Signal Processing from Fourier to Machine Learning Part 2 : Digital Signal Processing

R. Flamary

November 21, 2024

Course overview

Fourier Analysis and analog filtering	4
Digital signal processing	4
Sampling Analog/Digital conversion	5
Sampling	
Reconstruction of analog signals	
Aliasing	
Digital filtering	13
Discrete Convolution	
Discrete Time Fourier Transform (DTFT)	
Z-transform and transfer function	
Finite signals	31
Circular convolution	
Discrete Fourier Transform (DFT)	
Fast Fourier Transform and fast convolution	
Applications of DSP	54
Digital filter design	
Sinc interpolation	
Digital Image Processing	
Random signals	77
Signal representation and dictionary learning	77

Full course overview

1. Fourier analysis and analog filtering

- **1.1** Fourier Transform
- **1.2** Convolution and filtering
- 1.3 Applications of analog signal processing

2. Digital signal processing

- 2.1 Sampling and properties of discrete signals
- 2.2 z Transform and transfer function
- 2.3 Fast Fourier Transform

3. Random signals

- 3.1 Random signals, stochastic processes
- 3.2 Correlation and spectral representation
- 3.3 Filtering and linear prediction of stationary random signals

4. Signal representation and dictionary learning

- 4.1 Non stationary signals and short time FT
- 4.2 Common signal representations (Fourier, wavelets)
- **4.3** Source separation and dictionary learning
- 4.4 Signal processing with machine learning
- 1/80

Digital Signal Processing

x[t]	x0)	E[0] - x X[E[1] - x X[E[1] - x X[E[2] - x X[-
	x[5]⊶ DFT	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 t	x[7]⊶	0[3] W ⁰ _N X[

Digital Signal Processing

- Microprocessors widely available and cheap since the 70s.
- Analog-to-digital converter (ADC) and digital-to-analog converter (DAC).
- ► Standard signal processing : ADC→DSP→DAC.
- DSP more robust/stationary.
- Analog SP is faster but sensitive to physics (temperature).
- Digital Signal Processing can be done on dedicated hardware or processors.

Sampling

Principle

- Sampling is the reduction of a continuous-time signal to a discrete-time signal.
- \blacktriangleright A discrete signal sampled for period T can be expressed as

$$x_T(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$
(1)

- ▶ T is the sampling period (or interval), $f_s = \frac{1}{T}$ is the sampling frequency.
- Due to the properties of the dirac δ the sampled signal is equal to

$$x_T(t) = x(t) \sum_{n = -\infty}^{\infty} \delta(t - nT) = x(t) \operatorname{III}_T(t)$$
(2)

where $\coprod_T(t)$ is the dirac comb of period T.

Nyquist/Shannon sampling Theorem

Theorem [Shannon, 1949][Nyquist, 1928]

Let x(t) be a signal of Fourier transform X(f) that has a support in $[-\frac{1}{2T}, \frac{1}{2T}]$. Then the signal x(t) can be reconstructed from its sampling with

$$x(t) = \sum_{n=-\infty}^{\infty} h_T(t - nT)x(nT) = x_T(t) \star h_T(t)$$
(4)

where

$$h_T(t) = \operatorname{sinc}\left(\frac{\pi t}{T}\right) = \frac{\sin(\frac{\pi t}{T})}{\frac{\pi t}{T}}$$
(5)

For a signal of frequency support [-B, B], B is often called the Nyquist frequency (half the sampling rate necessary for reconstruction).

Sampling in the Fourier domain

Fourier transform of sampled signal

- ▶ If x(nT) is bounded for $n \in \mathbb{Z}$, $x_T(t)$ is a tempered distribution.
- ▶ The FT of $x_T(t)$ can be expressed as a function of $X(f) = \mathcal{F}[x(t)]$:

$$\mathcal{F}[x_T(t)] = \mathcal{F}[x(t)\amalg_T(t)] = X(f) \star \frac{1}{T}\coprod_{\frac{1}{T}}(f) = \frac{1}{T}\sum_{n=-\infty}^{\infty} X\left(f - \frac{n}{T}\right)$$
(3)

• The regular sampling leads to a periodization in the Fourier domain.

6/80

Nyquist/Shannon sampling Theorem

Proof

5/80

7/80

Let $x_T(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$ be the sampled signal. Its Fourier Transform is

$$X_T(t) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X\left(f - \frac{1}{T}\right)$$

Since we know that X is of support $[-\frac{1}{2T}, \frac{1}{2T}]$ it means that $\forall f \in [-\frac{1}{2T}, \frac{1}{2T}]$ we have $X_T(f) = \frac{1}{T}X(f)$.

Now if we want to reconstruct the signal we can multiply in the Fourier domain by the ideal filter:

$$H(f) = \begin{cases} T & \text{if } |f| < \frac{1}{2T} \\ 0 & \text{else} \end{cases}$$

Using the bounded support of X we have now $\forall f$

$$X_T(f)H(f) = X(f)$$

Which in the temporal domain means

$$x(t) = x_T(t) \star h(t) = h(t) \star \sum_{n = -\infty}^{\infty} x(nT)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x(nT)h(t - nT)$$

where $h(t) = \operatorname{sinc}\left(\frac{\pi t}{T}\right)$ is the inverse TF of H.

Aliasing

Aliasing

• The FT of $x_T(t)$ is a weighted sum of $X(f) = \mathcal{F}[x(t)]$:

$$\mathcal{F}[x_T(t)] = \mathcal{F}[x(t)\amalg_T(t)] = X(f) \star \frac{1}{T}\coprod_{\frac{1}{T}}(f) = \frac{1}{T}\sum_{n=-\infty}^{\infty} X\left(f - \frac{n}{T}\right)$$
(6)

- ▶ When the support of X(f) is not in $[-\frac{1}{2T}, \frac{1}{2T}]$ the repeated shapes will overlap in frequency.
- In this case the signal cannot be reconstructed and some information is lost.

Example of aliasing

- Let $x(t) = \cos(2\pi f_0 t)$ be a signal that we want to sample.
- We suppose that $\frac{f_s}{2} < f_0 < f_s = f_s$.
- We have

$$X_T(f) = \frac{1}{T} \sum_k \frac{1}{2} (\delta(f - f_0 - kf_s) + \delta(f + f_0 - kf_s))$$

• The only components of the spectrum in $\left[-\frac{f_s}{2}, \frac{f_s}{2}\right]$ are:

$$X_T(f)H(f) = \frac{1}{2}(\delta(f - f_0 + f_s) + \delta(f + f_0 - f_s))$$

Reconstructed signal:

$$x(t) = \cos(2\pi(f_s - f_0)t)$$

10/80

Aliasing in real life

Aliasing

- When sampling high frequency real life signals.
- Always needs a low-pass filter (analog) before sampling.
- Can be solved by oversampling (followed by filtering then subsampling).
- Anti-aliasing filters in graphic cards (and digital cameras).

