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ABSTRACT

Hyperspectral image classification has long been dominated
by convex models, which provide accurate decision functions
exploiting all the features in the input space. However, the
need for high geometrical details, which are often satisfied by
using spatial filters, and the need for compact models (i.e. re-
lying on models issued form reduced input spaces) has pushed
research to study alternatives such as sparsity inducing regu-
larization, which promotes models using only a subset of the
input features. Although successful in reducing the number
of active inputs, these models can be biased and sometimes
offer sparsity at the cost of reduced accuracy. In this pa-
per, we study the possibility of using non-convex regulariza-
tion, which limits the bias induced by the regularization. We
present and compare four regularizers, and then apply them
to hyperspectral classification with different cost functions.

1. INTRODUCTION

Hyperspectral images (HSI) classification is one of the fast
moving areas of modern remote sensing [1]. HSI poses new
challenges for remote sensing image classification, in partic-
ular by their increased dimensionality and complexity. When
confronted to HSI, parametric methods based on the estimate
of the covariance matrix become either unfeasible or unre-
liable, since good estimations the class-covariance matrices
require many labeled samples, which are usually not avail-
able. For these reasons, great research efforts are deployed
in recent research to develop regularized approaches. Reg-
ularization allows to limit the model complexity in ill-posed
situations characterized by high-dimensional data and limited
number of samples and has proven very successful in both
parametric [2]] and non parametric [1] classification settings.
Most regularized approaches exploit the /2 norm, i.e. the
squared sum of the model weights. The ¢ norm has the
advantage of being convex and many tools are available for
convex optimization. However, squared norms provide active
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(non-zero) weights for all features, leading to models that are
not compact. This can be a problem in HSI classification,
wherethe use of spatial filters [3] increases the data dimen-
sionality (and thus the number of coefficients to be estimated)
considerably. For this reason, research in HSI classification
and unmixing is turning to other types of regularization that
induce sparsity [4, 3], i.e., the search for models where only
a part of the initial coefficients is active. A deeply studied
sparse regularizer is the ¢; norm, or Lasso. Despite its de-
sirable sparse nature, this norm is known to promote biased
estimators and provides sparsity at the price of classification
performance when strong sparsity is required. To obtain the
highest performance, it is a common practice to run the /o-
regularized classifier with the features selected by the sparse
{1 model [6], but this is again against computational effi-
ciency. Recently, nonconvex norms such as the £,-norm with
0 < p < 1 have been proposed to limit the bias and obtain
sparse and accurate predictions [[7].

In this paper we provide a comparative study on differ-
ent regularization strategies and study the joint behavior of
performance and sparsity of each regularizer. We study four
regularization strategies and deploy them with linear classi-
fiers. The classifiers considered use a hinge and a calibrated
loss function, respectively, and are applied on two challenging
HSI classification tasks in urban and rural areas.

2. A FAMILY OF REGULARIZERS AND LOSS
FUNCTIONS FOR HSI CLASSIFICATION

In this section we present a general optimization framework
for HSI classification based on the estimation of linear pre-
diction functions. Linear functions have regained popularity
in numerous recent works, as they have shown state of the art
performances when an adapted non-linear filtering is applied
on the images. In other words, if the input space is well-
selected and discriminative, a linear classifier can perform as
accurately as a nonlinear classifier trained on the original in-
put space. In the following, we therefore assume that we have
the discriminative input space and focus on linear classifica-



tion only. Note that the performances shown in the experi-
mental part are almost equivalent to the state of the art pub-
lished in recent literature, thus confirming the hypothesis pre-
sented above.

2.1. Optimization problem

Let {x;, ¥; }4,... n @ set of labeled training samples where y; €
{—1,1} is a binary class to be predicted and x; € R? is a fea-
ture vector that contains spectral bands, spatial filters or any
kind of descriptor of the original pixels. We want to learn a
linear prediction function of the form f(x) = w ' x+b where
w € R is the normal vector to the separating hyperplane and
b is a bias term. The estimation is performed by solving the
following regularized optimization problem:

1 n d
min Egﬁ(yz,f(xz))Jr)\;g(lwg\) (1)
where L(y, f(x)) is a data fitting term that measures the dis-
crepancy between the prediction and the true label. The sec-
ond term ¢(+) is a monotone function that defines the regular-
ization term. \ weights the strenght of the regularization.

