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Master Data Science, Institut Polytechnique de Paris

October 11, 2023



2/24

Overview of MAP654I

1. Data and Machine Learning problems
▶ Data properties and visualization
▶ Pre-processing
▶ Finding your Machine Learning problem

2. Unsupervised learning
▶ Clustering
▶ Density estimation and generative modeling
▶ Dictionary learning and collaborative filtering
▶ Dimensionality reduction and manifold learning

3. Supervised learning
▶ Bayesian decision and Nearest neighbors
▶ Linear models nonlinear methods for regression and classification
▶ Trees, forest and ensemble methods

4. Validation and interpretation
▶ Performance measures
▶ Models and parameter selection (validation)
▶ Interpretation of the methods
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Machine Learning in practice

Selecting the model

▶ For a given ML problem several kinds of method can be applied.

▶ Even for a given method several parameters can greatly change its performance.

▶ Selecting the ”best” method/parameters is called model selection or validation.

▶ An important question is which performance measure to use.

Understanding the model

▶ Interpret the perfomance, identifying bad predictions, detect bias in the
predictor/data.

▶ Most important variables for the model.

▶ Explaining a given prediction (what lead to this prediction).

▶ Robustness to noise, to adversarial attacks.
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Performance measure

Unsupervised learning

▶ Clustering
▶ Supervised (actual clusters ar known, perf_measure(y_true,y_pred)).
▶ Unsupervised (actual clusters unknown, perf_measure(X,y_pred))).

▶ Dimensionality reduction performance is often the objective of the optimization
problem (same as regression performance for invertible methods).

Supervised learning

▶ Classification (default is accuracy/0-1 loss).
▶ How accurate is the class prediction.
▶ How separable are the classes in the score function space.

▶ Regression (prediction error)
▶ Average prediction error.
▶ Correlation (focus on the dynamic).

Performance measures

▶ Performance measures provided below are functions of sklearn.metrics.

▶ Measures with ↑ are better with large values and ↓ with low or negative values.

Warning

Always evaluate performance on data that was not used to train the model for
supervised learning (also sometimes on unsupervised).



6/24

Clustering performance

Silhouette score ↑, silhouette_score [Rousseeuw, 1987]

▶ Score is the average of (b− a)/max(a, b) when a is the distance to the cluster
and b the distance to the closest other cluster.

▶ Non-supervised measure between −1 (worst) and 1 (best).

Rand Index ↑, rand_score [Rand, 1971]

▶ Ratio of samples belonging in the same clusters in the predicted and true
clustering (similar to accuracy but invariant to class permutation).

▶ Supervised measure between 0 (worst) and 1 (perfect).

▶ Adjusted Rand Index ajusted_rand_score has score 0 when random prediction.

Mutual Information ↑, mutual_info_score [Vinh et al., 2010]

▶ Measure of the mutual information between the true and predicted clustering.

▶ Supervised measure ≥ 0 (where 0 is worst).

▶ Adjusted Mutual Information adjusted_mutual_info_score has score 0 when random
prediction and 1 when perfect.
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Regression performances

Mean Square Error (MSE) ↓, mean_squared_error

▶ MSE(y, ŷ) = 1
n

∑
i(yi − ŷi)

2, classical convex and smooth loss in regression,
can be used as performance measure on new data.

▶ Can be normalized by the mean square of the true labels (which computes the
Signal to Noise Ratio, SNR).

Pearson Correlation Coefficient ↑, np.corrcoef

▶ r = cov(y, ŷ)/
√

cov(y,y)cov(ŷ, ŷ), between −1 and 1 (random pred. is 0).

▶ Measure of linearity between the true and predicted labels (invariant to scaling).

R2 coefficient of determination ↑, r2_score

▶ R2 = 1−MSE(y, ŷ)/MSE(y, ȳ) where ȳ contains the mean of y.

▶ 1 when perfect prediction, 0 when random prediction (can be negative).

Mean/Median absolute error ↓, mean_absolute_error,median_absolute_error

▶ MeanAE(y, ŷ) = 1
n

∑
i |yi − ŷi|

▶ More robust to outliers in the data but non-smooth (harder to optimize).
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Classification performances

Confusion matrix, confusion_matrix

▶ Matrix C that counts for Ci,j the number of
samples that are from the true class i and are
predicted as class j.

▶ For binary classification we have
▶ C0,0 True Negative (TN) and C1,1 True

Positive (TP).
▶ C1,0 False Negative (FN) and C0,1 False

Positive (FP).

▶ Used for many performance measures.

Accuracy ↑, accuracy_score

▶ Ratio of correctly classified samples TP+TN
n

= 1
n

∑
k Ck,k.