Analog to Digital Conversion

ADC circuits

- Sampling frequency has to be twice the maximum frequency in the signal.
- Low pass filtering before sampling (analog).
- Several sources of noise : jitter (non perfect clock), non-linearity,
- For images CCD or CMOS (smartphones) sensors count photons.

Quantization

- Computers are discrete, digital signal are discrete both in time and value.
- Quantization is the conversion from continuous value to a finite bit format.
- Number of bits has an important impact on SNR after reconstruction.

Discrete signal (1)

Notations

- x(t) with $t \in \mathbf{R}$ is the analog signal.
- ▶ $x_T(t)$ with $t \in \mathbf{R}$ is the sampled signal of period (T) but still continuous time:

$$x_T(t) = \sum_{n=-\infty}^{\infty} x(nT)\delta(t - nT)$$

▶ x[n] with $n \in \mathbb{Z}$ is the discrete signal sampled with period T such that:

$$x[n] = x(nT)$$

• Obviously one can recover $x_T(t)$ from x[n] with

$$x_T(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT)$$

- ln order to simplify notations we will suppose T = 1 in the following.
- ln this course we suppose that |x[n]| is bounded.

Discrete signal (2)

Discrete dirac

$$[n] = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{else} \end{cases}$$
(7)

Discrete signal

Any discrete signal x[n] can be decomposed as a sum of translated discrete diracs:

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
(8)

The discrete diracs are an orthogonal basis of $L_2(\mathbb{Z})$ of scalar product and corresponding norm

δ

$$\langle x[n], h[n] \rangle = \sum_{k=-\infty}^{\infty} x[k]h^*[k], \qquad ||x[n]||^2 = \langle x[n], x[n] \rangle = \sum_{k=-\infty}^{\infty} |x[k]|^2.$$

Discrete Convolution

Convolution between discrete signals

Let x[n] and h[n] two discrete signals. The convolution between them is expressed as:

$$x[n] \star h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
(9)

Digital filter properties

Let the discrete system/operator/filter L described by its impulse response h[n].

Causality L is causal if h[n] = 0, $\forall n < 0$. L is causal if

$$h[n] = h[n]\Gamma[n], \quad \text{where} \quad \Gamma[n] = \begin{cases} 1 & \text{for } n \ge 0\\ 0 & \text{else} \end{cases}$$
(10)

Stability A system is stable if the output of a bonded input is bounded. A necessary and sufficient condition is that

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty \tag{11}$$

Transfer function

Transfer function of a discrete filter

- Let L be a digital filter of impulse response h[n].
- For an input $e_f[k] = e^{i2\pi fk}$ the output of the filter is

$$Le_{f}[n] = \sum_{k=-\infty}^{\infty} e^{i2\pi f(n-k)} h[k] = e^{i2\pi fn} \sum_{k=-\infty}^{\infty} e^{-i2\pi fk} h[k]$$
(12)

- $e_f[k] = e^{i2\pi fk}$ are then the eigenvectors of the discrete convolution operator.
- > The **Transfer function** of the filter is defined as the following Fourier series:

$$H(e^{i2\pi f}) = \sum_{k=-\infty}^{\infty} e^{-i2\pi fk} h[k]$$
(13)

16/80

This actually corresponds to the Fourier transform of the signal.

Discrete Time Fourier Transform (DTFT)

Fourier transform

The Discrete Time Fourier Transform of the discrete signal $\boldsymbol{x}[n]$ is defined as

$$X(e^{i2\pi f}) = \sum_{k=-\infty}^{\infty} e^{-i2\pi fk} x[k]$$
(14)

- lt is periodic and equivalent to the Fourier transform of $x_T(t)$.
- For a tempered distribution (x[n] bounded) all the FT properties are preserved.

Orthonormal basis of $L_2([0,1])$

- The FT of a discrete signal is periodic (of period T = 1) and can be expressed as a Fourier series.
- $e^{i2\pi fn}$ defines an orthogonal basis of $L_2([0,1]))$ with scalar product $< a(f), b(f) >= \int_0^1 a(f)b*(f)df$.
- ▶ The coefficients can be recovered using the scalar product:

$$x[n] = \langle X(e^{i2\pi f}), e^{-i2\pi fn} \rangle = \int_0^1 X(e^{i2\pi f}) e^{i2\pi fn} df$$
(15)

• Conservation of energy implies that $\sum_{k=-\infty}^{\infty} |x[n]|^2 = \int_0^1 |X(e^{i2\pi f})|^2 df$

Ideal filter

Ideal low pass filter

• The Fourier transform of the ideal low pass filter with $f_c < \frac{1}{2}$ is

$$H_0(e^{i2\pi f}) = \begin{cases} 1 & \text{for } |f| < f_c \\ 0 & \text{else} \end{cases}$$
(17)

▶ Using Eq. 15 one can recover the impulse response

$$h[n] = \int_{-\frac{1}{2}}^{\frac{1}{2}} H_0(e^{i2\pi f}) e^{i2\pi f n} df = \frac{\sin(2\pi f_c n)}{\pi n} = 2f_c \operatorname{sinc}(2\pi f_c n)$$
(18)

That is a regular sampling of the continuous impulse response.

- > This filter is non causal and cannot be implemented in practice (infinite sum).
- In practice one has to approximate this filter using Finite impulse response or Infinite impulse response filters.

Fourier Transform and discrete convolution

Theorem

Let $x[n]\in L_2(\mathbb{Z})$ and $h[n]\in L_2(\mathbb{Z})$ two discrete signals. The Fourier Transform of $y[n]=x[n]\star h[n]$ is

$$Y(e^{i2\pi f}) = X(e^{i2\pi f})H(e^{i2\pi f})$$
(16)

- Similarly to continuous signal, the FT of the convolution is a pointwise multiplication.
- This shows similarly that the filter will have an effect (amplification and attenuation) on the individul frequency components.
- ▶ The FT of a temporal multiplication y[n] = x[n]h[n] can also be expressed as

$$Y(e^{i2\pi f}) = \int_0^1 X(e^{i2\pi u}) H(e^{i2\pi (f-u)}) du = X(e^{i2\pi f}) * H(e^{i2\pi f})$$

Digital filter

Recurent filter formulation

- We want to design an implementable filter (finite number fo computations).
- \blacktriangleright We define the relation between the input x[n] and the output y[n] as a difference equation :

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
(19)

where a_k and b_k are reals and $a_0 \neq 0$.

