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Overview of MAP654I

1. Data and Machine Learning problems
▶ Data properties and visualization
▶ Pre-processing
▶ Finding your Machine Learning problem

2. Unsupervised learning
▶ Clustering
▶ Density estimation and generative modeling
▶ Dictionary learning and collaborative filtering
▶ Dimensionality reduction and manifold learning

3. Supervised learning
▶ Bayesian decision and Nearest neighbors
▶ Linear models nonlinear methods for regression and classification
▶ Trees, forest and ensemble methods

4. Validation and interpretation
▶ Performance measures
▶ Models and parameter selection (validation)
▶ Interpretation of the methods
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Unsupervised dataset
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Unsupervised learning

▶ The dataset contains the samples {xi}ni=1 with n samples of size d.

▶ d and n define the dimensionality of the learning problem.

▶ Data stored as a matrix X ∈ Rn×d with X = [x1, . . . ,xn]
⊤ containing the

transposed training samples as lines (features are in columns).

▶ Note: in the course we use 1-based indexing as standard in math but in python
0-based indexing is used.
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Example of real life dataset
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Week usage of the Drahi building
Week usage
Average usage

Electrical usage of the Drahi X-Novation Center

▶ Demonstrator of Energy4Climate of IP Paris.

▶ Recording of the electrical usage of the building during 1.5 years.

▶ Can be completed by weather measurement (linked to energy usage).

▶ Data will be used on samples of energy usage during 1 week.

▶ Note that some pre-processing of the data is necessary before getting the
unsupervised of supervised datasets.
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Unsupervised learning, data description/exploration

Different problems (many methods can solve several of them)

▶ Clustering
Group in clusters the similar samples.

▶ Probability density estimation
Estimate from finite samples a probability distribution.

▶ Generative modeling
Learn model that can generate data similar to the samples.

▶ Dimensionality reduction
Reduce the dimensionality of the data for visualization or interpretation/modeling.
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Scikit-learn estimator for unsupervised learning

Scikit-learn object API

▶ Scikit-learn and its API became in recent years a standard for ML in Python.
▶ The estimator is usually used in 2 steps:

1. Creation of the estimator :
est = Estimator(param='parameter value',param2=10)

2. Fitting of the estimator to the data:
est.fit(X)

▶ After the fitting step, new attributes from the algorithms have been added to the
object.

Using the estimator in unsupervised learning

▶ Clustering
Predict the clusters with est.predict(X) or est.fit_predict(X)

▶ Probability density estimation
Compute the log-probability of samples with est.score_samples(X).

▶ Generative modeling
Generate new samples with est.sample(n_samples).

▶ Dimensionality reduction/ Dictionary learning
Transform the data (in low dimension) with est.transform(X), sometimes an
inverse transform is available with est.inverse_transform(X).
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Clustering

⇒

Objective

{xi}ni=1 ⇒ {ŷi}ni=1

▶ Organize training examples in groups: Find the labels ŷi ∈ Y = {1, . . . ,K}.
▶ Optional : find a clustering function f̂(x) ∈ Y that can cluster new samples.

Parameters

▶ K number of classes.

▶ Similarity measure between
samples.

▶ Minimal distance between
clusters.

Methods

▶ K-means.

▶ Gaussian mixtures.

▶ Spectral clustering.

▶ Hierarchical clustering.
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Main clustering approaches

Connectivity-based (Hierachical)

▶ Use pairwise relation between samples/cluster to agglomerate/divide clusters to
create a hierarchical tree.

▶ The tree contains the whole clustering between n to 1 cluster and select with
parameter (distance threshold or number of cluster K)

Centroid Based (K-means)

▶ Express the dataset as a list of K cluster centroids that represent the diversity of
the data (each sample is associated to centroid).

▶ Minimize the average distance of all samples to their closest centroid (intra
cluster variance).

Density based (DBSCAN)

▶ Local density estimation for each sample using a neighborhood in a ball around
the sample.

▶ Two samples belong to the same cluster if they are close enough and are in a high
density area.
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Hierarchical Clustering Analysis (HCA)

HCA for K=2 HCA for K=5 HCA for K=10 Dendrogram for K=5

Principle (Tutorial [Nielsen, 2016])

▶ HCA is an approach that find clusters
recursively through Agglomeration (or
sometime division).

▶ The linkage function ∆(Ci, Cj) is a
measure of ”distance” between two
clusters.

▶ Final clustering with a fixed K nb. of
clusters or a threshold on ∆(Ci, Cj).

▶ The tree visualization of the agglomeration
steps is called the dendrogram.

Agglomerative HCA algorithm

1: Init. clusters {Ci}i with n Clusters
Ci (one per sample).