2.2. Data fitting term

The most commonly used data fitting term is the hinge loss
defined as

Ln(y, f(%)) = max(0, 1 — yf(x)),

When ¢ = 1 this term boils down to the classical hinge loss
used in Support Vector Machines (SVM) [8]. When ¢ = 2
the loss is differentiable and thus easier to optimize with a
gradient descent scheme [9]]. In this work we will focus on
the squared hinge loss with ¢ = 2, which was already suc-
cessfully applied on HSI classification problems [6].

Besides the traditional hinge loss, we will also investigate
the use of the calibrated hinge loss defined in [10] as

Le(y, f(x)) = max{0,y f(x)} — In(2 + [f(x)]),

This data fitting term is differentiable and is a strictly decreas-
ing function. For these reasons, it can provide a posterior
probability estimate as discussed in more detail in [10].

2.3. Convex and non-convex regularization

The type of regularization is defined by the function g(-) in
Eq. (I). The most common choice for this function is to use
the square function, which leads to a regularization using the
square of the Euclidean norm (¢3) also known as ridge regu-
larization. This regularization is commonly used for SVM [§]]
or for ridge regression. Another choice for g(-) is the identity

Regularization term
Ridge, /5 norm
Lasso, ¢1 norm |w;|

Log sum penalty log(|w;|/8 + 1)
£y with0 <p<1 |w;|?

Table 1. Definition of the regularization terms considered
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Fig. 1. Illustration of the regularization terms g(-). Note that
both /5 and ¢; regularizations are convex and that log sum
penalty and ¢, with p = 1/2 are concave on their positive
orthant.

function leading to a regularization term that consists in the
sum of the absolute values of w. This type of regularization,
also known as Lasso [[11] or /1, is non differentiable in 0 and
promotes some components in w to be exactly 0. For this rea-
son, ¢1 norms are often used for automatic feature selection
during the optimization [6].

Despite its wide use, the Lasso is known to bias the esti-
mators for sparse models [[7,[12]. This bias is of particular im-
portance in classification since it corresponds to a rotation on
the hyperplane w. To overcome this problem, authors in [6]
trained a posteriori an {5 regularized classifier on the vari-
ables selected by the Lasso and obtained important gains in
performances. Recently, the use of non-convex regularization
for sparsity inducing regularization has been investigated as
an alternative to overcome the bias of the Lasso without re-
training of the classifier [12]. Among the most interesting,
one can cite the log sum penalty regularizer proposed in [12]
and the ¢, regularization with p < 1 [[7]. All those regulariza-
tions are nonsmooth in 0 in order to promote sparsity but will
impact less the large values of |w;| to limit the bias.

A definition of all the regularization terms investigated in
this work is available in Table |1} along with an illustration of
the amount of regularization in Fig. [T}

2.4. Optimization with non-convex regularization

Both the non-convex regularization terms above are non-
differentiable. For this reason alternative optimization strate-
gies with respect to convex optimization must be employed.



Among the algorithms for optimization with a non-differentiable input space is of dimension 540 in the Indiana image and 384

regularization term are the Proximal Splitting methods [[13]].
The convergence of those algorithms to a global minimum
are well studied in the convex case. For non-convex regular-
ization, recent works have proved that proximal methods can
be used with non-convex regularizers when a simple closed
form solution of the proximity operator for the regularization
can be computed [14]. In our case, we used the General Itera-
tive Shrinkage and Thresholding (GIST) Algorithm proposed
in [14]]. We can use this algorithm, since both the data fitting
terms £y and L. are gradient Lipschitz and all the regular-
ization terms described above have a closed form proximal
operator.

2.5. Extension to multiclass classification

In most HSI classification problems, there are K classes to
be discriminated. In this case, we can readily adapt the opti-
mization procedure discussed earlier by using a One-Against-
All procedure. Such procedure consists of learning one linear
function fi(-) per class k and then predict the final class for a
given observed pixel x as the solution of arg miny, f(x). In
practice, this leads to an optimization problem similar to (1),
where a matrix W, containing one classifier per class, needs
to be estimated. The number of coefficients to be estimated
is therefore the size d of the input space , multiplied by the
number of classes.