• The sample y[n] can be expressed as

$$y[n] = \frac{1}{a_0} \left(\sum_{k=0}^{M} b_k x[n-k] - \sum_{k=1}^{N} a_k y[n-k] \right)$$
(20)

- Can be computed only from the past (causal) and with M + N multiply/accumulate.
- ▶ Called Infinite Impulse response (IIR) filter when N > 1 because the recurrence imply that y[n] depends on all the values of x[k] for $k \le n$.

17/80

Special cases

$$y[n] = \sum_{k=0}^{M} \frac{b_k}{a_0} x[n-k] = x[n] \star h[n]$$
(21)

 $h[n] = \begin{cases} \frac{1}{N_a} & \text{for } 0 \le n \le N_a \\ 0 & \text{else} \end{cases}$ (23)

The impulse response is

$$h[n] = \begin{cases} \frac{b_n}{a_0} & \text{for } 0 \le n \le M\\ 0 & \text{else} \end{cases}$$
(22)

Autoregressive model (AR) when M = 1

$$y[n] = \sum_{k=1}^{N} \frac{b_k}{a_0} y[n-k]$$
(24)

Example: Average filter

The output depends only on initial (in time) condition of the output. It is not a filter.

Factorization of the transfer function

Zero/poles factorization

The transfer function of a recurrent filter is

$$H(e^{i2\pi f}) = \frac{Y(e^{i2\pi f})}{X(e^{i2\pi f})} = \frac{\sum_{k=0}^{M} b_k e^{-i2\pi fk}}{\sum_{k=0}^{N} a_k e^{-i2\pi fk}}.$$
(26)

It can be factorized as

$$H(e^{i2\pi f}) = \frac{b_0}{a_0} \frac{\prod_{k=1}^M (1 - c_k e^{-i2\pi f})}{\prod_{k=1}^N (1 - d_k e^{-i2\pi f})}.$$
(27)

- c_k are the zeros and d_k are the poles of the transfer function.
- Modulus and phase are easier to interpret in with the factorization.
- Easier to make a bode plot by treating each pole/zero independently.

Transfer function of an IIR filter

Transfer function

• We recall that the relations between input x[n] and output y[n] is defined as

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

> Taking the Fourier transform of both terms in the equality we find

$$\sum_{k=0}^{N} a_k \, e^{-i2\pi f k} Y(e^{i2\pi f}) = \sum_{k=0}^{M} b_k \, e^{-i2\pi f k} X(e^{i2\pi f})$$

The Transfer function of the filter is then

$$H(e^{i2\pi f}) = \frac{Y(e^{i2\pi f})}{X(e^{i2\pi f})} = \frac{\sum_{k=0}^{M} b_k e^{-i2\pi fk}}{\sum_{k=0}^{N} a_k e^{-i2\pi fk}}.$$
(25)

• The transfer function is a rational function of polynomials of $e^{-i2\pi f}$.

22/80

Frequency response for discrete signals

Modulus and Gain

The modulus of the transfer function as a function of $w = 2\pi f$ is:

$$|H(e^{iw})| = \frac{|b_0|}{|a_0|} \frac{\prod_{k=1}^{M} |1 - c_k e^{-iw}|}{\prod_{k=1}^{N} |1 - d_k e^{-iw}|}$$

The gain in dB can be expressed as $G(w) = 20 \log(|H(e^{iw})|)$

$$G(w) = 10\log_{10}\frac{|b_0|^2}{|a_0|^2} + \sum_{k=1}^M 10\log_{10}|1 - c_k e^{-iw}|^2 - \sum_{k=1}^N 10\log_{10}|1 - d_k e^{-iw}|^2.$$

where the difference between poles and zeros is only a sign.

Phase

The phase of the transfer function can be expressed similarly

$$Arg(H(e^{iw})) = Arg(\frac{b_0}{a_0}) + \sum_{k=1}^{M} Arg(1 - c_k e^{-iw}) - \sum_{k=1}^{N} Arg(1 - d_k e^{-iw}).$$

Example for one pole/zero

• We study a transfer function with a unique zero $c_1 = re^{i2\pi f_0}$:

$$H(e^{2i\pi f}) = (1 - re^{i2\pi f_0}e^{-i2\pi f})$$

The gain in dB can be expressed as

$$G_d B(f) = 10 \log_{10} |1 - re^{i2\pi f_0} e^{-i2\pi f}|^2$$

- The magnitude reaches a minimum for $f = f_0$ and a maximum in $f = f_0 + \frac{1}{2}$.
- The attenuation in $f = f_0$ is perfect when r = 1.
- The Phase fo the transfer function is:

$$Arg(H(e^{i2\pi f})) = \arctan\left[\frac{r\sin(2\pi(f-f_0))}{1-r\cos(2\pi(f-f_0))}\right].$$

The Z-transform (1)

Definition

The Z-transform is a generalization of the Fourier transform for discrete signals. It can be computed as the Laurent series:

$$H(z) = \mathcal{Z}(h[n]) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n}.$$
 (28)

where $z \in \mathbb{C}$ is a complex.

Region of Convergence (ROC)

- ▶ The Z-transform is always associated to its region of convergence.
- ▶ The Laurent series is said to be convergent if

$$\sum_{n=-\infty}^{+\infty} |h[n]| |z|^{-n} < +\infty.$$

▶ The Region of Convergence is defined as

$$ROC(H) = \left\{ z : \left| \sum_{n=-\infty}^{\infty} h[n] z^{-n} \right| < \infty \right\}$$

• This region depends only on |z|.

26/80

The Z-transform (2)

Region of Convergence (2)

- ▶ There always exists ρ_1 and ρ_2 such that H(z) is convergent for $\rho_1 < |z| < \rho_2$ and divergent for $|z| < \rho_1$ or $|z| > \rho_2$.
- ▶ When H(z) converges for |z| = 1 we recover the Discrete Time Fourier Transform of the signal.
- For a causal filter, if H(z) converges with $|z| = \rho$, it converges with $|z| > \rho$ and $\rho_2 = \infty$.
- ▶ If a filter is stable $(\sum_n |h[n]| < \infty)$ the H(z) is convergent for |z| = 1, if it is causal and stable it is convergent for $|z| \ge 1$

Example

Let $h[n] = \Gamma[n]\phi^n$ with $\phi > 0$ be a causal impulse response of a filter.

$$\sum_{n=-\infty}^{\infty} h[n] z^{-n} = \sum_{n=0}^{\infty} \phi^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{\phi}{z}\right)^n = \frac{1}{1 - \phi z^{-1}}.$$

Note that the series converges for $|\phi z^{-1}| < 1$ hence the region of convergence is $|z| > \phi$

Inverse Z-transform

Definition

The inverse Z-transform depends on the ROC and can be expressed as

$$x[n] = \mathcal{Z}^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
(29)

where C is a counterclockwise closed path encircling the origin and entirely in the ROC(H). Usually solved using Cauchy's residue theorem.

