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Full course overview

1. Fourier analysis and analog filtering

1.1 Fourier Transform
1.2 Convolution and filtering
1.3 Applications of analog signal processing

2. Digital signal processing

2.1 Sampling and properties of discrete signals
2.2 z Transform and transfer function
2.3 Fast Fourier Transform

3. Random signals

3.1 Random signals, stochastic processes
3.2 Correlation and spectral representation
3.3 Filtering and linear prediction of stationary random signals

4. Signal representation and dictionary learning

4.1 Non stationary signals and short time FT
4.2 Common signal representations (Fourier, wavelets)
4.3 Source separation and dictionary learning
4.4 Signal processing with machine learning
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Piano note
Propagation of the waves on the string of the piano and the air is modeled by Ordinary
Differential Equation (LTI system, one note is an approximation of an impulse
response).

Why are simulated and recorded signal different?

Source: Interstice, Images ©Juliette Chabassier 2012
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Signal properties

Instantaneous power

The instantaneous power of signal x(t)

px(t) = |x(t)|2 (1)

Unit : Watt (W).

Energy of a signal

We define the energy of a signal x(t) as :

E =

∫ +∞

−∞
|x(t)|2dt (2)

the signal is said to be of finite energy if E < ∞ (∥x∥2 < ∞ means x ∈ L2(R)).
Unit: Joule, Calorie or Watt-hour (J, Cal ou Wh, 1 calorie = 4.2 J).
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Average power

Average power of a signal

The average power of a signal is defined as

Pm = lim
T→∞

1

T

∫ +T
2

−T
2

|x(t)|2dt (3)

▶ For a periodic signal, the average power can be computed on a unique period.

▶ Power is homogeneous to an energy divided by time.

▶ PRMS =
√
Pm is called the Root Mean Square power (”valeur efficace” in

french).

▶ A finite energy signal has a n average power Pm = 0.

▶ Unit : Watt (W).
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Notion of noise

Definition
A natural process that can impede the measurement or interpretation of a signal.

Examples

▶ Satellite Signals and astrophysics

▶ Telecommunications : Satellite signal is the
signal of interest, astronomical background is
the noise.

▶ Astrophysics: Satellite signal is the noise,
astronomical background is the signal of
interest.

▶ Electricity grid EDF, spike at 50Hz when measuring
low amplitude tensions.

Additive noise
Additive noise is a kind of noise that is added to the signal of interest.

y(t) = x(t) + b(t)

y(t) is the observed signal, x(t) the signal of interest and b(t) is the noise.
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Signal to Noise Ratio (SNR)

Definition
The Signal to Noise Ratio is defined as:

SNR =
PS

PN
ou SNR(dB) = 10 log10(SNR) (4)

where PS is the power of the signal and PN the power of the noise.

▶ An Analog-to-Digital conversion process should have the best possible SNR.

▶ The SNR is often used for additive noise models.

▶ Other measures such as Peak Signal to Noise Ratio (PSNR) can be used on
specific data (images).

▶ One of the objective of filtering is to get a better SNR when the signal and the
noise have different frequency contents..
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Random Signal

Motivation

▶ Hard to model perfectly physical signals measurement.

▶ Real signal are random or contain a random component.

▶ No exact prediction/reconstruction but inference si possible.

Examples

▶ Stock exchange.

▶ Temperature along the day.

▶ Instantaneous electrical energy usage.

▶ IP instruction pointer in processors.
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Deterministic VS random/stochastic

x(t) = f(t, . . . )

Deterministic

▶ Signal modeled perfectly by a
mathematical function of time.

▶ Knowledge of the signal at all time
moment t .

Random

▶ Part of uncertainty/stochasticity in
the signal.

▶ Impossible to predict with certainty
at time t.

Approach

▶ Uncertainty modeled by probability distributions.

▶ Using these probability distributions allows signal processing.

▶ Requires knowledge of both signal processing and probability/statistics.
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Stochastic process

t

X(t, ω)

t1 t2

X1, X2 x1(t)
x2(t)
x3(t)

Definition
A stochastic process or random signal is a function of two variables. The first variable
is the time t and t ∈ R, the second variable is a random variable ω :

X( t︷︸︸︷
time

, ω︷ ︸︸ ︷
r.v.

) (5)

▶ At t = ti fixed, X(ti, w) = Xi = Xi(ω) is a random variable;

▶ For ω = ωi fixed (one realization), X(t, ωi) = xi(t) is a deterministic signal ;

▶ X can be discrete time with X[n] and n ∈ N
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Example of stochastic process (1)

Random frequency

X(t, ω) = cos(ωt)

▶ t ∈ R is time.

▶ ω ∈ [0, 2π] is a uniform random variable.

▶ X is a function of two variables.

Example of realizations (1)
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Example of stochastic process (2)

Random phase

X(t, ϕ) = cos(π ∗ t+ ϕ)

▶ t ∈ R is time.

▶ ϕ ∈ [0, 2π] is a uniform random variable.

▶ X is a function of two variables.

