, the amount of images acquired surpasses the annota-
tion capacity of human operators. Even though approaches to
annotate less but better exist [1], the need of labeled examples
in each image is a requirement that prevents remote sensing
automatic classification to meet the users’ expectations.

If no labels are available for the newly acquired image,
one must make the best use of the labeled information that
is available for other similar scenes. The idea might seem
tempting, but re-using labeled information as such gener-
ally leads to catastrophic results: from one acquisition to
the other, the spectra are distorted by either the acquisition
parameters, the atmospheric conditions or by the differences
in scale/appearance of the objects in different geographical
regions [2]. The compensation for such distortions, or shifts
is one of the lively areas of machine learning, domain adap-
tation [3], [4].

One natural way to perform adaptation is to bring the data
distributions in the source and target domain closer, such
that the model trained with the (possibly adapted) source
samples can be used directly to predict class memberships
in the adapted target domain. To increase similarity between

domains, one can resort to global methods based on projec-
tions such as KPCA [5] or TCA [6] or adapting the distribution
locally, for example exploiting graph matching techniques [7].

In this paper we tackle the problem of adapting remote sens-
ing data distributions as the minimization of a transportation
cost. Optimal transportation (OT) was first introduced in the
19th century as the way to find a minimal effort solution to the
transport of masses of dirt into a series of holes. By making the
parallel between masses and probability distributions, OT has
recently gained interest in the machine learning community
and has been used to tackle domain adaptation problems of
label propagation in graphs [8] or classification of visual
categories [9].

We propose to adapt distributions between couples of re-
mote sensing images with regularized optimal transport: we
apply two forms of regularizations, namely an entropy-based
regularization [10] and a class-based regularization [9] to a
series of classification problems involving very high resolution
images acquired by the WorldView2 satellite. We study the
effect of the two regularizers on the quality of the transport.

Section II introduces the concepts of optimal transport and
the regularizers considered. Section III presents the data and
the setup of the experiments, whose results are discussed in
Section IV. Section V concludes the paper.

II. OPTIMAL TRANSPORT FOR DOMAIN ADAPTATION

Consider two data sources (domains): first is a source
domain, Xs, that is labeled. Xs is composed of a set of
examples Xs = {xsi , ysi }

ns
i=1, where xsi ∈ Rd are the pixel

values in each image band (possibly also expanded with spatial
filters) and yi is the pixel label that can take one of C discrete
values, each one corresponding to a land cover class c. Second
is a target domain, Xt, that is unlabeled and composed of a
set of pixels Xt = {xti}

nt
i=1 ∈ Rd. We want to estimate class

memberships in Xt by using models trained with the labeled
set Xs. We assume that the two domains are different, i.e.
a model trained on Xs cannot predict well on Xt without a
phase of adaptation and that this difference can be at least
partially compensated by a data transformation. In this paper,
we chose to explore a class of transformations that minimizes
a transportation cost from one domain to another. This type of
transformation is related to the notion of optimal transport.
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A. Discrete optimal transport
Let P(Xs) and P(Xt) be the set of probability measures

over the two domains. In the discrete case, the empirical
distributions of the probability measures related to Xs and
Xt are

µs =

ns∑
i=1

wsi δxs
i
, µt =

nt∑
i=1

wtiδxt
i

(1)

where δxi
is the Dirac at location xi. wsi and wti are probability

masses associated to the i-th sample, and belong to the
probability simplex, i.e.

∑ns

i=1 w
s
i =

∑nt

i=1 w
t
i = 1. They are

typically computed by running a density estimation, or set as
uniform weights wsi = 1/ns and wti = 1/nt for each sample
in either domain.