2: while |{Ci}i| > 1 do
3: Find the pair Ci, Cj minimizing

∆(Ci, Cj) among all pairs.
4: Merge Ci and Cj .
5: end while

▶ Algorithm is O(n3) in general but
O(n2) possible for single and
complete linkage.
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HCA Linkage functions and implementation

HCA Single linkage HCA Complete linkage HCA Average linkage HCA Ward linkage

Most common Linkage functions

▶ Single [Sibson, 1973]

∆(Ci, Cj) = minx∈Ci,x′∈Cj
d(x,x′)

▶ Complete [Defays, 1977]

∆(Ci, Cj) = maxx∈Ci,x′∈Cj
d(x,x′)

▶ Average [Sokal, 1958]

∆(Ci, Cj) =
1

|Ci||Cj |
∑

x∈Ci,x′∈Cj
d(x,x′)

▶ Ward [Ward Jr, 1963] (C̄ = 1
|C|

∑
x∈C x)

∆(Ci, Cj) =
|Ci||Cj |
|Ci|+|Cj |

∥C̄i − C̄j∥2

Python code

1 from sklearn.cluster import
AgglomerativeClustering

2

3 # HCA with K=2
4 clf = AgglomerativeClustering(

n_clusters=2)
5 # fit the model
6 clf.fit(X)
7 # predict the cluster labels
8 yc = clf.predict(X)
9 # get the structure of the tree

10 children = clf.children_
11 # can be used for visualization with
12 # scipy.cluster.hierarchy.dendrogram

Also see scipy.cluster.hierarchy.

https://docs.scipy.org/doc/scipy/reference/cluster.hierarchy.html
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K-means clustering

K-means for K=5 f(x) =mink|x− ck|2for K=5 K-means for K=10 f(x) =mink|x− ck|2for K=10

Principle [Steinhaus et al., 1956, MacQueen et al., 1967]

Find K clusters ck ∈ Rd that optimize:

min
ck,∀k

n∑
i=1

min
k

∥xi − ck∥2 (1)

▶ Minimize the sum of squared distance between xi and its closest cluster ck.

▶ Can be seen as the minimization w.r.t. ck of the expectation on the data of
function f(x) = mink ∥xi − ck∥2.

▶ The optimization problem can be reformulated with A ∈ {0, 1}n×K a cluster
assignment binary matrix (Ai,k = 1 means that xi is in cluster k) as

min
ck∈Rd,∀k,A∈{0,1}n×K ,A1K=1n

n,K∑
i=1,k=1

Ai,k∥xi − ck∥2 (2)
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Kmeans algorithm

Init. Step 1 Step 2 Step 3

K-means Algorithm

1: Init. clusters {ck}k.
2: while Not converged do
3: Update A by assigning each sample

to its closest cluster.
4: Update ck as the mean of the samples

in the cluster.
5: end while

▶ This is a Block Coordinate Descent
(BCD) algorithm on the problem 2.

Python code

1 from sklearn.cluster import KMeans
2

3 # K-means with K=2
4 clf = KMeans(2)
5

6 # fit the model et predict classes
7 y = clf.fit_predict(X)
8

9 # distance from samples to clusters
10 dist = clf.transform(X)
11

12 # get the centroids
13 C = clf.cluster_centers_

Images from Wikipedia
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K-means on energy usage dataset

1 2 3 4 5 6 7 8
Day of the week

10

20

30

40

Us
ag

e 
in

 K
W

K-means clusters

20
20

-01

20
20

-03

20
20

-05

20
20

-07

20
20

-09

20
20

-11

20
21

-01

20
21

-03

20
21

-05

Time

0

1

Cl
as

s

Cluster assigments for the weeks

Application

▶ Run K-means with K = 2 on the n = 55 samples of size d = 1008.

▶ Left : plot cluster centroids ck as signals of week usage.

▶ Right : plot clusters assignments as a function of date of the monday of the week.

▶ Cluster 1 with more energy usage than cluster 0.

▶ Seasonal clustering along the year (1 for winter, 0 for summer).
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K-means variants

K-medoids [Maranzana, 1963]

min
ck∈{x1,...,xn},∀k

n∑
i=1

min
k

∥xi − ck∥2 (3)

▶ Similar to K-means but the clusters have to be
selected among the data points.

▶ Can be solved using BCD (as K-means) or the well
known Partitioning Around Medoids (PAM)
algorithm [Kaufman and Rousseeuw, 1990].

K-medoids for K=5

K-means and extensions

▶ Initialization of the clusters is important. In Scikit-learn, K-means++
initialization is used by default [Arthur and Vassilvitskii, 2006].

▶ Large scale dataset K-means solver with Stochastic Gradient Descent
[Bottou and Bengio, 1995] or Minibatch-Kmeans [Sculley, 2010]
(sklearn.cluster.MiniBatchKMeans).

▶ K-median [Bradley et al., 1997] allows clustering robust to outlier by changing the
norm (L1 instead of L2).

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans
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DBSCAN

DBSCAN ε=1, ns=5 DBSCAN ε=0.8, ns=5 DBSCAN ε=0.5, ns=5 DBSCAN ε=0.5, ns=3

Density-based spatial clustering of applications with noise (DBSCAN)
[Ester et al., 1996, Schubert et al., 2017]

▶ Density estimation method that group into clusters samples that are in high
density area and detect noise in low density area (black samples above).