Example of realizations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

t

 

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

16/98

Description of a stochastic process

t

X(t, ω)

t1 t2

X1, X2

Complete description

The stochastic process X(t, w) is completely known if ∀t1, t2, . . . , tk and ∀k, we have
access to the joint distribution :

pX1,...,Xk (x1, . . . , xk) (6)

where X1, . . . , Xk are the random variables associated to time tk.

▶ This means that you know all the possible probabilistic relation between any time
samples.

▶ Often impossible in practice (except for Gaussian distributions).

⇒ Partial description.
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Description with one time sample

t

X(t, ω)

t1

X1

Definition
We know the description of X(t, w) for one time sample if ∀t1 ∈ R we know the
probability distribution of X(t1, w), i.e. the random variable X1 at t1.

Moments

▶ The first moment of the stochastic process, its mean (and the expectation of X1)
is expressed as:

mX(t1) = E[X(t1, w)] =

∫
x1pX1(x1)dx1 (7)

▶ We can also define the moment of order n :

m
(n)
X (t1) = E[X(t1, w)n] =

∫
xn
1 pX1(x1)dx1 (8)
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Description with two time samples (1)

t

X(t, ω)

t1 t2

X1, X2

Définition
X(t, w) is known with two time samples ∀t1, t2 ∈ R2 if the joint distribution between
the two random variables X(t1, w) and X(t2, w) is known:

pX1,X2(x1, x2) is known ∀t1, t2

Correlation between two time samples

RX(t1, t2) = E[X(t1, w)X∗(t2, w)] =

∫ ∫
x1x

∗
2pX1,X2(x1, x2)dx1dx2 (9)

Covariance between two time samples

CX(t1, t2) = E [(X(t1, w)−mX(t1))(X
∗(t2, w)−m∗

X(t2))] (10)
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Description with two time samples (2)

Remark

▶ Xc(t, w) = X(t, w)−mX(t) is the centered signal.

▶ Correlation and Covariance are properties of order 2 of the random signal.

Independence between X1 and X2

pX1,X2(x1, x2) = pX1(x1)pX2(x2) (11)

▶ The correlation becomes:

RX(t1, t2) = E[X(t1, w)X∗(t2, w)] = E[X(t1, w)]E[X∗(t2, w)] = mX(t1)∗mX(t2)
∗

▶ If the signal is centered then RX(t1, t2) = 0 for t1 ̸= t2. This type of signal is
called a white noise.
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Stationarity

Definition
A signal is said to be stationary if its statistical properties are invariant to translation
in time.

Strict stationarity

When the signal is completely known the strict stationarity implies that

pX(t1),...,X(tk) = pX(t1−τ),...,X(tk−τ) ∀τ ∈ R. (12)

▶ In order to simplify the notation we take X(t1) = X(t1, w) = X1.

▶ The correlation RX(t1, t2) in this case depends only on the difference t1 − t2.

▶ Stationarity makes studying a random signal much simpler.

▶ Strict stationarity hard to check in practice.

⇒ Weak or wide-sense stationarity.
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Weak or wide-sense stationarity (WSS) (1)

t

X(t, ω)

t1 t1 − τ

X(t1)X(0) X(t1 − τ)

Stationarity for description with one time sample

pX(t1) = pX(t1−τ) = pX(0) ∀τ ∈ R (13)

▶ All random variables X(t) follow the same law ∀t ∈ R.
▶ The moments

E(X(t1)
n) = E(X(t1 − τ)n) = m

(n)
X (t) = m

(n)
X ∀n ∈ N (14)

are constants and do not depend on the time.

▶ A signal is stationary of order 1 if its order 1 moment does not depend on time.
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Weak or wide-sense stationarity (WSS) (2)

t

X(t, ω)

t1 t2

X(t1), X(t2)

t1 − τ t2 − τ

X(t1 − τ), X(t2 − τ)

τ
Stationarity for description with two time samples

The joint distribution between two time samples t1, t2 depends only on their difference
t1 − t2

pX(t1),X(t2) = pX(t1−τ),X(t2−τ) = pX(t1−t2),X(0) ∀τ ∈ R (15)

▶ The correlation is

RX(t1, t2) = E[X(t1)X
∗(t2)] = E[X(t1 − t2)X

∗(0)] = E[X(t)X∗(t− τ)] (16)

▶ We define the auto-correlation function as

RX(τ) = E(X(t)X∗(t− τ)) (17)

▶ A signal is said to be wide-sense stationary (WSS) if it is stationary at order two
(two time samples) and order one and if E[|X(t, w)|2] is bounded for all t ∈ R.
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Ergodicity

Ergodic hypothesis

▶ The statistical properties of an ergodic process can be
estimated on a unique realization if observed for a long time.

▶ Hypothesis cannot be tested in practice.

▶ Originally formulated by Boltzmann for his Kinetic theory of
gases.

