Practical introduction to machine learning

Part 4 : Validation and interpretation

Rémi Flamary - CMAP, École Polytechnique

Master Data Science, Institut Polytechnique de Paris

October 11, 2023

Overview of MAP654I

1. Data and Machine Learning problems

- Data properties and visualization
- Pre-processing
- Finding your Machine Learning problem

2. Unsupervised learning

- Clustering
- Density estimation and generative modeling
- Dictionary learning and collaborative filtering
- Dimensionality reduction and manifold learning

3. Supervised learning

- Bayesian decision and Nearest neighbors
- Linear models nonlinear methods for regression and classification
- Trees, forest and ensemble methods

4. Validation and interpretation

- Performance measures
- Models and parameter selection (validation)
- Interpretation of the methods

Overview for the current part

Introduction	2
Performance measure	5
Unsupervised learning	6
Regression	7
Classification	8
Validation/Model selection	10
Spliting the data	10
50 types of validation	11
Validation with Scikit-learn	12
Interpretation of the model	14
Feature importance	15
Model explanation	16
Adversarial attack	17
Algorithmic bias	19
Conclusion	20

Machine Learning in practice

Selecting the model

- For a given ML problem several kinds of method can be applied.
- Even for a given method several parameters can greatly change its performance.
- Selecting the "best" method/parameters is called model selection or validation.
- An important question is which **performance measure** to use.

Understanding the model

- Interpret the perfomance, identifying bad predictions, detect bias in the predictor/data.
- Most important variables for the model.
- Explaining a given prediction (what lead to this prediction).
- Robustness to noise, to adversarial attacks.

Section

Introduction

Performance measure

Unsupervised learning Regression Classification

Validation/Model selection

Spliting the data 50 types of validation Validation with Scikit-learn

Interpretation of the model

Feature importance Model explanation Adversarial attack Algorithmic bias

Conclusion

Performance measure

Unsupervised learning

- Clustering
 - Supervised (actual clusters ar known, perf_measure(y_true,y_pred)).
 - Unsupervised (actual clusters unknown, perf_measure(X,y_pred))).
- Dimensionality reduction performance is often the objective of the optimization problem (same as regression performance for invertible methods).

Supervised learning

- Classification (default is accuracy/0-1 loss).
 - How accurate is the class prediction.
 - How separable are the classes in the score function space.
- Regression (prediction error)
 - Average prediction error.
 - Correlation (focus on the dynamic).

Performance measures

- Performance measures provided below are functions of sklearn.metrics.
- Measures with \uparrow are better with large values and \downarrow with low or negative values.

Warning

Always evaluate performance on data that was not used to train the model for supervised learning (also sometimes on unsupervised).

Clustering performance

Silhouette score (Rousseeuw, 1987)

- Score is the average of (b − a)/max(a, b) when a is the distance to the cluster and b the distance to the closest other cluster.
- Non-supervised measure between -1 (worst) and 1 (best).

Rand Index \uparrow , rand_score [Rand, 1971]

- Ratio of samples belonging in the same clusters in the predicted and true clustering (similar to accuracy but invariant to class permutation).
- ▶ Supervised measure between 0 (worst) and 1 (perfect).
- ► Adjusted Rand Index ajusted_rand_score has score 0 when random prediction.

Mutual Information \uparrow , mutual_info_score [Vinh et al., 2010]

- Measure of the mutual information between the true and predicted clustering.
- Supervised measure ≥ 0 (where 0 is worst).
- Adjusted Mutual Information adjusted_mutual_info_score has score 0 when random prediction and 1 when perfect.

Regression performances

Mean Square Error (MSE) ↓, mean_squared_error

- $MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i} (y_i \hat{y}_i)^2$, classical convex and smooth loss in regression, can be used as performance measure on new data.
- Can be normalized by the mean square of the true labels (which computes the Signal to Noise Ratio, SNR).

Pearson Correlation Coefficient \uparrow , np.corrcoef

- ▶ $r = cov(\mathbf{y}, \hat{\mathbf{y}}) / \sqrt{cov(\mathbf{y}, \mathbf{y})cov(\hat{\mathbf{y}}, \hat{\mathbf{y}})}$, between -1 and 1 (random pred. is 0).
- Measure of linearity between the true and predicted labels (invariant to scaling).