3. DATA

In the experiments we consider two hyperspectral scenes: first
is an image acquired in 2010 by the ProSpecTIR airborne sys-
tem over the Pines sites in Indiana [15)]. The image is com-
posed by 445 x 750 pixels at 2m spatial resolution, with 360
spectral bands of 5nm width. Labels of sixteen types of agri-
cultural landuse were available by a field survey (198‘074 la-
beled pixels). The second image is a CASI image acquired
over Houston with 144 spectral bands at 2.5m resolution. The
image depicts 14 urban land use classes, for which a field sur-
vey is also available (14‘703 labeled pixels). Additionally,
a LiDAR DSM was also available and was used as an ad-
ditional featurd] The CASI image was corrected with his-
togram matching for a large shadowed part on the right side
and the DSM was detrended by a 3m trend on the left-right
direction. For both datasets, we added contextual features to
the spectral bands, in order to improve the geometric qual-
ity of classification [3]]: we added morphological filters and
texture filters, following the list in [6]. The filters were cal-
culated using the 3 first principal components and with local
sizes in the range {3, ..., 15} pixels. The joint spatial-spectral

IThe data were proposed as the Data Fusion Contest 2013 [16] and
are available on the IADF TC website http://www.grss—ieee.org/
community/technical-committees/data-fusion/

in the Houston data.

4. SETUP, RESULTS AND DISCUSSION

In the experiments below, we compare the four regularizers
(¢4, £2, Log sum penalty and ¢, with p = 1/2) and study
the joint behavior of accuracy and sparsity along the regular-
ization path, i.e. for different values of A. To this end, we
compute the solution of the optimization problem for regu-
larization values A\ = {le5,...,le"1}, with 18 steps. For
each step, the experiment was repeated five times with differ-
ent train/test sets (each run with the same training samples for
all regularizers and losses) and the average Kappa and number
of active coefficients is reported in Fig[2} Please note that we
report the total number of coefficients in the multiclass case,
wj.x, which is equal to the number of features multiplied by
the number of classes, plus one additional feature per class
(bias term). In the case of the Pines 2010 data, the model es-
timates 8‘656 coefficients, while in the Houston data, it deals
with 5°775. We repeat the same experiment for the two loss
functions £, and L. with the linear classifier of Eq. (I). All
the models are trained with 60 labeled pixels per class, ran-
domly selected, and all the remaining labeled pixels are con-
sidered as the test set. Each test point in a 7 x 7 located in
a spatial window around the training samples of the specific
run are not taken into consideration.

The results are illustrated in Fig. 2} where the most desir-
able situation would be a classifier with both high accuracy
and little active features, i.e., a score close to the top-left cor-
ner of the graphs. In all four settings, the {5 model (green
dot) is remarkably accurate, but has all the coefficients ac-
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Fig. 2. Performance (Kappa) vs. compactness (number of
coefficients w; j, > 0) for the different loss functions and reg-
ularizers in the Pines 2010 and Houston datasets.
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tive. Therefore, it is the less compact model. Employing the
¢y regularizer (red line), as it is mainly done in the literature,
achieves a sharp decrease in the number of active coefficients,
but at the price of a steep decrease in performances of the
classifier. When using 100 active coefficients, the ¢; model
suffers of a 20% drop in performance, a trend is observed in
all the experiments reported.

Using the non-convex regularizers permits to have the best
of both worlds: the ¢, regularizer (black line with ‘CJ" mark-
ers) and (in 3 out of 4 experiments) the Log sum penalty reg-
ularizer (blue line with ‘x’ markers) achieve improvements
of about 15-20% with respect to the /1 model with using 100
coefficients and show more stable results along the regulariza-
tion path: the non-convex regularizers are indeed less biased
than the /1 norm in classification and can achieve competitive
performances with respect to the (non-sparse) {2 model with
a fraction of the features (around 1-2%). If compact models
are required, they seem thus to be a valid alternative to the
classic non sparse ¢ norm classifiers.

5. CONCLUSION

Sparsity is a characteristic of the greatest importance for fu-
ture classification algorithms. The images have more bands
and there is a great number of features that can be deployed.
Being capable of selecting the important features only and to
provide a classifier that is unbiased seems to be the way to go.

With these objectives in mind, we compared and studied
four forms of regularization for linear classifiers and shown
that the more recent non-convex regularization marry the ac-
curacy of the classifier trained on a discriminative input space
and the aim for compactness.
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