• When |z| = 1 is in the ROC(H) one can compute the inverse Fourier transform for discrete signals:

$$x[n] = \int_0^1 X(e^{i2\pi f}) e^{i2\pi f n} dt$$

Example

Let $H(z) = \frac{1}{1-\phi z^{-1}}$ and $ROC(H) = \{z | |z| > \rho\}$. This ROC means that h[n] is causal and we recover

$$H(z) = \frac{1}{1 - \phi z^{-1}} = \sum_{n=0}^{+\infty} \phi^n z^{-n} = \sum_{n=-\infty}^{+\infty} \phi^n \Gamma[n] z^{-n} \quad \to \quad h[n] = \phi^n \Gamma[n]$$

Properties of Z-transform

Some properties

- Linearity : $\mathcal{Z}[a_1x_1[n] + a_2x_2[n]] = a_1X_1(z) + a_2X_2(z)$
- Time reversal : $\mathcal{Z}[x[-n]] = X(z^{-1})$
- Time delay : $\mathcal{Z}[x[n-n_0]] = X(z)z^{-n_0}$
- **•** Differentiation : $\mathcal{Z}[nx[n]] = -z \frac{dX(z)}{dz}$
- ▶ Convolution : $\mathcal{Z}[x[n] \star h[n]] = X(z)H(z)$, and $ROC = ROC(X) \cap ROC(H)$
- ▶ Scaling in the z-domain : $Z[a^n x[n]] = X(a^{-1}z)$ (also scales the ROC)
- Accumulation : $\mathcal{Z}[\sum_{k=-\infty}^{n} x[k]] = X(z) \frac{1}{1-z^{-1}}$

Examples of Z-transform

- Dirac δ : $\mathcal{Z}[\delta[n-n_0]] = z^{-n_0}$, and $ROC = \{z|0 < |z| < \infty\}$
- Unitary step function : $\mathcal{Z}[\Gamma[n]] = \frac{1}{1-z^{-1}}$, and $ROC = \{z | |z| > 1\}$
- $\mathcal{Z}[a^n \Gamma[n]] = \frac{1}{1 az^{-1}}$, and $ROC = \{z | |z| > |a|\}$
- $\mathcal{Z}[\cos(w_0n)\Gamma[n]] = \frac{1-z^{-1}\cos(w_0)}{1-2z^{-1}\cos(w_0)+z^{-2}}$, and $ROC = \{z||z| > 1\}$

Finite discret signals

Finite discrete signals

- Most of the theoretical results seen up to now correspond to signals x[n] where $n \in \mathbb{Z}$.
- In practice recordings are only done for a finite amount of time resulting to only N samples.
- We defined $\tilde{x}[n]$ a finite signal of N samples with $n \in \{0, \dots, N-1\}$.
- We use in the following the periodization of $\bar{x}[n]$

$$x[n] = \tilde{x}[n \bmod N]$$

where \mod is the modulo operator.

Z-transform of recurrent filters

▶ The Z-transform of a recurrent filter can be expressed as

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}.$$

b By using a polynomial identification when d_k are the simple poles of H(z) one can reformulate this transform as

$$\hat{h}(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=0}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

The causal filter corresponding to this Z-transform has then the following impulse response

$$h[n] = \sum_{r=0}^{M-N} B_r \delta[n-r] + \sum_{k=0}^{N} A_k (d_k)^n \Gamma[n].$$

If H(z) has multiple poles then the decomposition is done with the exponent.

• Note that a filter is causal and stable if and only if all its poles $|d_k| < 1$.

29/80

Circular convolution

Discrete convolution of finite signals

The convolution between $\tilde{x}[n]$ and $\tilde{h}[n]$ both finite signals of N samples can be expressed as:

$$\tilde{y}[n] = \tilde{x}[n] \star \tilde{h}[n] = \sum_{p=-\infty}^{+\infty} \tilde{x}[p]\tilde{h}[n-p]$$
(30)

- It requires values for the signals outside of the sampling widow.
- One common approach consists in having $\tilde{x}[n]$ and $\tilde{h}[n]$ equal to 0 outside the sampling interval. Other choices can be done (see next slides)

Circular convolution

When using the periodic version of the signals the circular convolution can be computed on a unique period of size N:

$$x \circledast h[n] = \sum_{p=0}^{N-1} x[p]h[n-p]$$

The circular convolution is rarely appropriate in real life images due to border effects.

Discrete convolution as matrix multiplication

Vector representation and convolution matrix

- Finite signal x of N samples can be represented as a vector $\mathbf{x} \in \mathbb{C}^N$.
- The convolution operator is linear and can be expressed as:

$$\mathbf{y} = \mathbf{x} \star \mathbf{h} = \mathbf{C}_{\mathbf{h}} \mathbf{x}$$

Where $C_h \in \mathcal{M}_{\mathbb{C}}(N, N)$ is a convolution matrix parametrized by vector h.

Discrete convolution

The convolution operator when the values outside the support are 0 can be expressed as

 $\mathbf{C_h} = \begin{bmatrix} h[0] & h[N-1] & \cdots \\ h[1] & h[0] & \cdots \\ \vdots & \vdots & \ddots \\ h[N-1] & h[N-2] & \cdots \end{bmatrix}$

The circular convolution operator can be

Circular convolution

expressed as

where $C_h \in \mathcal{M}_{\mathbb{C}}(N, N)$ is a circulant Toeplitz matrix.

where $C_h \in \mathcal{M}_{\mathbb{C}}(2 * N - 1, N)$ is a Toeplitz matrix.

Discrete convolution in practice

The Scipy scipy.signal.convolve function:

- Convolution between two signals of support respectively N and M samples supposing that their values are 0 outside of the support.
- The third parameter is mode that change the size of the output :
 - ▶ mode='full' returns a signal of support N + M 1 (default).
 - mode='valid' returns a signal of support |N M| + 1 with only the samples that do not rely on zeros padding of the larger signal.
 - mode='same' returns a signal of the same size as the first input.
- Parameter method allows to choose between 'direct' computation and 'fft' and selects the most efficient by default.

Border effects example

- ▶ Convolution between diracs $\tilde{x}[n]$ and a shape h[n] will repeat the shape at the diracs position.
- A dirac at the end of the signal will cut the shape for discrete convolution where the outside of the sampling is 0.
- ▶ With circular convolution the shape is repeated t the beginning of the signal.
- One can remove border effects by creating virtual periodic signal with zeros (zero padding, see fast convolution).