We are looking for a transformation T : Xs → Xt that
matches the source and the target domains. To be efficient for
domain adaptation, this transformation must preserve the label
information, i.e. it must preserve the conditional distribution
Pt(y|xt) = Ps(y|T(xs)). To do so, we restrict only the
transformations that match the marginal distributions defined
in (1), i.e. transformations, for which the marginal distribution
of the source samples becomes the marginal observed in the
target domain. Such transformations can be obtained from a
probabilistic coupling γ between P(Xs) and P(Xt). In the
discrete case the set of probabilistic couplings between those
two distributions is the transportation polytope P defined as

P =
{
γ ∈ (R+)ns×nt | γ1nt = µs,γ

T1ns = µt
}

(2)

where 1d is a d-dimensional vector of ones. Among all
possible couplings γ ∈ P , optimal transport chooses the
one that minimizes the transportation cost from the source
distribution to the target one. This cost is generally linked
with a metric of the embedding space. The Kantorovitch
formulation of the optimal transport [11] then reads:

γ0 = argmin
γ∈P

〈γ,C〉F (3)

where C ≥ 0 is the cost function matrix of term C(i, j) related
to the energy needed to move a probability mass from xsi to
xtj . This cost can be, as in this study, the Euclidian distance
between the two locations, i.e. C(i, j) = ||xsi−xtj ||2. Once the
optimal transport matrix γ0 has been found, we can transform
the source elements Xs in a target domain-dependent version
X̂s :

X̂s = diag((γ01nt
)−1)γ0Xt. (4)

In this equation, the transported source points are expressed
as barycenters of samples from Xt with weights found in the
coupling matrix γ0. Using the mapped labeled samples, X̂s, a
model can be trained and used to predict the class membership
of samples Xt.

B. Regularized optimal transport
The OT solution can be obtained using efficient linear

programming solvers, but it is also prone to overfitting due
to small sample sizes or outliers. Regularization can be used
to prevent such unwanted behaviours. In the following, we test
two forms of regularization:

- OT-Sink: an entropy-regularized transportation [10], pre-
venting too sparse solutions by regularizing the entropy
of the transportation matrix, h(γ):

γλ0 = argmin
γ∈P

〈γ,C〉F −
1

λ
h(γ), (5)

where h(γ) = −
∑
i,j γi,j log(γi,j). Such regularization

allows more connections to remain during transport, since
it favours transportation matrices γ with high entropy (i.e.
many non-zero elements).

- OT-labreg: a class-regularized transportation ł[9] that
forces samples of the same label in the source domain
to remain close during transportation:

γλc
0 = argmin

γ∈P
〈γ,C〉F−

1

λ
h(γ)+η

∑
j

∑
c

||γ(Ic, j)||pq ,

(6)
where Ic contains the index of the lines of the source
elements of the c-th class and || · ||pq denotes the `q
norm to the power of p, which promotes group-sparsity,
i.e. that the coefficients of each column of γ are active
for all the samples of a single class, and 0 everywhere
else. This regularizer tends to associate each unlabeled
target example to source examples of the same class. No
constraint is applied on the samples in the target domain,
as it is supposed to be unlabeled.

Note that other forms of regularization have also been
proposed in recent literature: for example, authors in [12] pro-
posed a regularization based on the graph Laplacian preserving
local relationships during the transport.

III. DATA AND SETUP OF EXPERIMENTS

A. Data

We consider domain adaptation between three very high
resolution images acquired by WorldView2 in 2010 and 2011.
The images show three neighborhoods of the city of Lausanne,
Switzerland. Images and acquisition dates are shown in Fig. 1.
Two of them (Ma, Mo) are part of a same acquisition (2010),
but depict neighborhood with different spatial structures. The
third (Pr) comes from the 2011 acquisition and has similar
spatial structures as Mo. Therefore, we can qualitatively rank
the difficulty of the domain adaptation problems involved as
the couples (Pr,Mo) < (Ma,Mo) < (Ma,Pr). We consider
the original 8 WorldView2 bands, plus a series of opening
and closing morphological filters (with circular structuring
elements of size 3, 5, 7 pixels) as input space. We consider
the following six classes: residential buildings, commercial
building, roads, meadows, trees and shadows. The ground truth
available is illustrated in the bottom row of Fig. 1 and the
number of pixels per class is reported in Tab. I.

B. Experimental setup

Each image is taken in turn as the source domain and used
to predict in the two others. When an image is taken as source
domain, 100 pixels per class are selected for both the definition
of the transport and the classification, which is obtained by



TABLE II
NUMERICAL PERFORMANCE OF THE OPTIMAL TRANSPORT METHODS, ASSESSED WITH THE AVERAGE OVERALL ACCURACY OVER FIVE REALIZATIONS

(± STANDARD DEVIATION).