▶ Local density around a sample is estimated using the number of neighbors in the ϵ
ball Nϵ(x) = |{xj |D(xi,x) ≤ ϵ}|.

▶ Parameters are ϵ (size of the ball) around and ns minimum number of sample in
neighborhood for detecting dense areas.

▶ Clustering uses different type of samples:
▶ Core samples have high density : Nϵ(x) > ns.
▶ Border (connected) samples : N(x)ϵ ≤ ns but ∃xc core sample s.t. D(x,xc) ≤ ϵ.
▶ Noise sample : N(x)ϵ ≤ ns and D(x,xc) > ϵ, ∀xc core samples.
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DBSCAN Algorithm

DBSCAN sample type

Core
Border
Noise

Core connected components Border connected samples DBSCAN ε=0.5, ns=5

Algorithm (simplified) [Ester et al., 1996]

1. Compute the neighborhood Nϵ(xi) of all samples and find core samples.

2. Find the connected components of the core samples (ignore all other samples).

3. Go through the non-core sample and label them to a cluster if in the ϵ
neighborhood of a core sample or to noise if not.

▶ In practice DBSCAN goes through the dataset sample by sample. Clustering for
border samples connected to more than 1 cluster depends on the order.

▶ DBSCAN is a celebrated method1, and is used a lot in practical applications.

▶ Scikit-learn estimator : sklearn.cluster.DBSCAN(eps=0.5,min_samples=5) .

1Test of time award ACM SIGKDD 2014

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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OPTICS

OPTICS  ns=10 OPTICS  ns=8
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Ordering points to identify the clustering structure (OPTICS)
[Ankerst et al., 1999]

▶ Local density estimation similar to DBSCAN but done with ordering of the
samples.

▶ Use the reachability of samples (distance to core samples) to order (and go
through) samples in a reachability plot.

▶ Perform clustering from the reachability plot by searching for valleys or
thresholding (similar to DBSCAN).

▶ Scikit-learn estimator : sklearn.cluster.OPTICS(min_samples=5, max_eps=np.inf) .

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OTPICS.html
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Spectral clustering
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Principle (Tutorial [Von Luxburg, 2007], [Shi and Malik, 2000])

1. Represent pairwise relationship between samples with a similarity matrix A
(kernel or binary) an compute its Laplacian or normalized Laplacian:

L = D−A, or Ln = I−D− 1
2AD− 1

2

with D = diag(A1n)
2. Perform eigen-decomposition of this matrix and keep the Kth largest eigenvectors.

3. Perform clustering (usually K-means) on the n×K matrix of eigenvectors.

▶ Strongly related to nonlinear dimensionality reduction (DR + clustering).

▶ Allows for highly nonlinear separation between clusters.

▶ Scikit-learn estimator : sklearn.cluster.SpectralClustering(n_clusters=5) .

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html


20/65

Other Clustering approaches

Affinity propagation [Frey and Dueck, 2007]

▶ Use message passing between samples to estimate a
clustering based on selection of ”examplars” (similar to
K-medoids).

▶ Scikit-learn : sklearn.cluster.AffinityPropagation() .

Subspace clustering [Parsons et al., 2004]

▶ Clusters in high dimension are defined by affine
subspaces.

▶ Estimate optimal subspaces for each clusters and assign
labels w.r.t. the distance to the subspaces.

Mixture models [McLachlan et al., 2019]

▶ Density estimation based on a mixture of distributions.

▶ Clustering done by computing the probability of each
samples to be generated by one of the distribution in
the mixture.

▶ See Gaussian Mixture Models (GMM) in the next part.

Affinity propagation

Subspace clustering

GMM clustering

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html
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Comparison of clustering methods

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_

comparison.html

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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Clustering, in practice

K-means for K=5 DBSCAN ε=0.8, ns=5 Spectral clustering  K=5 Gaussian Mixture model K=5

Which method to use ?

▶ First step: know you data (expert knowledge or visualization).

▶ Standard approaches are K-means when the number of cluster is known and
DBSCAN when unknown.

▶ K-means and GMM works well on data with ”blobs” and can handle different
densities in the clusters (also they have interpretable clusters).

▶ DBSCAN and OPTICS can handle non-linearly separated clusters and the
presence of noise/outliers in the data.

▶ Subspace clustering can handle data in different subspaces and Spectral clustering
in nonlinear manifolds.
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Probability density estimation

⇒

Objective

{xi}ni=1 ⇒ p̂

▶ Estimate a probability density p̂(x) from the IID samples in the data.

▶ Probability density : p̂(x) ≥ 0, ∀x and
∫
p̂(x)dx = 1.

▶ Optional : generate new data with p̂(x), detect outliers in the data.

Parameters

▶ Type of distribution (Histogram,
Gaussian, . . . ).