Temporal averaging

The time average (or order n) of a signal x(t) is defined as

xn = lim
T→∞

1

T

∫ T
2

−T
2

x(t)ndt (18)

The time average of order 2 is the average power of the signal.
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Erogodicity (2)

Time averaging of a stochastic process

X(t, w)n = lim
T→∞

1

T

∫ T
2

−T
2

X(t, w)ndt (19)

In the general case this average is a random variable that has realizations xn
i for

random signal realizations xi(t)

Temporal cross-correlation

X(t, w)X(t− τ, w) = lim
T→∞

1

T

∫ T
2

−T
2

X(t, w)X(t− τ, w)dt (20)

Definition of ergodicity

The signal X(t, w) is said to be ergodic if its temporal averaging and temporal cross
correlation are certain (not random).
This property implies that

X(t, w)n = xn
i = xn, ∀ realization wi
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Stationary and ergodic signals

▶ With stationary and ergodic signals, one can compute a mathematical
expectation with a temporal average.

▶ For first order moments it means :

xn
i = E[X(t, w)n] = E[X(t, w)n] = m

(n)
X (21)

▶ This is very important because having several realization of a random signal is
seldom possible.

▶ One can measure/record long portion of a signal to have a good estimation of
the mean, variance and covariance.

▶ For a second order WSS signal :

RX(τ) = E[X(t)X∗(t− τ)] = lim
T→∞

1

T

∫ T
2

−T
2

X(t, w)X∗(t− τ, w)dt (22)

The correlation of the signal with itself is also called auto-correlation.
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Correlation and cross-correlation

The signals X(t, x) and Y (t, w) are both WSS and ergodic:

▶ Correlation or autocorrelation

RX(τ)=E[X(t, w)X∗(t− τ, w)]= lim
T→∞

1

T

∫ T/2

−T/2

X(t, w)X∗(t− τ, w)dt (23)

Measures a linear relation between two time instants of a signal.

▶ Cross-correlation

RXY (τ)=E[X(t, w)Y ∗(t− τ, w)]= lim
T→∞

1

T

∫ T/2

−T/2

X(t, w)Y ∗(t− τ, w)dt (24)

Measures a linear relation across two signals with a delay.

▶ Autocorrelation and cross-correlation have several nice properties.
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Properties of Autocorrelation

Let X(t, w) be a wide sens stationary signal.

Conjugate symmetric

RX(τ) = R∗
X(−τ) (25)

Centering

RX(τ) = RXc(τ) +m2
X (26)

Average power

PX = RX(0) (27)

By definition RX(0) ≥ 0

Non-negativity

∑

i,j

λiλjRX(τi − τj) ≥ 0, ∀i, j

(28)

Correlation coefficient

ρ(τ) =
RX(τ)

RX(0)
(29)

Memory

Finite memory process:

∃Tmax such that ρ(t) = 0 for |t| > Tmax
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Properties of Cross-correlation

Let X(t, x) and Y (t, w) be two wide sens stationary signals

Hermitian Symmetry

RXY (τ) = R∗
XY (−τ) (30)

Maximum
One can use the Schwartz inequality to proove that

|RXY (τ)|2 ≤ RXX(0) ∗RY Y (0) (31)

hence
|RX(τ)| ≤ RX(0) (32)

The auto correlation reaches its maximum in 0
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Examples of stochastic processes
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Processus de poisson 1 realisations
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Marche Aleatoire 1 realisations
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Bruit gaussien 1 realisations
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Processus de Wiener 1 realisations

Examples of stochastic processes

1. Poisson process.

2. Random walk.

3. Gaussian Processes

4. Wiener process
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Poisson distribution

Poisson distribution

▶ Discrete distribution.

▶ Model the probability of a given number events of occurring
in a given time interval.

▶ Parameter λ corresponds to the average number of
occurences in the time interval.

▶ If λ0 is an average number of occurrence per time unit then
for a time interval ∆t, λ = λ0∆t.

Examples of Poisson distribution

▶ Electronic : model the failure in electronic circuits.

▶ Waiting lines in stores : Model the arrival of clients at checkout and the time to
handle them.

▶ Astronomy : Model the number of photon on CCD sensors in low light conditions.
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Poisson distribution

Properties
▶ Probability density function (PDF)

p(k) = P (X = k) = e−λ λ
k

k!
▶ Expectation:

mX = E(X) =
1

n

∞∑

k=0

ke−λ λ
k

k!

= λe−λ
+∞∑

k=1

λk−1

(k − 1)!
=λ e−λ eλ = λ

▶ Variance:

V ar(X) = E(X2)− E(X)2

=

+∞∑

k=1

k2 e−λ λ
k

k!
− λ2

= λ e−λ
+∞∑

k=1

d

dλ

λk

(k − 1)!
− λ2

= λ
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Poisson process

Count between two time instants

▶ Let N(t, t′) be the number of events ti occurring during interval ∆t = t′ − t.

▶ N(·) is a Poisson random variable of parameter λ0∆t and probability

P (n(t, t′) = k) =
e−λ0∆t(λ0∆t)k

k!
(33)

▶ If the intervals [t, t′] and [u, u′] are disjoints then the random variables N(t, t′)
and N(u, u′) are independent.