33/80

Discrete convolution in practice (2)

The Scipy scipy.ndimage.convolve function:

- Always return the same size as the first parameter by default.
- The mode parameter allows selecting the borders of a signal x = (abcd):
 - ▶ mode='reflect' : (dcba|abcd|dcba) (default)
 - ▶ mode='constant' : (kkkk|abcd|kkkk)
 - ▶ mode='nearest' : (aaaa|abcd|dddd)
 - ▶ mode='mirror' : (dcb|abcd|cba)
 - ▶ mode='wrap' : (*abcd*|*abcd*) (circular convolution)
- Parameter origin allows to select the origin of the filter h.

36/80

Discrete Fourier Transform (DFT)

Definition

The discrete Fourier Transform of a periodic signal x[n] can be expressed as

$$X[k] = \sum_{p=0}^{N-1} x[p] e^{\frac{-i2\pi k}{N}p}.$$
(31)

- The DFT of periodic discrete signal is also periodic and discrete.
- This means that both the signal and its Fourier Transform can be stored in memory in a size N vector.
- The frequency domain is sampled regularly between 0 and $\frac{N-1}{N}$.
- The Inverse Discrete Fourier Transform (IDFT) can be computed as

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{i2\pi n}{N}k}.$$
(32)

• The complexity for computing naively the DFT is $\mathcal{O}(N^2)$.

Finite signal and vector space

Vector space of finite signals

The space of finite signals is a finite space of scalar product and norm

$$<\mathbf{x},\mathbf{h}> = \sum_{k=0}^{N-1} x[k]h^{*}[k], \quad \|\mathbf{x}\|^{2} = <\mathbf{x},\mathbf{x}> = \sum_{k=0}^{N-1} |x[k]|^{2}$$

► The family of discrete exponentials (e_k[n])_{0≤k≤N-1} such that e_k[n] = e^{i2πk}/_N, is an orthogonal basis of the space of finite discrete signals of period N.

DFT as a change of basis

A signal x[n] can be decomposed on the basis of complex exponentials:

$$x[n] = \sum_{k=0}^{N-1} \frac{\langle \mathbf{x}, \mathbf{e}_k \rangle}{\|e_k\|^2} e_k[n].$$
(33)

- The DFT can be computed as : $X[k] = \langle \mathbf{x}, \mathbf{e}_k \rangle$
- Since $\|\mathbf{e}_k\|^2 = N$ we can recover the IDFT as

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\frac{i2\pi k}{N}n}.$$
(34)

37/80

Properties of DFT

Parseval-Plancherel identity for finite discrete signals

Since the family $(e_k[n])_{0 \le k \le N-1}$ is orthogonal, we can recover the Plancherel identify for discrete signals as

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X[k]|^2.$$
(35)

Circular convolution

The circular convolution $y[n] = x[n] \otimes h[n]$ is a signal of period N and its Discrete Fourier Transform can be expressed as:

$$Y[k] = X[k]H[k] \tag{36}$$

This will be used for fast convolution with FFT.

Border effect

- The DFT supposes that the signal is periodic.
- When the signal is recorded, there is no reason for it to be periodic, x[N-1] and x[0] can be very different.
- This can introduce some high frequencies in practice.

Examples of DFT (1)

▶ It does not depends o N.

• DFT magnitude |X[k]| constant at value 1.

40/80

Examples of DFT (2)

x[n] = n with period NSignal x[n], N=32 DFT X[k]. N=32 30 -×- Real(X[k]) 400 --×- Imag(X[k]) 20 → |X[k]| 200 -10 **************** 0 0 15 20 25 30 25 10 0 5 10 15 20 30

- Small variation of the signal : mostly low frequencies.
- The large change due to the periodicity requires high frequencies.

Average filtering

Recognize the periodic sinc corresponding to rectangular function.

Examples of DFT (4)

Stairway to Heaven

First 10 seconds of "Stairway to Heaven" from Led Zeppelin sampled at 44100Hz.

\blacktriangleright Zoom to [1, 1000] Hz and real life frequency:

Examples of DFT (3)

$x[n] = \cos(2\pi f_0 n)$ with period N

42/80

Plotting the DFT and fftshift

- **•** DFT is defined on a finite number of frequencies $\frac{f_s k}{N}$ and periodic.
- \blacktriangleright When sampling at frequency f_s we suppose that the signal has filtered to avoid aliasing.
- ▶ All relevant frequencies can be expressed between $\frac{f_s k}{N}$ with $k = -N/2, \dots, N/2 - 1.$
- One often use what is called fftshift to center the 0 frequency.

DFT of cosine

DET X(k), N=3

When doing fftshift:

DFT X[k], N=32

-×- Real(X[k]) -×- Imag(X[k])

> 20 25

30

---- IX[k]I

10

Fourier Transform as matrix multiplication

$$\mathbf{x} = \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ \vdots \\ x[N-1] \end{bmatrix}, \quad \mathbf{F}_N = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & e^{-\frac{i2\pi}{N}} & e^{-\frac{i4\pi}{N}} & \dots & e^{\frac{-i2\pi(N-1)}{N}} \\ 1 & e^{-\frac{i4\pi}{N}} & \ddots & e^{-\frac{i4\pi(N-1)}{N}} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{-\frac{i2\pi(N-1)}{N}} & e^{-\frac{i4\pi(N-1)}{N}} & \dots & e^{-\frac{i2\pi(N-1)(N-1)}{N}} \end{bmatrix}$$

Vector representation

- Periodic signal x can be represented as a vector $\mathbf{x} \in \mathbb{C}^N$.
- ▶ The DFT is a Linear operator that can be represented as a matrix $\mathbf{F}_N = [\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_{N-1}]^T \in \mathcal{M}_{\mathbb{C}}(N, N)$ of components

DFT and IDFT

▶ The DFT of x can be computed as

$$\mathbf{x}^{DFT} = \mathbf{F}\mathbf{x}$$

 $F_{k,p} = e^{-\frac{i2\pi(p-1)}{N}(k-1)}$

► The IDTF can be computed with

$$\mathbf{x} = \mathbf{F}^{-1} \mathbf{x}^{DFT} = \frac{1}{N} \mathbf{F}^{H} \mathbf{x}^{DFT}$$

where \mathbf{F}^{H} is the conjugate transpose of \mathbf{F} .