▶ Parameters of the law (µ,Σ)

Methods

▶ Histogram (1D/2D).

▶ Parzen/kernel density estimation.

▶ Gaussian mixture.
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Maximum Likelihood Estimator (MLE)

Principle

max
θ

L(θ; {xi}i)

▶ Let p(x|θ) be a probability density distribution parametrized by θ.

▶ MLE consist in finding the optimal parameter θ that maximizes the likelihood for
a given empirical sample {xi}i.

▶ For Independent and Identically Distributed (IID) samples the likelihood can be
expressed as

L(θ; {xi}i) =
n∏

i=1

p(xi|θ)

▶ In practice the log-likelihood l(θ; {xi}i) = log(L(θ; {xi}i)) that transforms the
product as a sum is often optimized with the same solution.

Example of MLE : Multivariate Gaussian (Normal) distribution

▶ The density is parametrized by θ = {µ,Σ} and can expressed as

p(x|θ) = pN (x|µ,Σ) =
(
(2π)d|Σ|

)− 1
2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
▶ The MLE estimated on the samples {xi}i is

µ̂ =
1

n

n∑
i=1

xi, Σ̂ =
1

n

n∑
i=1

(xi − µ)(xi − µ)⊤
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Gaussian Mixture Models (GMM)

GMM density Estimated GMM
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GMM mixture densities GMM clustering

Principle [Dempster et al., 1977, Yu et al., 2011]
▶ Model the prob. distribution of the data as a sum of K Gaussian distributions :

pGMM (x|θ) =
K∑

k=1

ϕkpN (x|µk,Σk) (4)

▶ Estimate θ = {ϕ,µk,Σk, ∀k} by maximizing the likelihood on the data.

▶ Optimization performed using the Expectation Maximization that consists in
maximizing at each iteration a lower bound of the likelihood.

▶ The algorithm updates iteratively the probability that each component k
generated each sample xi and the parameters θ.

▶ Covariances can be full, diagonal, or low rank [Houdard et al., 2018].

▶ Scikit-learn implementation : sklearn.mixture.GaussianMixture

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
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GMM on energy usage data
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GMM low probability samples xi

Application

▶ GMM with K = 3 on week energy usage data
with diagonal covariances (because data in
high dimension).

▶ Plot left shows the mean and standard
deviation of each component in the mixture.

▶ Each component correspond to a
low/medium/high energy consumption.

▶ Plot right the 5 samples with lowest probability
score to detect outliers in the dataset (week
usage with missing data in this case).

1 from sklearn.mixture import
GaussianMixture

2 # create and fit the model
3 clf = GaussianMixture(3)
4 clf.fit(X)
5

6 # predict cluster class
7 yc = clf.predict(X)
8 # compute proba of samples
9 p = np.exp(clf.score_samples(x))

10 # generate new samples
11 Xg = clf.sample(100)
12 # Get estimated parameters
13 phi = clf.weights_
14 mus = clf.means_
15 Sigmas = clf.covariances_
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Maximum A Posteriori estimator (MAP)

Principle

max
θ

q(θ)L(θ; {xi}i)

▶ q(θ) defines a prior distribution about the distribution parameter in addition to
the likelihood L(θ; {xi}i) on the data.

▶ When the prior q is non informative (uniform), we recover the MLE, for simple
priors (gaussian) we recover regularized estimators.

▶ The optimization problem can be solved with numerical optimization : EM
algorithm, variational inference or Monte Carlo method.

Example: Variational Gaussian Mixture Models [Blei and Jordan, 2006]

▶ Principle : Use a sparsity promoting prior on the weight ϕ of the components that
can be of infinite size (Dirichlet process).

▶ The final number of components is controlled by the weight_concentration_prior

parameter (less components for small values).

▶ In practice it allows to find automatically the number of components K.

▶ Scikit-learn implementation : BayesianGaussianMixture()

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.BayesianGaussianMixture.html
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Kernel Density Estimation (KDE)

−2 0 2

KDE Kernels
Gaussian
Tophat
Epanechnikov
Linear

−5 0 5

KDE density in 1D
KDE density
Samples

KDE density h=0.4 KDE density h=1

Principle [Rosenblatt, 1956, Parzen, 1962]

p̂h(x) =
1

n

n∑
i=1

kh(x,xi)

▶ {xi}i=1,...,n are supposed to be IID and the kernel function kh(x,xi) is positive
and of the form kh(x,xi) = k̃(x−xi

h
) where h > 0 is a bandwidth parameter.

▶ Can be seen as a convolution between the empirical distribution 1
n

∑
i δxi and the

centered kernel k(x,0), i.e. a low pass smoothing of the distribution.

▶ Common kernels (positive, symmetric and normalized
∫
k(x,0)dx = 1) are :

▶ Gaussian kernel : k̃(x,x′) =
(
(2π)dd

)− 1
2 exp

(
− 1

2
∥x− x′∥2

)
.

