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Overview of MAPG654I

1. Data and Machine Learning problems
» Data properties and visualization
» Pre-processing
» Finding your Machine Learning problem

2. Unsupervised learning
» Clustering
» Density estimation and generative modeling
»> Dictionary learning and collaborative filtering
»> Dimensionality reduction and manifold learning

3. Supervised learning
> Bayesian decision and Nearest neighbors
» Linear models nonlinear methods for regression and classification
» Trees, forest and ensemble methods

4. Validation and interpretation

> Performance measures
» Models and parameter selection (validation)
> Interpretation of the methods
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Machine Learning in practice

Measuring Dimensionality Model
devices v
The u V/M Analysis
“real world” 1 Aly H ) [ results
R, .
Sensors Feature selection Cross-validation
Cameras Feature projection Bootstrap
Databases
Noise filtering Classification
Feature extraction Regression
Normalization Clustering

Description

Selecting the model
» For a given ML problem several kinds of method can be applied.

» Even for a given method several parameters can greatly change its performance.

> Selecting the "best” method/parameters is called model selection or validation.

» An important question is which performance measure to use.

Understanding the model
» Interpret the perfomance, identifying bad predictions, detect bias in the
predictor/data.

» Most important variables for the model.
> Explaining a given prediction (what lead to this prediction).

» Robustness to noise, to adversarial attacks.
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Performance measure

Unsupervised learning

» Clustering

» Supervised (actual clusters ar known, perf_measure(y_true,y_pred)).
» Unsupervised (actual clusters unknown, perf_measure(X,y_pred))).

» Dimensionality reduction performance is often the objective of the optimization
problem (same as regression performance for invertible methods).

Supervised learning

» Classification (default is accuracy/0-1 loss).

» How accurate is the class prediction.
» How separable are the classes in the score function space.

> Regression (prediction error)

» Average prediction error.
» Correlation (focus on the dynamic).

Performance measures
» Performance measures provided below are functions of sklearn.metrics.

» Measures with 1 are better with large values and | with low or negative values.

Warning
Always evaluate performance on data that was not used to train the model for
supervised learning (also sometimes on unsupervised).



Clustering performance

Silhouette score 1, silhouette_score [Rousseeuw, 1987]

» Score is the average of (b — a)/max(a,b) when a is the distance to the cluster
and b the distance to the closest other cluster.

» Non-supervised measure between —1 (worst) and 1 (best).

Rand Index T, rand_score [Rand, 1971]

» Ratio of samples belonging in the same clusters in the predicted and true
clustering (similar to accuracy but invariant to class permutation).

> Supervised measure between 0 (worst) and 1 (perfect).
» Adjusted Rand Index ajusted_rand_score has score 0 when random prediction.

Mutual Information 1, mutual_info_score [Vinh et al., 2010]
» Measure of the mutual information between the true and predicted clustering.

» Supervised measure > 0 (where 0 is worst).
» Adjusted Mutual Information adjusted_mutual_info_score has score O when random
prediction and 1 when perfect.



Regression performances

Mean Square Error (MSE) J/, mean_squared_error

> MSE(y,y) = 13,(yi — §:)°, classical convex and smooth loss in regression,
can be used as performance measure on new data.

» Can be normalized by the mean square of the true labels (which computes the
Signal to Noise Ratio, SNR).

Pearson Correlation Coefficient 1, np.corrcoef

> r=cov(y,y)/\/cov(y,y)cov(y,¥), between —1 and 1 (random pred. is 0).

> Measure of linearity between the true and predicted labels (invariant to scaling).

R? coefficient of determination 1, r2_score

> R*=1—- MSE(y,y)/MSE(y,y) where § contains the mean of y.

» 1 when perfect prediction, 0 when random prediction (can be negative).

Mean/Median absolute error J,, mean_absolute_error,median_absolute_error

> MeanAE(y,y) = 5 32, lyi — Uil
» More robust to outliers in the data but non-smooth (harder to optimize).



Classification performances
COI’IfUSiOﬂ matrix, confusion_matrix

» Matrix C that counts for C; ; the number of
samples that are from the true class ¢ and are
predicted as class j.

Normalized confusion matrix

» For binary classification we have
»> Co,0 True Negative (TN) and C1,1 True
Positive (TP).
» (1,0 False Negative (FN) and Cp 1 False wonica
Positive (FP).

True label

setosa versicolor virginica
Predicted label

» Used for many performance measures.
Accuracy T, accuracy_score

. P TP+TN _ 1
> Ratio of correctly classified samples ~1-= = 3", Cj, 1.

Ck,k
> Cuk

» Balanced accuracy %Zk better when unbalanced classes.