Fast Fourier Transform (1)

▶ DFT for a finite signal of size N can be computed with

$$X[k] = \sum_{p=0}^{N-1} x[p] e^{\frac{-i2\pi k}{N}p}.$$
(37)

- ▶ It is of complexity $\mathcal{O}(N^2)$ since it requires for each element X[k] the computation of $\mathcal{O}(N)$ operations.
- Reorganizing the computation, one can decrease greatly the computational complexity.

History of FFT

- Traced back to Carl Friedrich Gauss in 1805 who used it to interpolate trajectories of asteroids Pallas and Juno
- Rediscovered several time until publication by [Cooley and Tukey, 1965].
- Considered one of the most important algorithm in history.

Fourier Transform matrix

- **>** Each line in the matrix is a basis function $e_k[n]$ ordered by increasing frequency.
- The lines of the matrix contain the eigenvectors of all circular convolution matrices (hence the point-wise multiplication in Fourier domain).

46/80

Fast Fourier Transform (2)

Principle of radix-2 decimation-in-time (DIT)

First one can decompose the DFT between even and odd part of the sum:

$$\begin{split} X[k] &= \sum_{p=0}^{N-1} x[p] e^{\frac{-i2\pi k}{N}p} \\ &= \sum_{p=0}^{N/2-1} x[2p] e^{\frac{-i2\pi k}{N}2p} + \sum_{p=0}^{N/2-1} x[2p+1] e^{\frac{-i2\pi k}{N}(2p+1)} \\ &= \sum_{p=0}^{N/2-1} x[2p] e^{\frac{-i2\pi k}{N/2}p} + e^{\frac{-i2\pi k}{N}} \sum_{p=0}^{N/2-1} x[2p+1] e^{\frac{-i2\pi k}{N/2}p} \\ &= E[k] + e^{\frac{-i2\pi k}{N}} O[k] \end{split}$$

where E[k] is the DFT of e[n] = x[2n] on even samples of x and O[k] the DFT of o[n] = x[2n + 1] on odd samples of x.

Note that using the periodicity of the complex exponential on can also recover:

$$X[k+N/2] = E[k] + e^{\frac{-i2\pi(k+N/2)}{N}}O[k] = E[k] - e^{\frac{-i2\pi k}{N}}O[k]$$

Fast Fourier Transform (3)

Cooley–Tukey FFT algorithm [Cooley and Tukey, 1965]

end if

- Classical divide and conquer approach.
- Recurrent algorithm often called butterfly due to the crossing of even/odds.
- \triangleright Can be implemented with limited memory use only $\mathcal{O}(N)$
- Has been extended to general N through factorization.
- ▶ The inverse FFT can be computed with $IFFT(X[k]) = \frac{1}{N}FFT(X^*[k])^*$

Fast Fourier Transform (4)

Complexity of FFT

The complexity C(N) of FFT(N, x[n]) car be obtained from the recurrence:

$$C(N) = 2C(\frac{N}{2}) + 4N$$

Let us suppose that $L = \log_2(N)$ is an integer, then we have:

$$\frac{C(N)}{N} = \frac{C(\frac{N}{2})}{\frac{N}{2}} + K$$

where K = 4. With $T(L) = \frac{C(N)}{N}$ we can see that

$$T(L) = T(L-1) + K = T(0) + \sum_{l=1}^{L-1} K = \mathcal{O}(KL + T(0))$$

Since T(0) = 0 we recover the final complexity:

$$C(N) = \mathcal{O}(KN\log_2(N))$$

50/80

Fast convolution

Convolution for finite signals

When two signals x[n] and h[n] have a support on [0, N-1] their convolution is N = 1

$$y[n] = x[n] \star h[n] = \sum_{k=0}^{N-1} x[k]h[n-k]$$

and the support of the convolution is in [0, 2N - 1]. Computing the values on the support is $\mathcal{O}(N^2)$.

Fast convolution with zero-padding

ln order to avoid border effect we define two signals a[n] and b[n] of periodicity 2N such that:

$$a[n] = \left\{ \begin{array}{ll} x[n] & \text{for } 0 \le n < N \\ 0 & \text{for } N \le n < 2N \end{array} \right., \qquad b[n] = \left\{ \begin{array}{ll} h[n] & \text{for } 0 \le n < N \\ 0 & \text{for } N \le n < 2N \end{array} \right.$$

This procedure is called zero-padding and ensures that the circular convolution $c[n] = a \oplus b[n]$ can recover the regular convolution:

$$c[n] = y[n] \quad \text{for } 0 \le n < 2N. \tag{38}$$

• The complexity of Fast convolution with zero-padding is $\mathcal{O}(N \log_2(N))$.

Finding the most efficient convolution

Convolution between two signals of different support

- \blacktriangleright In applications we often have two signal x[n] and h[n] that have different lengths N and M.
- Complexity for the different convolution approaches is:
 - **b** Direct computation: $\mathcal{O}(NM)$
 - FFT computation : $\mathcal{O}(\max(M, N) \log_2(\max(M, N)))$
- \blacktriangleright Some applications such as convolutional neural networks have a very small M and direct implementation is more efficient.

choose conv method Scipy function

- Scipy convolution scipy.signal.convolve automatically selects the more efficient (and precise enough) approach.
- ▶ Function choose conv method in module scipv.signal.signaltools.
- Compare the number of operations for FFT and direct implementation.
- Can also do a quick benchmark to find which is the fastest in practice.

FFT implementations

FFT in the real world

- FFT is a standard algorithm implemented in numerous numerical libraries.
- Implementations for all types of input (float, double, complex).
- Implementation for all devices (X86, ARM, GPU, DSP).
- Implemented in Numpy and Scipy.

Common implementations

- FFTPACK FORTRAN [Swarztrauber, 1982] (public domain).
- **GNU scientific library** [Galassi et al., 1996] (GPL).
- Intel Math Kernel Library (proprietary).
- **FFTW** Fastest Fourier Transform in The West [Frigo and Johnson, 1998] (GPL).
- **pyFFTW** a python wrapper for FFTW (GPL).
- CuFFT Runs on GPU [NVIDIA, 2013], C and Python (proprietary).

Applications of Digital Signal Processing

Digital Signal Processing

- Processing of signals after Analog to Digital Conversion.
- Can be implemented on any general purpose computer or on dedicated devices/chips for more efficiency.
- Objectives of DSP include denoising, signal reconstruction and source separation.

Applications discussed in the following

- Digital filter design.
- Interpolation.
- Digital Image Processing.
- Convolutional neural networks.

53/80

Digital filter design

- Digital Filter design follows the same objective as Analog filter designs.
- ▶ For finite signal already in memory ideal filtering is possible with FFT.
- When filter has to be applied in real time one needs to find the parameters of a recursive IIR filter or FIR filter.
- Scipy provides several digital filter design functions.