▶ [Epanechnikov, 1969] : k̃(x, x′) = 3
4
max(1− |x− x′|2, 0) in 1D.

▶ Tophat (Rectangular) and Linear (Triangular) kernels.

▶ Scikit-learn implementation : sklearn.neighbors.KernelDensity

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
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Generative modeling

⇒

Objective

{xi}ni=1 ⇒ ĝ such that p(ĝ(z)) ≈ p(x) with z ∼ N

▶ Estimate a mapping function ĝ(z) ∈ Rd that generates similar samples to {xi}ni=1.

▶ Latent variable z follows a known Normal or Uniform distribution.

▶ Optional : recover an estimation of p̂(x) using the change of variable formula.

Parameters

▶ Type of distribution for z
(Gaussian, uniform, . . . ).

▶ Type of function for g.

Methods

▶ PCA (Gaussian data), KDE, GMM.

▶ Gen. Adversarial Networks (GAN).

▶ Variational Auto-Encoders (VAE).

▶ Diffusion models.
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Generative modeling by divergence minimization

Generator function

▶ g : Rp → Rd is a continuous function and µz a distribution on Rp.

▶ g can be used to generate samples in Rd from samples z ∼ µz in Rp.

▶ Notation : g#µz is the distribution of the random variable g(z) with z ∼ µz.

Minimizing the divergence betwen distributions

min
g

D(µd, g#µz)

▶ Learn a generator g that minimize the divergence D between the generated data
with samples z ∼ µz and the empirical data distribution µd = 1

n

∑
i δxi .

▶ Different divergences that can be used:
▶ Jensen-Shannon (JS) : Classical GAN [Goodfellow et al., 2014].
▶ Wasserstein (Optimal Transport) [Arjovsky et al., 2017]
▶ Maximum mean Discrepancy (MMD) [Li et al., 2015, Dziugaite et al., 2015].
▶ f -divergences [Nowozin et al., 2016].

▶ Problem above can often be reformulated as a minimax between two functions
hence the name adversarial.

▶ Not provided by Scikit-learn, see implementations in Pytorch or tensorflow.
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Generative adversarial learning (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]

min
g

max
h

Ex∼µd [log h(x)] + Ez∼N (0,I)[log(1− h(g(z)))]

▶ h is a classifier trying to discriminate real data and data simulated by g.

▶ Data generated with g from IID random samples (g(z) with z ∼ N(0, σ2)).

▶ Both the generator g and classifier h compete (are adversaries).

▶ Generator space has semantic meaning [Radford et al., 2015].
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Normalizing Flows

Change of variable

▶ Let g : Rd → Rd be an invertible (bijective) function and f = g−1 with
f(g(z)) = z and µz = N is the normal distribution.

▶ The change of variable formula gives us the density of g#µz, i.e. of g(z) when
z ∼ µz as a function of the density pz(z) of µz:

px(x) = pz(f(x))|det(Df(x))|

where Df(x) = ∂f(x)
∂x

is the Jacobian of the function f .

Principle of normalizing flows (Tutorial [Kobyzev et al., 2020])

▶ g is called the generator function and f = g−1 is the normalizing function.

▶ Density estimation and generator estimation can be done by maximum the
log-likelihood on the IID dataset {xi}i:

max
f

n∑
i=1

log(pz(f(xi))) + log |det(Df(xi)|)

▶ The functions g have to be easy to apply, invert, and compute the determinant of
its jacobian, they are formulated as neural networks:
▶ Linear flows [Tomczak and Welling, 2017].
▶ Planar or radial flows [Berg et al., 2018], [Rezende and Mohamed, 2015]
▶ Coupling or autoregressive flows [Dinh et al., 2016, Kingma et al., 2016].
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Probabiliy Density Estimation and generative modeling

GMM density
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GMM mixture densities KDE density h=0.4 KDE generated

Why and when?

▶ Density estimation is hard (non-convex, large number of parameters).

▶ But it’s the most informative modeling of unsupervised data.

▶ Density can be used for data generation, interpretation, outlier detection.

▶ When density is not necessary, generative modeling can be easier to estimate.

▶ Generative modeling can be used for other ML tasks (regularization for instance)
but usually requires deep learning, harder to interpret.
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Dimensionality reduction
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Objective

{xi}ni=1 ⇒ {x̃i ∈ Rp}ni=1 with p ≪ d

▶ Project the data into a low dimensional space of size p ≪ d.

▶ Preserve the information in the data (class, subspace, manifold).

▶ Optional : Learning a projection function m̂ : Rd → Rp for new data.

Parameters

▶ Type of projection (linear,
nonlinear).

▶ Assumptions about the data
(subspace, manifold).

▶ Similarity between samples.

Methods

▶ Feature selection.

▶ Principal Component Analysis (PCA).

▶ Dictionary learning, ICA.