Poisson process

A Poisson process is a random signal defined as :

Xp(t) = N(0, t) ∀t ∈ R+ (34)

▶ Process corresponds to counting random events.

▶ The events are defined as their time instant of occurrence ti.

33/98

Properties of the Poisson process

Mean mXp(t)

mXp(t) = E[Xp(t)] = E[N(0, t)] = λt (35)

▶ Non stationary process.

Variance V ar(Xp(t))

V ar(Xp(t)) = E[(Xp(t)−mXp(t))
2] = λt (36)

Autocorrelation RXp(t1, t2) for t1 ≤ t2

RXp(t1, t2) = λt1 + λ2t1t2
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Proof of autocorrelation RXp
(t1, t2)

RXp(t1, t2) = λt1 + λ2t1t2 (37)

Proof.

▶ If t1 = t2 Then Eq. (39) is true :

E[Xp(t)
2] = V ar(Xp(t)) + E[Xp(t)]

2 = λt+ λ2t2

▶ If t1 < t2, the r.v. Xp(t1) and Xp(t2)−Xp(t1) are independent because they are
Poisson with non overlapping intervals.

▶ Xp(t1) ∼ N(0, t1)
▶ Xp(t2)−Xp(t1) ∼ N(0, t2 − t1)

▶ We can deduce that

E[Xp(t1)(Xp(t2)−Xp(t1)))] = E[Xp(t1)]E[Xp(t2)−Xp(t1)] = λt1λ(t2 − t1)

and since
Xp(t1)Xp(t2) = Xp(t1)(Xp(t2)−Xp(t1))) +Xp(t1)

2

we find RXp(t1, t2) = λt1 + λ2t21 + λt1λ(t2 − t1)



35/98

Poisson process example realizations
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Poisson process

▶ λ = 1

▶ mXp(t) = λt

▶ V ar(Xp(t)) = λt
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History of the random walk

▶ Introduced by Karl Pearson in 1905 to model mosquitoes migration in a forest
(Nature 72, 294; 318; 342 (1905)).

▶ Problem solved by Lord Rayleigh who provides him with the Gaussian
approximation solution.

▶ Remark from Karl Pearson:

”The most probable place to find a drunken man who is at all capable of keeping
on his feet is somewhere near his starting point!”.
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Radom walk stochastic process

Définition
Discrete stochastic process described recursively by

Xrw[n] = Xrw[n− 1] + sU [n] = s
n∑

i=1

U [i]

▶ U [n] ∼ U({−1, 1}) are independent uniform random variables U [n].

▶ Starting point : Xrw[0] = 0

▶ s ∈ R is the step.

▶ By construction the value of the stochastic process changes between two time
instant n and n+ 1.

▶ Once can create a continuous version with T :

X̃rw(t) = {Xrw[n]|nT ≤ t < (np+ 1)T}
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Properties of random walks (1)

Probability at time instant n

▶ At n, Xrw can take the values

Xrw[n] ∈ {−ns,−(n+ 1)s, . . . , (n− 1)s, ns}

▶ If the realizations of Un gave k times +1 and n− k times −1 then

Xrw[n] = ks− (n− k)s = ms, m = 2k − n

▶ We recognize a Binomial distribution with parameter p = 1
2

P (Xrw[n] = ms) =

(
n
k

)
1

2n
= Ck

n
1

2n
k =

m+ n

2
(38)
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Properties of random walks (2)

Moyenne mXrw [n]

mXrw (n) = E

[
n∑

i=1

sU [i]

]
= s

n∑

i=1

E[U [i]] = 0 (39)

Variance V ar(Xrw[n])

V ar(Xrw[n]) = E[Xrw[n]
2] = E[(

n∑

i=1

sU [i])2] =
n∑

i=1

E[(sU [i])2] = ns2 (40)

Autocorrelation RXrw [n1, n2] pour n1 < n2

RXrw [n1, n2] = E[Xrw[n1]Xrw[n2]] = n1s
2

Stationary signal? NO !
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Approximation for a large n

Approximating the Binomial law

For a large n, when k is in a neighborhood
√
npq

of np, then:

(
n
k

)
pkqn−k ≈ 1√

2πnpq
e−(k−np)2/2npq (41)

0 1 2 3 4 5 6

k

P
[X

=
k]

0

0.05

0.15

0.25

0.3

0.2

0.1

Normal p.d.f.

Binomial p.m.f.

Application to random walk stochastic process

In our case p = q = .5 and for m=2k − n then

P (Xrw[n] = ms) ≈ 1√
πn/2

e−m2/2n (42)

41/98

Random walk example realizations
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Random walk

▶ s = 1

▶ mXrw (t) = 0

▶ V ar(Xrw(t)) =
√
n
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Multivariate Gaussian distribution
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Multivariate Gaussian distribution

▶ X ∼ N (µ,Σ)

▶ Probability density function

p(x, y) = Ke−
1
2
(x−µ)⊤Σ−1(x−µ)

▶ Coefficient K = 1

(2π)N/2|Σ|1/2
where | · | is the determinant of the
matrix.