▶ Balanced accuracy 1
p

∑
k

Ck,k∑
l Cl,k

better when unbalanced classes.

Area Under the Receiver Operating Curve (ROC) curve ↑, roc_auc_score

▶ Compute the Area under the curve plotting TPR = TP
TP+FN

as a function of

FPR = FP
FP+TN

when varying the threshold on the score function.

▶ Estimates for binary classification the probability for a positive sample to have a
larger score than a negative sample (measure of separability in the score space).
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Interpreting the performance

Performance measure

▶ A performance measure even when computed on test data is a 1D (partial)
measure of the quality of a model.

▶ Know the side effect of the performance measure (e.g. MSE is very sensitive to
outliers, Pearson-s correlation coeff is invariant to scaling).

▶ Always compute other performance measures and compare them on a given
model/data.

Interpreting the prediction

▶ Visualize the predictions (confusion matrix, scatterplot for regression).

▶ Search for bias in the predictions (some groups always badly predicted?).

▶ Look at mispredicted samples (bad label or systematic error).

Warning

Always be careful what you wish for (in terms of performances). Optimizing a given
criterion can/will have unintended effect.
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Splitting the data

Full dataset

Test setTraining set

Test setTraining set Validation set

Principle of Hold-Out cross-validation

▶ Split the training data in a training and validation sets (non overlapping).

▶ Train different models (different methods and/or parameters) on the train data.

▶ Evaluate performance on the validation data and select the method/parameters
with best performance.

Final estimator

▶ The validation is a method of selection for the method/parameters not the
estimator.

▶ After selecting the optimal parameters, one should retrain the estimator on the
whole training dataset using the optimal method/parameters.

▶ For methods that can have a large variability (neural network) the best classifier
on validation set is often kept (also used for early stopping).
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Different ways to split the data

Data splitting for cross-validation [Arlot and Celisse, 2010]

▶ The training data is split in non-overlapping training/validation sets.

▶ Hold-Out uses a unique split and computes the performance on the validation set.
▶ More robust cross-validation approaches actually investigate several splits of the

data and compute the average performance:
▶ K-fold (split in K sets and use one split as test for all k)
▶ Random sampling (aka Shuffle split) draws several random splittings.
▶ Leave one out bootstrap draws training samples with replacement.

▶ Scikit-learn implementation : sklearn.model_selection.cross_validate

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
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Data splitting with Scikit-learn
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▶ Scikit-learn implements iterator classes for data split in sklearn.model_selection.

▶ KFold is the classical K-fold cross-validation.

▶ StratifiedKFold ensures a data split that preserves the proportion of classes.

▶ ShuffleSplit randomly selects a proportion of the samples for train/validation.

▶ TimeSeriesSplit preserves the temporal sequences and ensures that the validation
data is in the future (see practical session 2).

Source :
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html

https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html
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Validation with Scikit-learn
Data
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Principle

▶ GridSearchCV takes a model and a
grid of parameters as input and
performs cross-validation.

▶ Both the best estimator (retrained on
the whole data) and the best
parameters can be recovered.

▶ Number of splits and type of data
splitting can be chosen.

▶ For large number of parameters
complexity is exponential,
RandomizedSearchCV can be more
efficient.

Python code

1 from sklearn.svm import SVC
2 from sklearn.model_selection import

GridSearchCV
3

4 ngrid=21
5 clf = SVC()
6 param_grid={'C':np.logspace(-2,2,ngrid),
7 'gamma':np.logspace(-2,2,ngrid),}
8

9 cv = GridSearchCV(clf,param_grid)
10

11 cv.fit(xn,y)
12

13 # recover best parameters and estimators
14 clf_opt = cv.best_estimator_
15 params_opt = cv.best_params_
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Interpretation of the model and data

ML interpretation and model explainability [Molnar, 2020]

▶ Important question of understanding the model and the data.

▶ Interpretation: how does the model work?

▶ Explainability: why did it predict this?

▶ GDPR brought the ”right to explanation” in European countries.

Linear models
▶ Linear models are the simplest models and the importance of each variable is

provided in the weights.

▶ Remember to standardize the data before interpretation because the weights
depend on the scaling of the variables.

▶ Example in Scikit-learn documentation : https://scikit-learn.org/stable/

auto_examples/inspection/plot_linear_model_coefficient_interpretation.html

Feature selection [Guyon and Elisseeff, 2003]

▶ Can be seen as both pre-processing and promotion of interpretability.

▶ Can be done simultaneously with model estimation with linear models (Lasso).

▶ Wrapper methods perform a validation over the subset of variables
(forward/backward methods add/remove variables one by one).

https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html
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Feature permutation importance
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Principle [Breiman, 2001]

▶ Computed by doing a random permutation for one feature (permute one column).