▶ Non-linear dimensionality reduction
(MDS, tSNE, Auto-Encoder)
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Linear model for the data

Dataset Representation on D= I
d1
d2

Representation on D0

d01
d02

Linear model
We suppose that x ∈ Rd can be represented as a weighted sum of basis vectors:

x ≈ Da =

p∑
j=1

ajdj (5)

▶ D = [d1, . . . ,dp] ∈ Rd×p is the dictionary and the dk are the basis vectors.

▶ a ∈ Rp is the representation of the sample x on the dictionary D.

▶ When p < d the equality might not stand depending on D and the samples can
be approximated in a smaller dimensionality.
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Linear unmixing and dictionary learning
Linear unmixing

â = argmin
a

L(x,Da) (6)

▶ L is a measure of divergence (usually quadratic L(x,x′) = ∥x− x′∥2).
▶ Linear unmixing is a projection onto the linear subspace defined by D.

▶ â is the representation of sample x on dictionary D and the samples can be
reconstructed by x̂ = Dâ.

▶ When D is orthonormal (D⊤D = Ip), the solution of the problem with quadratic
divergence is â = D⊤x.

Dictionary Learning (DL)

D̂, Â = argmin
D,A

n∑
i=1

L(xi,Dai) (7)

▶ Estimate simultaneously a dictionary D̂ and the representations
Â = [a1, . . . ,an]

T ∈ Rn×p on the dataset.

▶ DL is often called matrix factorization because the objective is to model the
dataset X as a factorization:

X ≈ ÂD̂⊤

▶ Most linear dimensionality reduction methods also add constraints on D or A
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Principal Component Analysis (PCA)

Dataset Principal directions D
d1
d2

PCA projected samples p=1

Principle [Pearson, 1901]

min
D,D⊤D=Ip

n∑
i=1

∥xc
i −DD⊤xc

i∥2 ≡ max
D,D⊤D=Ip

n∑
i=1

∥D⊤xc
i∥2 (8)

▶ Find a linear subspace of dimensionality p defined by D that minimize the
reconstruction error of the centered data Xc (0 means in the columns of Xc).

▶ Equivalent to maximizing the variance of the projected samples âi = D⊤xc
i .

▶ DL problem (7) with orthonormality constraints on D and âi = D⊤xc
i .

▶ Principal directions are the columns dk or D.

▶ Scikit-learn implementation : sklearn.decomposition.PCA.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Principal Component Analysis in practice

PCA Algorithm

1. Center the data and compute the covariance Σ̂ = 1
n
Xc⊤Xc = 1

n

∑
i x

c
i (x

c
i )

⊤.

2. Perform eigendecomposition {vj , λj} of the covariance matrix Σ̂ and sort the
eigenvalues by decreasing order.

3. The optimal dictionary (projection matrix) is:

D̂ = [v1, . . . ,vp]

where {v1, . . . ,vp} are the eigenvectors associated to the p largest eigenvalues.

One can also use the equivalent Singular Value Decomposition of Xc (Scikit-learn).

PCA in practice

▶ PCA can be used for denoising data : additive random IID noise located in low
variance subspaces.

▶ Selection of p can be used by plotting the sorted eigenvalues (searching for an
elbow or ratio of explained variance) of with probabilistic modeling
[Tipping and Bishop, 1999, Minka, 2000]

▶ Sparse PCA promotes sparsity on dk for feature selection [Zou et al., 2006] .

▶ Warning : PCA focuses on correlation, i.e. linear relationship between features
and can miss more complex relationships.
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PCA on energy usage data
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Application

▶ Run PCA with p = 2.

▶ Plot plot projection in 2D colored by
week number for interpretability.

▶ Summer/Winter dynamic along axis 1.

▶ Part of the week usage variation along
axis 2.

Python Code

1 from sklearn.decomposition import PCA
2

3 # PCA with p=2
4 clf = PCA(2)
5 # fit the model and project in 2D
6 Xp = clf.fit_transform(X)
7 # Get the projections/axis P
8 D = clf.components_.T
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Independent Component Analysis

Principle [Herault and Jutten, 1986]

▶ Find a decomposition of the samples â = D⊤x that is independent (columns of
A are independent, not necessarily orthogonal as in PCA).

▶ Linear model but not expressed as the general optimization problem (7).

▶ Works particularly well on non Gaussian data (or else PCA is optimal).

▶ Efficient algorithm : FastICA [Hyvärinen and Oja, 2000].

▶ Applied with success to several source separation problems (biomedical data).

▶ Scikit-learn implementation : sklearn.decomposition.FastICA.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
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Sparse Dictionary Learning

Dataset Sparse DL Dictionary p=3

d1
d2
d3

Sparse DL colored representation

Principle

min
A∈Rn×p,D∈Rd×p,∥dk∥=1,∀k

n∑
i=1

∥xi −Dai∥2 + λ∥ai∥1 (9)

▶ Constraints on the norm of di ensure normalized basis (not orthogonal).

▶ Sparsity promoting L1 regularization (see Lasso in next course) on the
representations ai promotes samples in linear subspaces of the span of D.