▶ Espérance:

mX = E[X] = µ

▶ Covariance:

Cov(X) = E[(X−mX)(X−mX)⊤]

= Σ
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Gaussian process (1)

Definition
A Gaussian process XG(t, w) is a random signal completely defined by a Gaussian
distribution.

▶ Let XG(w) the random vector:

XG(w)T = [XG(t1, w), XG(t2, w), . . . , XG(tk, w)]⊤ (43)

▶ Then the Probability density function of the random vector is defined as

pXG(X) =
1√

(2π)k|Σ|
e−(

1
2
(X−mX)TΣ−1(X−mX)) (44)

Where the average vector mX and the covariance matrix Σ are defined as

mX = [mX(t1),mX(t2), . . . ,mX(tk)]
⊤ (45)

(Σ)i,j = E[Xc(ti, w)Xc(tj , w)∗] = CX(ti, tj) (46)
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Gaussian process (2)

Stationary Gaussian process

▶ Mean
mXG = mX [1, 1, . . . , 1]⊤

mXG(t) = mXG

▶ Covariance
(Σ)i,j = CX(tj − ti) = CX(τ)

Discussion

▶ The Gaussian distribution is completely described by its two first order moments (
means and covariance).

▶ For a stationary signal then only mX and RXG(τ)/CXG(τ) are necessary to
completely know the random signal.
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Gaussian noise

Definition
Gaussian noise is a random signal where every time instant follow a Gaussian
distribution:

XN (t, w) ∼ N (0, σ(t)2) ∀i (47)

and for which all time instants are independent.

Independent and Identically Distributed (I.I.D.) Gaussian noise
▶ Independent means that XN (t1, w) and XN (t2, w) are indep. for t1 ̸= t2.

▶ Identically Distributed means that the signal is stationary (σ(t) = σ)

mXN (t) = 0 (48)

V arXB (t) = σ2 (49)

RXN (τ) = CXN (τ) = σ2δ(τ) (50)

▶ Signal is completely known because both mean and covariance are known.

▶ White noise : contains all the frequencies in the spectrum.

▶ Commonly used to model additive noise in discrete signals.
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Gaussian noise example realizations
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Gaussian noise

▶ σ = 1

▶ mXG(t) = 0

▶ V ar(XG(t)) = σ2
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Wiener Process

History

▶ Named in honor of Norbert Wiener, father of cybernetics.

▶ Also called Brownian motion (Robert Brown).

▶ Used in statistical physics, economy, finances.

Relation to random walks
The Wiener process can be constructed as

Xw(t, w) = lim
T→0

X̃rw(t, w) s.c. s =
√
T

It is a Gaussian process with the following 3 properties:

▶ X(0, w) = 0

▶ The random signal is almost surely continuous.

▶ Increments X(t2, w)−X(t1, w) are independents and follow a Gaussian
distribution N (0, t2 − t1).
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Processus de Wiener (2)

Probability density function

pXw(t,w)(x) =
1√
2πt

e−
x2

2t (51)

Mean mXw (t)

mXw (t) = 0

Variance V arXw (t)

V arXw (t) = t

Autocorrelation RXw (t1, t2) for t1 < t2

RX(t1, t2) = E(X(t1, w)X(t2, w)] (52)

= E(X(t1, w)(X(t2, w)−X(t1, w) +X(t1, w))) (53)

= E(X(t1, w)(X(t2, w)−X(t1, w))) + E(X(t1, w)2) = t1 (54)

Stationary signal? NO !
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Wiener process example realizations
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Wiener process

▶ mXw (t) = 0

▶ V ar(Xw(t)) = t
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Power Spectral Density (PSD)

Wiener-Kintchine Theorem
The Power Spectral Density (PSD) of a wide sens stationary stochastic process is the
Fourier Transform of its autocorrelation function:

SXX(f) =

∫ ∞

−∞
RXX(τ)e−2jπfτdτ (55)

▶ It is a spectral representation of a random signal.

▶ Inversion with inverse FT

RXX(τ) =

∫ ∞

−∞
SXX(f)e2jπfτdf (56)

▶ Discrete signal X[k]

SXX(e2jπf ) =
∞∑

k=−∞
RXX [k]e−2jπfk =

∞∑

k=−∞
RXX [k]z−k

▶ z = e2jπf we recover the Z-transform.
▶ PSD is a periodic function.
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Properties of the PSD

▶ The PSD is a real function since it is the FT of an even function.

▶ The PSD is a true density function in the probabilistic sens describing the
repartition of the power across the frequency spectrum.

▶ Positivity
SXX(f) ≥ 0 (57)

▶ PSD and autocovariance

SXX(f) = F{Cx(τ)}+ (mX)2δ(f) (58)

▶ Average power

PX = RXX(0) =

∫ +∞

−∞
SXX(f)df = lim

T→∞
1

T

∫ T
2

−T
2

|X(t, w)|2dt (59)
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White noise

Definition
A white noise is a kind of random signal that has no correlation between two different
time instants. Its Autocorrelation can be expressed as

RXX(τ) =
N0

2
δ(τ) (60)

▶ An I.I.D. signal (Independent et Identically Distributed) is a white noise.