▶ The loss/gain of performance is computed on a held-out data and is a measure of
the importance of this variable.

▶ Mean Decrease in Impurity (MDI) is an alternative for random forests.

▶ Correlated features will all be ”important” even when non necessary.

▶ Computational complexity is high on high dimensional data.

▶ Scikit-learn : sklearn.inspection.permutation_importance

https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html
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Local Interpretable Model-agnostic Explanations (LIME)

Principle [Ribeiro et al., 2016]

▶ The image to interpret is segmented in homogeneous super-pixels.

▶ Generate perturbed samples where only some super-pixels contain the image
information the other being replaced by their average value.

▶ Estimate weights for the perturbed samples with a kernel.

▶ Perform Ridge regression trying to predict the output of model f on the
perturbed samples from the binary activation of the super-pixels: the weights give
the importance of the superpixels in the decision.

▶ When LS is used instead of Ridge we recover SHAP [Lundberg and Lee, 2017].

▶ Python implementation in ELI5: https://eli5.readthedocs.io/

https://eli5.readthedocs.io/
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Adversarial attacks

Principle [Goodfellow et al., 2014]

▶ A model that generalizes should be robust to small perturbation of the samples.

▶ Adversarial attacks search for samples x̃ = x+ p close to the true sample x of
label y that maximize the change in the prediction of the model f :

max
x̃,∥x−x̃∥≤ϵ

L(y, f(x̃)), or, max
x̃,∥x−x̃∥≤ϵ

L(f(x), f(x̃)) (1)

▶ Virtual Adversary (right) does not require the true label [Miyato et al., 2018].

▶ Adversarial examples can be used for manipulating the output of a model
[Brown et al., 2017], for evaluating its robustness and for regularization.

▶ Python implementation : https://adversarial-robustness-toolbox.readthedocs.io/

https://adversarial-robustness-toolbox.readthedocs.io/
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Interpretability and explainability

Main approaches

▶ Linear models and sparsity (Lasso)
▶ Global agnostic models

▶ Partial Dependence Plot [Goldstein et al., 2015]
▶ Feature permutation importance [Breiman, 2001]

▶ Local approximation (smooth)
▶ Linear local approximation [Erhan et al., 2009, Shrikumar et al., 2017].
▶ Integrated gradients [Sundararajan et al., 2017]

▶ Local model agnostic methods
▶ Game theory: Shapley [Strumbelj and Kononenko, 2014], SHAP

[Lundberg and Lee, 2017]
▶ LIME [Ribeiro et al., 2016]

▶ By design of the model (attention mechanism [Vaswani et al., 2017])

References
▶ Free book [Molnar, 2020]: https://christophm.github.io/interpretable-ml-book/

▶ Recent tutorial: https://explainml-tutorial.github.io/

Python toolboxes

▶ Interpretability: https://eli5.readthedocs.io/

▶ Adversarial robustness: https://adversarial-robustness-toolbox.readthedocs.io/

https://christophm.github.io/interpretable-ml-book/
https://explainml-tutorial.github.io/
https://eli5.readthedocs.io/
https://adversarial-robustness-toolbox.readthedocs.io/
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Bias and Fairness in Machine Learning

Exemple : COMPAS score in Florida, study ProPublica

▶ Proprietary algorithm predicting recidivists.

▶ Used by judges to decide where a person
stays in prison until trial.

▶ Overall Accuracy : 66%
▶ Classified ”risky”, not recidivist:

▶ 23.5% of whites.
▶ 44.5% of afro-americans.

▶ Classified ”not risky”, but recidivists:
▶ 47.7% of whites.
▶ 28.0% of afro-americans.

▶ Student project:
▶ 65.8% accuracy, same bias with linear

model.
▶ 62% accuracy but perfect fairness (same

rates for both groups) for corrected data.

Algorithmic fairness (Survey [Mehrabi et al., 2021])

▶ Bias in the data will be learned by the model.

▶ Post processing or data repair methods (https://fairlearn.org/).

▶ There is a balance between fairness and performance.

https://fairlearn.org/
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Conclusion
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Last words

▶ Know the data (visualize it, talk with experts, pre-process it, check for bias).

▶ Know the problem (unsupervised, supervised, final goal).

▶ Know the methods (linear/nonlinear, trees, neural networks).

▶ Validate the methods and parameters (performance measure, cross-validation).

▶ Be critical and curious with the model (interpretation, explainability, adversaries).

References

▶ Elements of statistical learning (free PDF online) [Friedman et al., 2001].

▶ Pattern recognition and machine learning [Bishop Christopher et al., 2006].

▶ Machine learning: a probabilistic perspective [Murphy, 2012].
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