Area Under the Receiver Operating Curve (ROC) curve T, roc_auc_score

» Compute the Area under the curve plotting TPR = TPZ% as a function of

FPR = FPI‘;% when varying the threshold on the score function.

» Estimates for binary classification the probability for a positive sample to have a
larger score than a negative sample (measure of separability in the score space).



Interpreting the performance

Performance measure

> A performance measure even when computed on test data is a 1D (partial)
measure of the quality of a model.

> Know the side effect of the performance measure (e.g. MSE is very sensitive to
outliers, Pearson-s correlation coeff is invariant to scaling).

» Always compute other performance measures and compare them on a given
model/data.

Interpreting the prediction
» Visualize the predictions (confusion matrix, scatterplot for regression).
> Search for bias in the predictions (some groups always badly predicted?).

> Look at mispredicted samples (bad label or systematic error).

Warning

Always be careful what you wish for (in terms of performances). Optimizing a given
criterion can/will have unintended effect.
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Splitting the data

| Full dataset

Principle of Hold-Out cross-validation

» Split the training data in a training and validation sets (non overlapping).
» Train different models (different methods and/or parameters) on the train data.

» Evaluate performance on the validation data and select the method/parameters
with best performance.

Final estimator
» The validation is a method of selection for the method/parameters not the
estimator.
> After selecting the optimal parameters, one should retrain the estimator on the
whole training dataset using the optimal method/parameters.

» For methods that can have a large variability (neural network) the best classifier
on validation set is often kept (also used for early stopping).
10/24



Different ways to split the data

Data Hold out Random Sampling K-fold cross-validation Leave-One-Out Bootstrap
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Data splitting for cross-validation [Arlot and Celisse, 2010]

» The training data is split in non-overlapping training/validation sets.

» Hold-Out uses a unique split and computes the performance on the validation set.
» More robust cross-validation approaches actually investigate several splits of the
data and compute the average performance:

> K-fold (split in K sets and use one split as test for all k)
»> Random sampling (aka Shuffle split) draws several random splittings.
> Leave one out bootstrap draws training samples with replacement.

» Scikit-learn implementation . sklearn.model_selection.cross_validate


https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html

Data splitting with Scikit-learn

KFold StratifiedKFold

CV iteration
w N P o
CV iteration
w N = O

Class Class

ShuffleSplit TimeSeriesSplit
W Testing set
BN Training set

CV iteration
w N o
CV iteration
w N = O

Class Class

0 20 40 60 80 100 0 20 40 60 80 100
Sample index Sample index

» Scikit-learn implements iterator classes for data split in sklearn.model_selection.

» KFold is the classical K-fold cross-validation.

» StratifiedKFold ensures a data split that preserves the proportion of classes.

» ShuffleSplit randomly selects a proportion of the samples for train/validation.

» TimeSeriesSplit preserves the temporal sequences and ensures that the validation
data is in the future (see practical session 2).

Source :
https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html 12/24


https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html

Validation with Scikit-learn

Data Avg. accuracy 5-Fold

Principle

» GridSearchCV takes a model and a
grid of parameters as input and
performs cross-validation.

» Both the best estimator (retrained on

the whole data) and the best
parameters can be recovered.

» Number of splits and type of data
splitting can be chosen.

» For large number of parameters
complexity is exponential,
RandomizedSearchCV can be more
efficient.

1
2
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Avg. accuracy Shufflesplit
02

Cross val. SVM

Python code

from sklearn.svm import SVC
from sklearn.model_selection import

GridSearchCV
ngrid=21
clf = SVC()

param_grid={'C' :np.logspace(-2,2,ngrid),
'gamma’' :np.logspace(-2,2,ngrid),}

cv = GridSearchCV(clf,param_grid)
cv.fit(xn,y)
# recover best parameters and estimators

clf_opt = cv.best_estimator_
params_opt = cv.best_params_
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Interpretation of the model and data

ML interpretation and model explainability [Molnar, 2020]
» Important question of understanding the model and the data.
» Interpretation: how does the model work?
» Explainability: why did it predict this?
» GDPR brought the "right to explanation” in European countries.

Linear models

» Linear models are the simplest models and the importance of each variable is
provided in the weights.

» Remember to standardize the data before interpretation because the weights
depend on the scaling of the variables.

» Example in Scikit-learn documentation : https://scikit-learn.org/stable/

auto_examples/inspection/plot_linear_model_coefficient_interpretation.html

Feature selection [Guyon and Elisseeff, 2003]
» Can be seen as both pre-processing and promotion of interpretability.
» Can be done simultaneously with model estimation with linear models (Lasso).