▶ The Power Spectral Density of a White noise is

SXX(f) = F [RXX(τ)] =
N0

2
(61)

▶ For a discrete time signal the signal has an average power PX = N0
2
.
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Convolution of random signals

h(t)
X(t, w) Y (t, w)

Transformation of the mean
If X(t, w) is a wide sens stationary stochastic process then the mean of the output
signal is

mY = E

[∫ ∞

−∞
X(u,w)h(t− u)du

]
= mXH(0)

Where H(f) is the Fourier transform of h(t):

H(f) =

∫ ∞

−∞
h(t)e−2jπftdt (62)

We recover H(0) also known as the static gain.
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Convolution, autocorrelation and PSD

h1(t)
X1(t, w) Y1(t, w)

h2(t)
X2(t, w) Y2(t, w)

▶ Let X1(t, w) and X2(t, w) be two
WSS stochastic processes.

▶ Let h1(t) and h2(t) be the impulse
response of two LTI systems.

Y1(t, w) = (X1 ∗ h1)(t, w)

Y2(t, w) = (X2 ∗ h2)(t, w)

Convolution formula for random signals

▶ The covariances between the filtered signals above can be expressed as

RY1Y2(τ) = (h1 ∗RX1X2 ∗ h∗−
2 )(τ) (63)

where h−
2 (t) = h2(−t).

▶ Which gives in the Fourier domain the following relation

SY1Y2(f) = H1(f)SX1X2(f)H
∗
2 (f) (64)

where H1(f) and H2(f) are respectively the FT of the impulse responses h1(t)
and h2(t).
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Proof of the convolution formula (1)

RY1Y2(τ) = E[Y1(t, w)Y2(t− τ, w)]

= E[(X1 ∗ h1)(t, w)(X2 ∗ h2)(t− τ, w)]

By definition

(X1 ∗ h1)(t, w) =

∫ ∞

−∞
X1(u,w)h1(t− u)du =

∫ ∞

−∞
X1(t− u,w)h1(u)du

(X2 ∗ h2)(t− τ, w) =

∫ ∞

−∞
X2(v, w)h2(t− τ − v)dv =

∫ ∞

−∞
X2(t− τ − v, w)h2(v)dv

We can deduce that

RY1Y2(τ) = E

[∫ ∞

−∞
X1(t− u,w)h1(u)du

∫ ∞

−∞
X∗

2 (t− τ − v, w)h∗
2(v)dv

]

= E

[∫ ∞

−∞

∫ ∞

−∞
h1(u)X1(t− u,w)X∗

2 (t− τ − v, w)h∗
2(v)dudv

]

=

∫ ∞

−∞

∫ ∞

−∞
h1(u)E [X1(t− u,w)X∗

2 (t− τ − v, w)]h∗
2(v)dudv

=

∫ ∞

−∞

∫ ∞

−∞
h1(u)RX1X2(τ + v − u)h∗

2(v)dudv
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Proof of the convolution formula (2)

We found

RY1Y2(τ) =

∫ ∞

−∞

∫ ∞

−∞
h1(u)RX1X2(τ + v − u)h∗

2(v)dudv

which corresponds to a convolution by h1

RY1Y2(τ) =

∫ ∞

−∞
(h1 ∗RX1X2)(τ + v)h∗

2(v)dv

=

∫ ∞

−∞
(h1 ∗RX1X2)(u)h

∗
2(u− τ)du

=

∫ ∞

−∞
(h1 ∗RX1X2)(u)h

∗−
2 (τ − u)du

= (h1 ∗RX1X2 ∗ h∗−
2 )(τ)

where h−
2 (t) = h2(−t).

57/98

Filtering of a random signal

h(t)
X(t, w) Y (t, w)

Convolution formula

▶ Special case where h1(t) = h2(t) = h(t) and X1(t, w) = X2(t, w) = X(t, w)

▶ The autocorrelation becomes

RY Y (τ) = (h ∗RXX ∗ h∗−)(τ) (65)

▶ In the frequency domain :

SY Y (f) = SXX(f)|H(f)|2 (66)
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Power in a frequency band

h(t)
X(t, w) Y (t, w)

Power of X(t, w) in the frequency band [f1, f2]

▶ Let the ideal filter

H[f1,f2](f) =

{
1 if f1 < |f | < f2

0 sinon
(67)

▶ The power of Y (t, w) after filtering is

PY =

∫ ∞

−∞
SY Y (f)df =

∫ ∞

−∞
SXX(f)|H(f)|2df

=

∫ −f1

−f2

SXX(f)df +

∫ f2

f1

SXX(f)df = 2

∫ f2

f1

SXX(f)df

▶ Power in the band [f1, f2]:

P[f1,f2] = 2

∫ f2

f1

SXX(f)df (68)
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Discrete time signals

▶ We now focus on discrete time processes X[n].