▶ Similar to Sparse PCA but sparsity on ai instead of the dictionary dk.

▶ Can be solved efficiently with stochastic optimization [Mairal et al., 2009].

▶ Scikit-learn implementation : sklearn.decomposition.DictionaryLearning.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html
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Non-negative Matrix Factorization (NMF)

Dataset NMF Dictionary p=3
d1
d2
d3

NMF colored representation

Principle [Lee and Seung, 2000]

min
A∈Rn×p

+ ,D∈Rd×p
+ ,∥dk∥=1,∀k

n∑
i=1

L(xi,Dai) (10)

▶ For positive data (for instance power densities) it makes sens to have both
dictionary elements dj and representations aj positive.

▶ Different losses L have been proposed:
▶ Quadratic, Guassian noise [Lee and Seung, 2000].
▶ Kullback–Leibler divergence, Poisson noise [Dhillon and Sra, 2005].
▶ Itakura-Saito, audio spectrum [Févotte et al., 2009]).

▶ Optimization problem can be solved with gradient descent, block coordinate
descent and multiplicative updates.

▶ Sparsity regularization can also be used similarly to SparseDL.

▶ Scikit-learn implementation : sklearn.decomposition.NMF.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html


43/65

Matrix factorization (collaborative filtering)

Principle (Survey [Bokde et al., 2015])

min
D,A

n∑
i=1

∥mi ⊙ (xi −Dai)∥2 (11)

▶ ⊙ is the pointwise multiplication and mi ∈ {0, 1}d is a binary mask denoting
which features in xi that are observed for sample xi.

▶ Data is only partially observed but one wants to predict the values for all
components of the matrix X (observed values are stored in a sparse matrix).

▶ Solved using truncated Singular Vector Decomposition that return a low rank
p < min(d, n) factorization X ≈ ADT .

▶ Used in recommender systems for user/product recommendation.



44/65

Nonlinear dimension reduction methods (manifold learning)
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Nonlinear subspaces

▶ The dataset often lies in a nonlinear subspace (a manifold) of Rd.

▶ Manifold learning method aim at recovering this low dimensional manifold.

▶ Example above of 2D manifold in a 3D ambient space and the projection of the
samples in 2D for different methods (colors only to check that the relation
between samples are preserved).

Manifold learning problems

▶ Projection {xi}ni=1 ⇒ {x̃i ∈ Rp}ni=1 with p ≪ d : Project dataset in low
dimension (visualization).

▶ Inductive {xi}ni=1 ⇒ g : Rd → Rp : learn a nonlinear projection function.

▶ Inductive+Invertible {xi}ni=1 ⇒ g : Rd → Rp, f : Rp → Rd, f(g(x)) ≈ x : learn
both projection and reconstruction nonlinear functions.
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Common manifold learning methods

Multi-Dimensional Scaling (MDS) [Kruskal, 1964]

▶ Search for positions {x̃i} that have a similar pairwise
distance matrix as the original data {xi}.

▶ Solved with eigendecomposition (PCA on distances).

▶ Scikit-learn : sklearn.manifold.MDS.

ISOMAP [Tenenbaum et al., 2000]

▶ Estimate a graph of neighbors in the ambient space.

▶ Use the geodesic distance on the graph between samples
and perform MDS (preserve distance on the manifold).

▶ Scikit-learn : sklearn.manifold.Isomap.

Locally Linear Embedding (LLE) [Roweis and Saul, 2000]

▶ Find an embedding that preserve distance in local
neighborhood (many PCA).

▶ Regularized LLE : modified [Zhang and Wang, 2007],
Hessian [Donoho and Grimes, 2003] .

▶ Scikit-learn : sklearn.manifold.LocallyLinearEmbedding.

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
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Kernel PCA (KPCA)
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Principle [Schölkopf et al., 1997]

▶ Perform PCA in a high-dimensional non-linear embedding ϕ(x) of the data.

▶ Embedding is implicit, thanks to the use of a kernel k(x,x′) =< ϕ(x), ϕ(x′) >,
only the kernel matrix between samples is necessary. This is called the ”kernel
trick”(used also for SVM classification).

▶ Inductive method, reconstruction is possible but requires solving an inverse
problem (kernel pre-image problem [Kwok and Tsang, 2004]).

▶ Classical kernels are linear kernel (equivalent to PCA) and Gaussian kernel (Radial
Basis Function RBF in Sckikit-learn).

▶ LLE and ISOMAP are actually special cases of KPCA with specifically designed
kernels [Ham et al., 2004]

▶ Scikit-learn implementation : sklearn.decomposition.KernelPCA.