Training on XS Training
No adapt. KPCA ł[5] TCA [6] GM [7] OT-Sink SSTCA [6] OT-labreg on XT

# labels XS - 0 0 0 0 600 600 -
Mo → Pr 59.67±2.92 56.21±3.09 49.83±2.22 60.30±1.66 66.81±1.38 55.88±6.89 65.09±0.82 84.17±0.39
Pr → Mo 57.12±4.66 53.82±4.25 50.52±2.19 62.07±1.45 71.95±0.97 57.36±5.75 72.37±1.08 81.43±0.83
Ma → Mo 45.62±1.79 46.46±3.13 47.47±1.95 43.92±1.70 59.88±1.12 49.27±4.47 70.66±1.98 82.12±0.74
Mo → Ma 33.74±1.69 32.61±3.08 31.52±2.50 37.14±2.31 50.75±2.67 39.58±2.57 55.41±2.38 80.73±0.40
Ma → Pr 46.84±1.21 45.12±1.41 46.02±1.47 43.87±1.58 57.47±2.33 46.12±1.55 66.60±2.69 83.74±0.37
Pr → Ma 26.40±5.27 23.71±4.16 21.49±4.14 38.49±1.89 49.60±1.98 31.41±3.23 54.90±1.47 80.79±0.59

Malley (Ma) Montelly (Mo) Prilly (Pr)
(1124× 1516) (1064× 1248) (1040× 1032)
29 . 09 . 2010 29 . 09 . 2010 02 . 08 . 2011

Fig. 1. The three WorldView2 images used in the experiments, along with
their ground truths (class legend: commercial buildings, residential buildings,
meadows, trees, roads, shadows), pixel sizes and acquisition dates.

1-NN classification. In the target domain, we extract both
600 unlabeled samples as target domain set Xt and a set of
additional independent pixels for testing (therefore: 289792
for Ma, 152666 for Pr and 187510 for Mo). To compute the
probability masses in the source domain, wsi , weighting of
the examples has been adjusted to match the proportions of
the classes in the target domain. Matching these proportions
is of importance because of the specific form of the class-
label regularizer in (6) and of the bi-stochastic nature of
the transportation matrix γ. Indeed, if the empirical prior
probability of classes in the source and target domains are not
equal, the regularizer will necessarily match some source and
target examples of different classes (which is to be avoided).

TABLE I
NUMBER OF LABELED PIXELS AVAILABLE FOR EACH DATASET.

Class Color in Dataset
Fig. 1 Prilly Montelly Malley

Residential m 151271 179695 24898
Meadows m 148604 47865 143674

Trees m 116343 177203 63956
Roads m 141353 104582 294687

Shadows m 39404 218189 194321
Commercial m 13692 22506 437633

If these prior probabilities are known, ideal weights for the
source examples are wsi = pct/n

c
s, where pct corresponds

to the prior probability in the target domain of the class c
to which the sample xi belongs to and ncs is the observed
number of samples of class c in the source domain. In practice,
we consider an empirical estimation of pct . In the following,
we will also study the importance of the accuracy of such
estimation.

We compare optimal transportation with several state of art
methods (see Tab. II). As an upper bound on performance, we
also report the results of a model trained directly in the target
domain using 600 labeled pixels (100 per class).

IV. RESULTS

Table II summarizes the numerical results obtained. In all
the adaptation experiments considered the proposed optimal
transportation methods outperform significantly both the case
without adaptation and the state of the art methods. The
competing methods cannot cope with local shifts in the PDF
and fail at improving classification performance in the target
domain in most of the cases. The only exception seems to be
graph matching (GM), that can improve the ‘no adaptation’
baseline in four out of the six cases. But even in these cases,
the improvement is much smaller than in the case of optimal
transport, for which we observe improvements of 7 − 23%
in the OT-Sink case and of 6 − 28% in the OT-labreg case.
Including information about the labels in the optimization of
the transportation plan seems to boost the performance of the
subsequent classifier, since it prevents samples from different
classes to be transported into similar regions of the target
space, thus easing the work of the discriminant classifier.

For all methods, we are still 10-25% less accurate than a
classifier trained in the target domain directly (last column
of Tab II), but still the increase with respect to the classifier
without adaptation and most state of the art methods is
striking. Moreover, the problems considered are particularly
hard, as we are transporting classifiers between images with
different acquisition geometry and conditions (like most recent
domain adaptation studies), but also not coregistered and
with differences in the scaling and structural properties of
the objects imaged. Facing such a challenging setup, optimal
transport seems to be a first step in the good direction for
efficient domain adaptation under strong spectral and structural
deformation between the domains.