▶ The Autocovariance for WSS signal X in this case is

RX [n] = E[X[k]X[k + n]]

▶ The periodic Power Spectral Density (PSD) of a WSS signal X is

SX(ej2πf ) =

+∞∑

n=−∞
RX [n]e−2jπfn

▶ The Autocorrelation can be recovered with the inverse DTFT

RX [n] =

∫ 1

0

SX(ej2πf )e2jπfndf

▶ A white noise process W [n] has an autocorrelation and PSD respectively of

RW [n] = σ2δ[n], SW (ej2πf ) = σ2
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Autoregressive model

Definition
Let W [n] be a WSS white noise of variance σ2. The Autoregressive (AR) model is
defined as the following recurrent relation

X[n] +
N∑

k=1

a[k]X[n− k] = W [n], (69)

▶ This equation defined a linear regression for X[n] using its N values X[n− k]
from the past.

▶ W [n] is an additive IID noise often called the ”innovation” term in french.

▶ The regression parameters a[n] define the parameters of the model.

▶ When a[0] = 1, a[n] defines a finite impulse response filter and Eq. 69 can be
reformulated as

X ⋆ a[n] = W [n] (70)

▶ The filter a[n] is said to perform a signal whitening (or decorrelation) of X.
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Autoregressive model (2)
Transfer functions and convolution
The whitening filter a[n] has the following transfer function

A[z] =
N∑

n=0

a[n]z−n

and its inverse of impulse response ai[n] has the following transfer function

Ai[z] =
1

A[z]
=

1∑N
k=0 a[n]z

−n

Stationary component

We can show that ∀n ≥ 0

X[n] = ai ⋆ W [n] + Y [n]

▶ ai ⋆ W [n] is the stationary component (convolution of a stationary signal).

▶ Y [n] is a transient component such that

Y ⋆ a[0] = 0
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Autoregressive model (3)
Theorem

X[n] = ai ⋆ W [n] + Y [n]

The process X[n] converges toward ai ⋆ W [n] for large n if the zeros of A(z) are
strictly in the unit circle |z| < 1.

Proof
Note that the solutions of the homogeneous equation

Y ⋆ a[n] =
N∑

k=0

a[k]Y [n− k] = 0. (71)

can be expressed as

Y [n] =

N−1∑

k=0

Ak(ck)
n ,

Where Ak depends only on initial values Y [k] for k = −N, . . . , 0 and ck are the zeros
of the following equation

â(z) =
N∑

k=0

a[k]z−k = 0. (72)

For limn→∞ Y [n] = 0 we need that |ck| < 1 ∀0 ≤ k ≤ N
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Autoregressive model (4)

X[n] +
N∑

k=1

a[k]X[n− k] = X ⋆ a[n] = W [n],

X[n] = ai ⋆ W [n] + Y [n],

Autocorrelation and PSD

▶ The autocorrelation of the stationary component of X can be expressed as

RX [n] = ai[n] ⋆ RW [n] ⋆ ai[−n] = σ2ai[n] ⋆ ai[−n] (73)

That is the correlation (convolution with time mirror) of ai.

▶ The Power Spectral Density of the stationary component of X[n] can be
expressed as

SX(e2jπf ) = |Ai(e
2jπf )|2SW (e2jπf ) =

σ2

|∑N
n=0 a[n]e

−2jπfn|2
(74)

▶ In the following we will suppose that X[n] is stationary and will suppose that the
transient component is 0.
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Autoregressive model example

0 50 100 150 200 250

2

0

2

Signals
W[n]
X[n]

0.4 0.2 0.0 0.2 0.4
0
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10 |W[k]|2

|X[k]|2
Sx(e2i f)

▶ σ2 = 1, N = 2

▶ a = [−.5,−.1] (low pass).

▶ Comparison between spectrum with finite number of samples Ns = 256 and
theoretical spectrum.
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AR model and covariance matrix

X[n] +
N∑

k=1

a[k]X[n− k] = X ⋆ a[n] = W [n],

Autocovariance
Let us suppose that X[n] is a stationary signal we get from the equation above:

X[n− l]X[n] +
N∑

k=1

a[k]X[n− k]X[n− l] = W [n]X[n− l]

By taking the expectation on each side of the equation we get

E[X[n− l]X[n]] +
N∑

k=1

a[k]E[X[n− k]X[n− l]] = E[W [n]X[n− l]]

Since X[n] is supposed to be WSS we have for l > 0

RX [l] +
N∑

k=1

a[k]RX [l − k] = 0
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AR model and Yule-Walker equations

Yule-Walker equations

RX [l] +
N∑

k=1

a[k]RX [l − k] = 0

▶ The equation above can be used to recover N equations with l = 1, . . . , N .

▶ This provides us with the following linear system:

RXa = −rX

with

RX =




RX [0] RX [−1] . RX [1−N ]
RX [1] RX [0] . RX [2−N ]

. . . .

. . . .
RX [N − 1] RX [N − 2] . RX [0]


 , a =




a[1]
a[2]
.
, .

a[N ]


 , rX =




RX [1]
RX [2]

.
, .