» Wrapper methods perform a validation over the subset of variables
(forward /backward methods add/remove variables one by one).


https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html
https://scikit-learn.org/stable/auto_examples/inspection/plot_linear_model_coefficient_interpretation.html

Feature permutation importance

Importance RF (Acc=0.86) Importance SVM (Acc=0.87)
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Computed by doing a random permutation for one feature (permute one column).

The loss/gain of performance is computed on a held-out data and is a measure of
the importance of this variable.

Mean Decrease in Impurity (MDI) is an alternative for random forests.
Correlated features will all be "important” even when non necessary.
Computational complexity is high on high dimensional data.

Scikit-learn : sklearn.inspection.permutation_importance


https://scikit-learn.org/stable/modules/generated/sklearn.inspection.permutation_importance.html

Local Interpretable Model-agnostic Explanations (LIME)

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

Principle [Ribeiro et al., 2016]

» The image to interpret is segmented in homogeneous super-pixels.

» Generate perturbed samples where only some super-pixels contain the image
information the other being replaced by their average value.

» Estimate weights for the perturbed samples with a kernel.

» Perform Ridge regression trying to predict the output of model f on the
perturbed samples from the binary activation of the super-pixels: the weights give
the importance of the superpixels in the decision.

» When LS is used instead of Ridge we recover SHAP [Lundberg and Lee, 2017].

> Python implementation in ELI5: https://eli5.readthedocs.io/

16/24


https://eli5.readthedocs.io/

Adversarial attacks
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Principle [Goodfellow et al., 2014]

» A model that generalizes should be robust to small perturbation of the samples.

» Adversarial attacks search for samples x = x + p close to the true sample x of
label y that maximize the change in the prediction of the model f :

max  L(y, f(%)), or, _ max L(f(x),f(X)) (1)

X [|x—x||<e X |lx—x||<e

» Virtual Adversary (right) does not require the true label [Miyato et al., 2018].

» Adversarial examples can be used for manipulating the output of a model
[Brown et al., 2017], for evaluating its robustness and for regularization.

» Python implementation : https://adversarial-robustness-toolbox.readthedocs.io/


https://adversarial-robustness-toolbox.readthedocs.io/

Interpretability and explainability

Main approaches
» Linear models and sparsity (Lasso)

» Global agnostic models

» Partial Dependence Plot [Goldstein et al., 2015]
> Feature permutation importance [Breiman, 2001]

» Local approximation (smooth)

> Linear local approximation [Erhan et al., 2009, Shrikumar et al., 2017].
> Integrated gradients [Sundararajan et al., 2017]

» Local model agnostic methods

» Game theory: Shapley [Strumbelj and Kononenko, 2014], SHAP
[Lundberg and Lee, 2017]
»> LIME [Ribeiro et al., 2016]

» By design of the model (attention mechanism [Vaswani et al., 2017])
References

> Free book [Molnar, 2020]: https://christophm.github.io/interpretable-ml-book/

> Recent tutorial: https://explainml-tutorial.github.io/

Python toolboxes
> Interpretability: https://eli5.readthedocs.io/

» Adversarial robustness: https://adversarial-robustness-toolbox.readthedocs.io/


https://christophm.github.io/interpretable-ml-book/
https://explainml-tutorial.github.io/
https://eli5.readthedocs.io/
https://adversarial-robustness-toolbox.readthedocs.io/

Bias and Fairness in Machine Learning
Exemple : COMPAS score in Florida, study ProPublica

Machine Bias

There's software used across the country to
predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff La ya Mattu and Lauren

Proprietary algorithm predicting recidivists.

Used by judges to decide where a person
stays in prison until trial.

Overall Accuracy : 66%
Classified "risky”, not recidivist:
> 23.5% of whites.
> 44.5% of afro-americans.
Classified "not risky”, but recidivists:
> 47.7% of whites.
» 28.0% of afro-americans.
Student project:

> 65.8% accuracy, same bias with linear
model.

»> 62% accuracy but perfect fairness (same
rates for both groups) for corrected data.

Algorithmic fairness (Survey [Mehrabi et al., 2021])

» Bias in the data will be learned by the model.

» Post processing or data repair methods (https://fairlearn.org/).

» There is a balance between fairness and performance.


https://fairlearn.org/
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Conclusion

Avg. accuracy 5-Fold

Last words
» Know the data (visualize it, talk with experts, pre-process it, check for bias).
Know the problem (unsupervised, supervised, final goal).

>

» Know the methods (linear/nonlinear, trees, neural networks).

> Validate the methods and parameters (performance measure, cross-validation).
| 4

Be critical and curious with the model (interpretation, explainability, adversaries).

References
> Elements of statistical learning (free PDF online) [Friedman et al., 2001].
> Pattern recognition and machine learning [Bishop Christopher et al., 2006].
» Machine learning: a probabilistic perspective [Murphy, 2012].
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