R^2 coefficient of determination \uparrow , r2_score

- ▶ $R^2 = 1 MSE(\mathbf{y}, \hat{\mathbf{y}}) / MSE(\mathbf{y}, \bar{\mathbf{y}})$ where $\bar{\mathbf{y}}$ contains the mean of \mathbf{y} .
- ▶ 1 when perfect prediction, 0 when random prediction (can be negative).

Mean/Median absolute error \downarrow , mean_absolute_error,median_absolute_error

•
$$MeanAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{n} \sum_{i} |y_i - \hat{y}_i|$$

More robust to outliers in the data but non-smooth (harder to optimize).

Classification performances

Confusion matrix, confusion_matrix

- Matrix C that counts for C_{i,j} the number of samples that are from the true class i and are predicted as class j.
- For binary classification we have
 - ► C_{0,0} True Negative (TN) and C_{1,1} True Positive (TP).
 - C_{1,0} False Negative (FN) and C_{0,1} False Positive (FP).
- Used for many performance measures.

Accuracy \uparrow , accuracy_score

- ▶ Ratio of correctly classified samples $\frac{TP+TN}{n} = \frac{1}{n} \sum_{k} C_{k,k}$.
- ▶ Balanced accuracy $\frac{1}{p} \sum_{k} \frac{C_{k,k}}{\sum_{l} C_{l,k}}$ better when unbalanced classes.

Area Under the Receiver Operating Curve (ROC) curve \, roc_auc_score

- Compute the Area under the curve plotting $TPR = \frac{TP}{TP+FN}$ as a function of $FPR = \frac{FP}{FP+TN}$ when varying the threshold on the score function.
- Estimates for binary classification the probability for a positive sample to have a larger score than a negative sample (measure of separability in the score space).

Interpreting the performance

Performance measure

- A performance measure even when computed on test data is a 1D (partial) measure of the quality of a model.
- Know the side effect of the performance measure (e.g. MSE is very sensitive to outliers, Pearson-s correlation coeff is invariant to scaling).
- Always compute other performance measures and compare them on a given model/data.

Interpreting the prediction

- Visualize the predictions (confusion matrix, scatterplot for regression).
- Search for bias in the predictions (some groups always badly predicted?).
- Look at mispredicted samples (bad label or systematic error).

Warning

Always be careful what you wish for (in terms of performances). Optimizing a given criterion can/will have unintended effect.

Section

Introduction

Performance measure

Unsupervised learning Regression Classification

Validation/Model selection

Spliting the data 50 types of validation Validation with Scikit-learn

Interpretation of the model

Feature importance Model explanation Adversarial attack Algorithmic bias

Conclusion

12

Splitting the data

Principle of Hold-Out cross-validation

- Split the training data in a training and validation sets (non overlapping).
- Train different models (different methods and/or parameters) on the train data.
- Evaluate performance on the validation data and select the method/parameters with best performance.

Final estimator

- The validation is a method of selection for the method/parameters not the estimator.
- After selecting the optimal parameters, one should retrain the estimator on the whole training dataset using the optimal method/parameters.
- For methods that can have a large variability (neural network) the best classifier on validation set is often kept (also used for early stopping).

Different ways to split the data

Data splitting for cross-validation [Arlot and Celisse, 2010]

The training data is split in non-overlapping training/validation sets.

▶ Hold-Out uses a unique split and computes the performance on the validation set.

- More robust cross-validation approaches actually investigate several splits of the data and compute the average performance:
 - K-fold (split in K sets and use one split as test for all k)
 - Random sampling (aka **Shuffle split**) draws several random splittings.
 - Leave one out bootstrap draws training samples with replacement.
- Scikit-learn implementation : sklearn.model_selection.cross_validate

Data splitting with Scikit-learn

- Scikit-learn implements iterator classes for data split in sklearn.model_selection.
- KFold is the classical K-fold cross-validation.
- StratifiedKFold ensures a data split that preserves the proportion of classes.
- ShuffleSplit randomly selects a proportion of the samples for train/validation.
- TimeSeriesSplit preserves the temporal sequences and ensures that the validation data is in the future (see practical session 2).

Source :

https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html

Validation with Scikit-learn

Principle

- GridSearchCV takes a model and a grid of parameters as input and performs cross-validation.
- Both the best estimator (retrained on the whole data) and the best parameters can be recovered.
- Number of splits and type of data splitting can be chosen.
- For large number of parameters complexity is exponential, RandomizedSearchCV can be more efficient.