Approaches for digital filter design

- Window design method (FIR): Sample and truncate the impulse response of an analog filter.
- Least Mean Square Error method (FIR): Find the coefficients of the FIR that approximates the best in the square error sens the objective filter in frequency.
- Bilinear transform (IIR): non-linear approximation of the transfer function on an analog filter.

Window design method

Principle

$$h[n] = \begin{cases} h(nT) & \text{ for } -M \le n \le N \\ 0 & \text{ else} \end{cases}$$

- > The sampling can lead to aliasing, the truncation leads to ripples in frequencies.
- Works better for low frequencies and large M, N.
- Can be used to approximate the ideal filter:

$$h(t) = 2f_c \frac{\sin(2\pi f_c t)}{2\pi f_c t} = 2f_c \operatorname{sinc}(2\pi f_c t)$$

Example above with $f_c = 0.1$, M = 19, N = 20.

Bilinear transform

Principle

▶ For a continuous time transfer function that can be expressed as

$$H(f) = H_0(2i\pi f)$$

> The bilinear transformation use the change of variable:

$$2i\pi f \to F(e^{2i\pi f}) = \frac{2}{T} \frac{1 - e^{-2i\pi f}}{1 + e^{-2i\pi f}} = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}} = \frac{2}{T} i \tan(\pi f)$$

- T is a parameter that can be used to change the cutoff frequency.
- ▶ The digital Filer z-transform can be expressed as:

$$H_d(z) = H_0\left(\frac{2}{T}\frac{1-z^{-1}}{1+z^{-1}}\right)$$

- Null frequency in continuous maps to null frequency in discrete.
- Infinite frequency in continuous maps to 1/2 in discrete.
- Bilinear transform preserves stability properties.

Application : motor imagery BCI

۲ sec 10 μV

Motor imagery on ElectroEncephaloGraphy

- Motor Imagery is a paradigm of Brain Computer Interfaces (BCI).
- Uses the μ rhythms in the motor cortex (Band [8-40]Hz).
- The subject concentrates on a movement (right or left hand).
- The contralateral area of the motor cortex sees a desynchronization (lower energy in the band) similar to a real movement [Roth et al., 1996].
- Butterworth filter of order 5 used to perform filtering [Lotte and Guan, 2010].
- Used to control a cursor or a movement of a machine.

Examples of bilinear transform

First order system

▶ The transfer function for a first order low-pass filter is of the form:

$$H(f) = \frac{1}{1 + \frac{i2\pi f}{2\pi f_0}}$$

The discrete transfer function can be recovered from

$$H_d(z) = \frac{1}{1 + \frac{2}{2\pi f_0 T} \frac{1 - z^{-1}}{1 + z^{-1}}} = \frac{1 - z^{-1}}{1 + \frac{2}{2\pi f_0 T} + \left(1 - \frac{2}{2\pi f_0 T}\right) z^{-1}}$$

Comparison above for first order low-pass and second order Butterworth band-pass filter.

58/80

Application : motor control BCI

Prediction of arm movement from (EcoG) [Pistohl et al., 2008]

- ElectroCorticoGram implanted on patient suffering from pharmaco-resistant epilepsy.
- Recording of simultaneous arm movement and EcoG signals from patients.
- Use a model to predict arm movement from EcoG signals.
- Potential applications in prosthetics and robotics.
- Signals filtered using a discrete a Savitzky-Golay filter (order 3,win 0.75 sec).

Limited band signal interpolation

Sinc interpolation

- Interpolation of a sampled signal with the Nyquist/Shannon sampling Theorem 4 can be very expensive since the sinus cardinal has an infinite support.
- Computing M samples from N will be $\mathcal{O}(MN)$.

Fast interpolation

Fast interpolation from N to M can be done using FFT with the Following steps:

- The $\frac{M}{N}$ is because the FFT is not normalized.
- For a sampling frequency of T = 1 of x[n], sample $x_i[n']$ corresponds to $t = n' \frac{N}{M}$.
- For M > N complexity for the interpolation is $\mathcal{O}(M \log_2(M))$.

Fast interpolation example

Interpolation example

- Interpolation of rectangular function.
- ▶ N = 32, M = 256.

Python code

- 1 X=np.fft.fft(x) # FFT
- 2 Xi=np.zeros(M)+0*1j # Initalize complex vector at 0
- 3 Xi[:N//2]=X[:N//2] # Positive low frequencies
- 4 Xi[-N//2:]=X[N//2:]# Negative low frequencies
- 5 xi=np.fft.ifft(X2*M/N) # Scaling + IFFT
- 6 ti=np.arange(M)*N/M # position in time of the interpolated samples

62/80

Digital Image Processing

Digital images

- We now all have a digital camera in our pockets.
- Image capture has several limits:
 - Noise (especially at low illumination).
 - Motion blur on camera.
 - Limited resolution (apperture and sensor).
- Images are stored in memory as a matrix of integers (or float).

Signal processing in 2D

- All results seen up to now can be extended to 2D.
- In images one does not need causality (whole image available).
- Filters in 2D are often FIR filter.
- Small filters of the building blocks of Convolutional Neural Networks (CNN).

Image convolution

2D convolution

$$x \star h[m,n] = \sum_{k,l} x[k,l]h[m-k,n-l]$$

- ln practice x[m,n] is often a large image and the filter h[m,n] a small filter (also called kernel).
- h[m, n] is often of odd size and its support centered around (0, 0).
- Similarly to finite discrete signal there exists a circular 2D convolution that can be computed with FFT.

2D Fast Fourier Transform

2D FFT

- let x[m,n] be a finite image of size (M,N).
- The 2D DFT of the image is:

$$X[u,v] = \sum_{m=0,n=0}^{M,N} x[m,n]e^{-2i\pi\left(\frac{um}{M} + \frac{vn}{N}\right)} = \sum_{m=0}^{M} \left(\sum_{n=0}^{N} x[m,n]e^{-2i\pi\frac{vn}{M}}\right)e^{-2i\pi\frac{um}{M}}$$

- The DFT for each index/direction of the image are separable.
- Can be performed in $\mathcal{O}(MN \log_2(N) + NM \log_2(M))$.

Classical 2D filters (1)

Average filtering

H[u,v], P=1

- Classical low pass filter (with P odd).
- Parameter P defines its width and cutoff frequency
- Its FT is a multiplication of sinc in both directions (non isotropic):

68/80

Border effects on FFT

- ▶ DFT/FFT supposes that an image is periodic in space.
- Large differences between values at opposite borders can lead to high frequencies not existing in the original image.
- This can be attenuated using "windowing" or apodization that consists in attenuation the borders of the images.
- This spatial multiplication corresponds to a convolution (filtering) in the frequency domain (see next course).