0.00 0.05 0.10 0.15
KL divergence between interpolated and true densities

50

55

60

65

70

75

80

85
O

v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

OT-labreg

OT-Sink

No Adapt.

Training on Xt

0.00 0.05 0.10 0.15 0.20
KL divergence between interpolated and true densities

45

50

55

60

65

70

75

80

85

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

OT-labreg

OT-Sink

No Adapt.

Training on Xt

Mo → Pr Pr → Mo

0.00 0.05 0.10 0.15 0.20
KL divergence between interpolated and true densities

30

40

50

60

70

80

90

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

OT-labreg

OT-Sink

No Adapt.

Training on Xt

0.00 0.05 0.10 0.15 0.20 0.25
KL divergence between interpolated and true densities

30

40

50

60

70

80

90

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

OT-labreg

OT-Sink

No Adapt.

Training on Xt

Ma → Mo Mo → Ma

0.00 0.05 0.10 0.15
KL divergence between interpolated and true densities

40

50

60

70

80

90

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

OT-labreg

OT-Sink

No Adapt.

Training on Xt

0.00 0.05 0.10 0.15 0.20 0.25
KL divergence between interpolated and true densities

20

30

40

50

60

70

80

90

O
v
e
ra

ll 
A

cc
u
ra

cy
 [

%
]

OT-labreg

OT-Sink

No Adapt.

Training on Xt

Ma → Pr Pr → Ma

Fig. 2. Evolution of the 1-NN classification accuracy with respect to the
quality of the estimation of the target class proportions. For each panel, the
leftmost values correspond to the results obtained knowing the true target class
proportions, while the rightmost values correspond the an uniform distribution
in the target domain.

Figure 2 illustrates the influence of the choice of the weight
estimation of the masses. In these graphs, we observe the
evolution of overall accuracy over a path interpolated from
the true target distribution (leftmost value, wsi = pct/n

c
s, see

Section III-B) to an uniform distribution (rightmost value,
wsi = 1/ncs), which might seem a natural choice when no
information is available beforehand. We sampled 10 paths
between these two points on the classes probabilities simplex,
and computed their Kullback Leibler (KL) divergence with
respect to the true target distribution (x-axis in the figure,
corresponding to the distance between distributions on the
simplex). In the figure we report an averaged result on an
interpolation along the KL path. From the results, we can
observe that an estimation of the true target class distribution
leads to a significant boost in the results for both regularizers.
But with the exception of the Mo → Pr case, the optimal
transport methods always outperform the situation with no
adaptation (cyan horizontal line). OT-labreg also keeps a
constant advantage with respect to the unsupervised OT-
Sink: the decrease is generally similar for both methods,
but OT-labreg shows larger variances and stronger drops in
performance when approaching the uniform distribution: this
is understandable, since it implies that the proportion of target

classes are uniform, which is clearly not the case (see also
Table I). Using a discriminative alignment as the one promoted
by OT-labreg will force the transformation to preserve the
class-specific masses observed in the source, while in reality
they should be different in the target domain. Using some
knowledge (at least partial) of the class distribution in the
target seems to be unavoidable to get the most from the
proposed class-regularized optimal transport.

V. CONCLUSION

We proposed to use optimal transport for the adaptation
and matching of data distributions issued from multitemporal
remote sensing images. Optimal transport can match distri-
butions coming from images that are not registered and have
undergone strong deformations. We also tested two types of
regularization to improve the quality of the matching. The first
(OT-Sink) allows for a transportation plan that is less abrupt
(it decreases sparsity of the transport solution), while the
second (OT-labreg) includes class-regularization and forces
labeled samples in the source domain to be transported to
nearby locations in the target. When applied on a challenging
multidate adaptation problem, OT outperformed all state of
the art methods, both in the unsupervised and semisupervised
settings. We also provided a study on the impact and necessity
of estimating the class proportions in the target domain, and
showed that for OT to exploit all its potential, an estimate of
the class proportions in the target domain is necessary. In the
future we will study ways to obtain such estimation.
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