Python code

```
from sklearn.svm import SVC
2 from sklearn.model_selection import
        GridSearchCV
3
  ngrid=21
4
  clf = SVC()
  param_grid={'C':np.logspace(-2,2,ngrid),
           'gamma':np.logspace(-2,2,ngrid),}
8
  cv = GridSearchCV(clf,param_grid)
9
  cv.fit(xn,y)
  # recover best parameters and estimators
14
  clf_opt = cv.best_estimator_
15 params_opt = cv.best_params_
```

Section

Introduction

Performance measure

Unsupervised learning Regression Classification

Validation/Model selection

Spliting the data 50 types of validation Validation with Scikit-learn

Interpretation of the model

Feature importance Model explanation Adversarial attack Algorithmic bias

Conclusion

14

Interpretation of the model and data

ML interpretation and model explainability [Molnar, 2020]

- Important question of understanding the model and the data.
- Interpretation: how does the model work?
- Explainability: why did it predict this?
- GDPR brought the "right to explanation" in European countries.

Linear models

- Linear models are the simplest models and the importance of each variable is provided in the weights.
- Remember to standardize the data before interpretation because the weights depend on the scaling of the variables.
- Example in Scikit-learn documentation : https://scikit-learn.org/stable/ auto_examples/inspection/plot_linear_model_coefficient_interpretation.html

Feature selection [Guyon and Elisseeff, 2003]

- Can be seen as both pre-processing and promotion of interpretability.
- Can be done simultaneously with model estimation with linear models (Lasso).
- Wrapper methods perform a validation over the subset of variables (forward/backward methods add/remove variables one by one).

Feature permutation importance

Principle [Breiman, 2001]

- Computed by doing a random permutation for one feature (permute one column).
- The loss/gain of performance is computed on a held-out data and is a measure of the importance of this variable.
- Mean Decrease in Impurity (MDI) is an alternative for random forests.
- Correlated features will all be "important" even when non necessary.
- Computational complexity is high on high dimensional data.
- Scikit-learn : sklearn.inspection.permutation_importance

Local Interpretable Model-agnostic Explanations (LIME)

Principle [Ribeiro et al., 2016]

- The image to interpret is segmented in homogeneous super-pixels.
- Generate perturbed samples where only some super-pixels contain the image information the other being replaced by their average value.
- Estimate weights for the perturbed samples with a kernel.
- Perform Ridge regression trying to predict the output of model f on the perturbed samples from the binary activation of the super-pixels: the weights give the importance of the superpixels in the decision.
- ▶ When LS is used instead of Ridge we recover SHAP [Lundberg and Lee, 2017].
- Python implementation in ELI5: https://eli5.readthedocs.io/

Adversarial attacks

Principle [Goodfellow et al., 2014]

- A model that generalizes should be robust to small perturbation of the samples.
- Adversarial attacks search for samples x̃ = x + p close to the true sample x of label y that maximize the change in the prediction of the model f :

$$\max_{\tilde{\mathbf{x}}, \|\mathbf{x} - \tilde{\mathbf{x}}\| \le \epsilon} L(y, f(\tilde{\mathbf{x}})), \quad \text{or,} \quad \max_{\tilde{\mathbf{x}}, \|\mathbf{x} - \tilde{\mathbf{x}}\| \le \epsilon} L(f(\mathbf{x}), f(\tilde{\mathbf{x}})) \tag{1}$$

- Virtual Adversary (right) does not require the true label [Miyato et al., 2018].
- Adversarial examples can be used for manipulating the output of a model [Brown et al., 2017], for evaluating its robustness and for regularization.
- Python implementation : https://adversarial-robustness-toolbox.readthedocs.io/

Interpretability and explainability

Main approaches

- Linear models and sparsity (Lasso)
- Global agnostic models
 - Partial Dependence Plot [Goldstein et al., 2015]
 - Feature permutation importance [Breiman, 2001]
- Local approximation (smooth)
 - Linear local approximation [Erhan et al., 2009, Shrikumar et al., 2017].
 - Integrated gradients [Sundararajan et al., 2017]
- Local model agnostic methods
 - Game theory: Shapley [Strumbelj and Kononenko, 2014], SHAP [Lundberg and Lee, 2017]
 - LIME [Ribeiro et al., 2016]
- By design of the model (attention mechanism [Vaswani et al., 2017])

References

- Free book [Molnar, 2020]: https://christophm.github.io/interpretable-ml-book/
- Recent tutorial: https://explainml-tutorial.github.io/

Python toolboxes

- Interpretability: https://eli5.readthedocs.io/
- Adversarial robustness: https://adversarial-robustness-toolbox.readthedocs.io/