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html
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t-Stochastic Neighbor Embedding (TSNE)
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Principle [Van der Maaten and Hinton, 2008]

min
x̃i,∀i

∑
i,j

KL(px(xi|xj)||qx̃(x̃i|x̃j))

▶ KL is the Kullback–Leibler divergence and the distributions p and q are the
probability that two samples are neighbors expressed as:

px(xi|xj) =
exp(−∥xi − xj∥2/2σ2

i )∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i )
, qx̃(x̃i|x̃j) =

(1 + ∥x̃i − x̃j∥2)−1∑
k

∑
l ̸=k(1 + ∥x̃k − x̃l∥2)−1

▶ The bandwith σi are set to provide a given perplexity parameter (accuracy of
density estimation on training data).

▶ t-SNE uses a t-Student distribution on the projected samples instead of the
Gaussian kernel in classical SNE [Hinton and Roweis, 2002].

▶ Warning: TNSE has a tendency to show non-existent clusters for small perplexity.

▶ Scikit-learn implementation : sklearn.manifold.TSNE(n_components=2,perplexity=50).

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Uniform Manifold Approximation and Projection (UMAP)
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Principle [McInnes et al., 2018]

▶ Suppose that the data is uniformly distributed on Riemannian manifold and this
manifold is locally connected.

▶ Construct a graph of neighbors (n_neighbors parameter) and approximate the
manifold with a Fuzzy topological structure.

▶ Can be adapted to non-uniform densities [Narayan et al., 2020].

▶ While not designed to be inductive and invertible, UMAP implementation provide
numerical estimation for both.

▶ More efficient that TSNE on large dataset because does not a requires
normalization step to compute pairwise relations.

▶ Implementation in umap-learn : umap.UMAP(n_components = 2, n_neighbors=n_neighbors)

https://umap-learn.readthedocs.io/
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Auto-Encoder (AE)

Input Output

Embedding 

Principle (Tutorial [Goodfellow et al., 2016, Chapter 14])

min
f,g

n∑
i=1

L(xi, f(g(xi)))

▶ Train two neural networks : g : Rd → Rp the encoder and f : Rp → Rd the
decoder such that f(g(x)) ≈ x.

▶ Models are often deep neural networks such as g(x) = gK(gK−1(. . . g1(X)))
where gk(x) = σ(Wkx+ bk) and σ is a nonlinear activation function.

▶ When p < d the AE searches for a nonlinear subspace (manifold) that optimize
data reconstruction w.r.t. the loss L.

▶ Sparse AE use a regularization (KL [Makhzani and Frey, 2013] or L1/L2
[Arpit et al., 2016]) to promote sparse activations g(x).
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Variational Auto-Encoders (VAE)

Principle [Kingma and Welling, 2013]

▶ Estimate probabilistic encoder q(z|x) and decoder p(x|z) that model the dataset.

▶ Optimize the MAP on the data with a Bayesian prior on the embedding is p(z).

▶ The embedding q(z|x) of sample x is a distribution (usually a Normal
distribution).

▶ The reconstruction is also probabilistic : one can generate several reconstructions
from and embedding for instance to model uncertainty.

VAE in practice

▶ In practice optimization of the Evidence Lower BOund (ELBO) that is a
variational lower bound of the MLE or MAP.

▶ The embedding if often modeled with z ∼ q(z|x) = N (m(x), diag(s(x))) where
m and s are deep neural network predicting the mean and variances respectively.

▶ The reparametrization trick allows to propagate the gradients with Stochastic
Gradient Descent (SGD) by generating samples :

z = m(x) + s(x)⊙ ϵ, ϵ ∼ N (0p, Ip)

▶ VAE can be used for data imputation when data is partially observed
[Mattei and Frellsen, 2019].
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Dimensionality Reduction (DR) in practice

Principal directions D
d1
d2

Sparse DL

Why and when?

▶ Dimensionality reduction is a classical tool for visualizing high dimensional data in
2D but always comes with loss of information (d = 2 is very small).

▶ Inductive and invertible DR methods can be used for denoising because noise is
high dimensional and data is usually low dimensional.

▶ Standard 2D visualization for data/feature manifolds are TSNE and more recently
UMAP but beware of false clusters.

▶ PCA is a classical pre-processing step but quantization with K-means or
dictionary learning (bag of visual words) also used in practice.
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Unsupervised learning problems VS methods

Probability Density 
Estimation

Generative Modeling

Clustering Dimensionality Reduction

PCA

K-means

Spectral

Hierarchical

DBSCAN

KDE

GMM

GANVAE

Dic. Learn.

NMF

TSNE

UMAP

ICA

MDS

Subspace

Histogram

Most methods can be used to solve several ML problems.
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Conclusion

Unsupervised learning

▶ Most datasets are unlabeled because labeling is expensive (requires humans).

▶ Unsupervised learning aim at modeling and interpreting the data without human
annotations.

▶ It’s difficult to measure and evaluate the quality of the models in unsupervised
learning (the criterion is often optimized).

▶ Numerous research in self-supervised learning (learning representations that are
good for predictions without labels, invariant to some variability).

▶ Most unsupervised learning methods can be used for pre-processing and feature
extraction before supervised learning (when inductive).
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