Classical 2D filters (2)

- Compute de difference between the center pixel and its neighbors.
- Non isotropic filter.
- Use absolute value of the output to detect area with large changes.

Classical 2D filters (3)

Classical 2D filters (4)

Average P=11

Average P=21

Median P=11

Median filtering

- Compute de median in a window of width P.
- Robust version of the average filter
- Non linear (no impulse response or FT representation).
- Bette able to preserve high frequencies and large objects details.
- There exists a whole family of more complex non-linear morphological filter.

Total Variation (TV)

TV(y+n) = 1.711e + 04

- In images of man-made objects, we often have near constant parts in the image.
- One way to measure the presence of those constant parts is called the Total Variation that can be expressed in its anisotropic version as:

$$TV(x) = \sum_{m,n} |x[m+1,n] - x[m,n]| + |x[m,n+1] - x[m,n]|$$

It can be reformulated (forgetting border effects) as:

$$TV(x) = \|x * d_v\|_1 + \|x * d_h\|_1$$
, with $d_h = \begin{bmatrix} -1 & 1 \end{bmatrix}$, $d_v = \begin{bmatrix} -1 & 1 \\ 1 \end{bmatrix}$

where d_v and d_h are finite differences derivations and $||y||_1 = \sum_{m,n} |y[m,n]|$.

The presence of noise tends to introduce high frequencies and to greatly increase the TV of an image. 72/80

69/80

Total Variation denoising

- Since TV increases with noise, one would want to use it for denoising.
- Total Variation denoising of image y can be expressed as

 $\min_{x} \quad \|x - y\|_F^2 + \lambda T V(x)$

where $\|\cdot\|_F$ is the Fobenius norm of a matrix.

- We want the denoised image x to be close to y but also have a small TV.
- It is a convex but non-smooth optimization problem.

Convolutional Neural Network (CNN)

- Replace the linear operator by a convolution [LeCun et al., 2010].
- Reduce image dimensionality with sub-sampling or max pooling.
- Number of parameters depends on the size fo the filter, not the image.
- Recent deep CNN use Relu activation [Glorot et al., 2011]: $g(\mathbf{x}) = \max(0, \mathbf{x})$.

Deep learning

Deep neural network [LeCun et al., 2015]

$$f(x) = f_K(f_{K-1}(...f_1(\mathbf{x})...))$$
(39)

• f is a composition of basis functions f_k of the form:

$$f_k(x) = g_k(\mathbf{W}_k \mathbf{x} + \mathbf{b}_k) \tag{40}$$

- \mathbf{W}_k is a linear operator and \mathbf{b}_k is a bias for layer k.
- g_k is a non-linear activation function for layer k.
- Function f parameters $\{\mathbf{W}_k, \mathbf{b}_k\}_k$ are learned from the data.

Bibliography

- Discrete-time signal processing [Oppenheim and Shafer, 1999].
- Signals and Systems [Haykin and Van Veen, 2007].
- Signals and Systems [Oppenheim et al., 1997].
- Signal Analysis [Papoulis, 1977].
- Fourier Analysis and its applications [Vretblad, 2003].
- Polycopiés from Stéphane Mallat and Éric Moulines [Mallat et al., 2015].
- Théorie du signal [Jutten, 2018].
- Distributions et Transformation de Fourier [Roddier, 1985]

73/80

References I

[Cooley and Tukey, 1965] Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex fourier series. *Mathematics of computation*, 19(90):297–301.

[Frigo and Johnson, 1998] Frigo, M. and Johnson, S. G. (1998).
 Fftw: An adaptive software architecture for the fft.
 In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP'98 (Cat. No. 98CH36181), volume 3, pages 1381–1384. IEEE.

[Galassi et al., 1996] Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi, F. (1996).
Gnu scientific library. No. Release, 2.

[Glorot et al., 2011] Glorot, X., Bordes, A., and Bengio, Y. (2011).
 Deep sparse rectifier neural networks.
 In *Aistats*, volume 15, page 275.

[Haykin and Van Veen, 2007] Haykin, S. and Van Veen, B. (2007). Signals and systems. John Wiley & Sons.

References III

[Nyquist, 1928] Nyquist, H. (1928).
 Certain topics in telegraph transmission theory.
 Transactions of the American Institute of Electrical Engineers, 47(2):617–644.

[Oppenheim and Shafer, 1999] Oppenheim, A. V. and Shafer, R. W. (1999). Discrete-time signal processing. Prentice Hall Inc.

[Oppenheim et al., 1997] Oppenheim, A. V., Willsky, A. S., and Nawab, S. H. (1997). Signals and systems prentice hall. *Inc., Upper Saddle River, New Jersey*, 7458.

[Papoulis, 1977] Papoulis, A. (1977). Signal analysis, volume 191. McGraw-Hill New York.

[Pistohl et al., 2008] Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2008).
 Prediction of arm movement trajectories from ecog-recordings in humans.

Journal of neuroscience methods, 167(1):105–114.

[Roddier, 1985] Roddier, F. (1985). Distributions et transformée de fourier

References II

[Jutten, 2018] Jutten, C. (2018). *Théorie di signal.* Univ. Grenoble Alpes - Polytech' Grenoble.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

[LeCun et al., 2010] LeCun, Y., Kavukcuoglu, K., and Farabet, C. (2010). Convolutional networks and applications in vision, pages 253–256.

[Lotte and Guan, 2010] Lotte, F. and Guan, C. (2010). Regularizing common spatial patterns to improve bci designs: unified theory and new algorithms. *IEEE Transactions on biomedical Engineering*, 58(2):355–362.

[Mallat et al., 2015] Mallat, S., Moulines, E., and Roueff, F. (2015). Traitement du signal. Polycopié MAP 555, École Polytechnique.

[NVIDIA, 2013] NVIDIA, C. (2013). Fast fourier transform library (cufft).

77/80

References IV

- [Roth et al., 1996] Roth, M., Decety, J., Raybaudi, M., Massarelli, R., Delon-Martin, C., Segebarth, C., Morand, S., Gemignani, A., Décorps, M., and Jeannerod, M. (1996).
 Possible involvement of primary motor cortex in mentally simulated movement: a functional magnetic resonance imaging study. *Neuroreport*, 7(7):1280–1284.
 [Shannon, 1949] Shannon, C. E. (1949).
- Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21.
- [Swarztrauber, 1982] Swarztrauber, P. N. (1982). Vectorizing the ffts, parallel computations (new york)(g. rodrigue, ed.).
- [Vretblad, 2003] Vretblad, A. (2003). *Fourier analysis and its applications*, volume 223. Springer Science & Business Media.