Bias and Fairness in Machine Learning

Exemple : COMPAS score in Florida, study ProPublica

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

May 23, 2016

- Proprietary algorithm predicting recidivists.
- Used by judges to decide where a person stays in prison until trial.
- ► Overall Accuracy : 66%
- Classified "risky", not recidivist:
 - 23.5% of whites.
 - ▶ 44.5% of afro-americans.
- Classified "not risky", but recidivists:
 - 47.7% of whites.
 - ▶ 28.0% of afro-americans.
- Student project:
 - 65.8% accuracy, same bias with linear model.
 - 62% accuracy but perfect fairness (same rates for both groups) for corrected data.

Algorithmic fairness (Survey [Mehrabi et al., 2021])

- Bias in the data will be learned by the model.
- Post processing or data repair methods (https://fairlearn.org/).
- There is a balance between fairness and performance.

Section

Im	÷×	d			ы.	n
	u	u	u	L	u	

Performance measure

Unsupervised learning Regression Classification

Validation/Model selection

Spliting the data 50 types of validation Validation with Scikit-learn

Interpretation of the model

Feature importance Model explanation Adversarial attack Algorithmic bias

Conclusion

19/24

20

Conclusion

Last words

- Know the data (visualize it, talk with experts, pre-process it, check for bias).
- Know the problem (unsupervised, supervised, final goal).
- Know the methods (linear/nonlinear, trees, neural networks).
- ▶ Validate the methods and parameters (performance measure, cross-validation).
- ▶ Be critical and curious with the model (interpretation, explainability, adversaries).

References

- Elements of statistical learning (free PDF online) [Friedman et al., 2001].
- Pattern recognition and machine learning [Bishop Christopher et al., 2006].
- Machine learning: a probabilistic perspective [Murphy, 2012].

References I

```
[Arlot and Celisse, 2010] Arlot, S. and Celisse, A. (2010).
A survey of cross-validation procedures for model selection.
Statistics surveys, 4:40–79.
```

[Bishop Christopher et al., 2006] Bishop Christopher, M. et al. (2006). Pattern recognition and machine learning. Information science and statisticsNew York: Springer.

```
[Breiman, 2001] Breiman, L. (2001).
Random forests.
Machine learning, 45(1):5–32.
```

[Brown et al., 2017] Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J. (2017). Adversarial patch. arXiv preprint arXiv:1712.09665.

[Erhan et al., 2009] Erhan, D., Bengio, Y., Courville, A., and Vincent, P. (2009). Visualizing higher-layer features of a deep network. University of Montreal, 1341(3):1.

[Friedman et al., 2001] Friedman, J., Hastie, T., Tibshirani, R., et al. (2001). The elements of statistical learning, volume 1. Springer series in statistics New York.

References II

[Goldstein et al., 2015] Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation.

journal of Computational and Graphical Statistics, 24(1):44-65.

[Goodfellow et al., 2014] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).

Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. *Journal of machine learning research*, 3(Mar):1157–1182.

Journal of machine learning research, 5(Mar):1157–1162.

[Lundberg and Lee, 2017] Lundberg, S. M. and Lee, S.-I. (2017).

A unified approach to interpreting model predictions.

In Proceedings of the 31st international conference on neural information processing systems, pages 4768–4777.

[Mehrabi et al., 2021] Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1–35.

[Miyato et al., 2018] Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. (2018). Virtual adversarial training: a regularization method for supervised and semi-supervised learning. *IEEE transactions on pattern analysis and machine intelligence*, 41(8):1979–1993.

References III

[Molnar, 2020] Molnar, C. (2020). Interpretable machine learning. Lulu. com.

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

 [Rand, 1971] Rand, W. M. (1971).
 Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336):846–850.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016).
" why should i trust you?" explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics*, 20:53–65.

[Shrikumar et al., 2017] Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In International Conference on Machine Learning, pages 3145–3153. PMLR.

References IV

[Strumbelj and Kononenko, 2014] Strumbelj, E. and Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. *Knowledge and information systems*, 41(3):647–665.

[Sundararajan et al., 2017] Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for deep networks.

In International Conference on Machine Learning, pages 3319-3328. PMLR.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).

Attention is all you need.

In Advances in neural information processing systems, pages 5998-6008.

[Vinh et al., 2010] Vinh, N. X., Epps, J., and Bailey, J. (2010).

Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance.

The Journal of Machine Learning Research, 11:2837-2854.