RX [N ]



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AR model estimation
Principle

The Yule-Walker equations provide us with the following linear system:

RXa = −rX

If RX is invertible then one can recover the coefficients in a with:

a = −R−1
X rX

and the variance of the IID noise W [n] can be estimated with

σ2 = E[W [n]2] = RX [0] +
N∑

k=1

a[k]RX [k]. (75)

In practice

▶ In practice one does not have access to RX and rX .

▶ When both stationarity and ergodicity are supposed one can estimate the
auto-correlation R̂X and r̂X with temporal averaging.

▶ The computation is done on a finite number of samples Ns.

▶ Empirical estimation of autocorrelation in python: np.signal.correlate.

▶ Can be estimated with scipy.linalg.solve (but should not see Levinson-Durbin).
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Example of AR estimation
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4
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Signals

W[n]
X[n]

0.4 0.2 0.0 0.2 0.4

2

4

6 Sx(e2i f)
Sx(e2i f), Ns = 256
Sx(e2i f), Ns = 1024

▶ σ2 = 1, N = 2

▶ a = [−.5,−.1] (low pass).

▶ Estimation of AR coefficient from finite signal of size Ns.

▶ â = [−0.4307,−0.1016] for Ns = 256

▶ â = [−0.4943,−0.1123] for Ns = 1024
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Wiener filtering

Objective and linear model

▶ Y [n] is a WSS stochastic process and X[n] is an indirect observation of Y [n]
(usually additive noise).

▶ We want to find the optimal FIR filter h[n] of support [0, N ] that reconstructs
Ŷ [n] from X[n] with the linear model

Ŷ [n] =
N∑

k=0

h[k]X[n− k] = X ⋆ h[n] (76)

Optimization problem for Wiener filtering

The optimal filtering h̃[n] is the one minimizing the expected square error:

h̃ = argmin
h

E
[
(Y [n]−X ⋆ h[n])2

]
(77)

Classical linear regression problem : cf MAP 535 (Regression)
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Geometric properties

L2(R) Space

▶ The scalar product between two random variables A and B in L2(R) can be
expressed as :

< A,B >L2(R)= E[AB]

▶ The norm is this space can be expressed with the scalar product:

∥A∥2L2(R) = E[A2]

Geometry of stochastic processes and linear model

▶ We suppose that X[n] and Y [n] are centered WSS and belong to L2(R).

▶ This means that E[X[n]2] < ∞ and E[Y [n]2] < ∞
▶ Let XN ⊂ L2(R) the set of all linear combinations of {X[n− k]}0≤k<N .

▶ By construction Ŷ [n] =
∑N

l=0 h̃[l]X[n− l] ∈ XN .
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Wiener filter and orthogonal projection

Orthogonal Projection

▶ The residual for the optimal filter h̃ is

E [n] = Y [n]− Ŷ [n] = Y [n]−
N∑

k=0

h̃[n]X[n− k] (78)

▶ Minimizing E
[
(Y [n]−X ⋆ h[n])2

]
= ∥Y [n]−X ⋆ h[n]∥2L2(R) is an orthogonal

projection of Y [n] onto XN .

▶ Due to the projection, for any 0 ≤ k ≤ N we have

< E [n], X[n− k] >L2(R)= E

[(
Y [n]−

N∑

l=0

h̃[l]X[n− l]

)
X[n− k]

]
= 0 (79)

because E [n] is orthogonal to each of the random variables {X[n− k]}0≤k<N .
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Wiener-Hopf equations

▶ The orthogonality conditions can be expressed for WSS signals for 0 ≤ k ≤ N as:

0 =E

[(
Y [n]−

N∑

l=0

h̃[l]X[n− l]

)
X[n− k]

]

=E [Y [n]X[n− k]]−
N∑

l=0

h̃[l]E [X[n− k]X[n− l]]

=RXY [k]−
N∑

l=0

h̃[l]RX [k − l]

▶ The orthogonality conditions define a linear system of size N + 1 called the
Wiener-Hopf equations:

RXh = rXY (80)

with

RX =




RX [0] RX [−1] . RX [−N ]
RX [1] RX [0] . RX [1−N ]

. . . .

. . . .
RX [N ] RX [N − 1] . RX [0]


 , h =




h[0]
h[1]
.
.

h[N ]


 , rXY =




RXY [0]
RXY [1]

.

.
RXY [N ]



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Wiener filter estimation

Estimation of h̃

▶ When the autocorrelation RX and the cross-correlation rXY are known the
optimal filter can be estimated by solving the linear system RXh = rXY .

▶ When the random variables {X[n− k]}0≤k<N are linearly independent the matrix
RX is invertible and

h̃ = R−1
X rXY (81)

Estimation in practice

▶ If RX is not invertible, one usually decreases N until {X[n− k]}0≤k<N are
linearly independent.

▶ Empirical estimation R̂X can be estimated from the observed signal X[n].

▶ rXY requires both X[n] and Y [n] to be ”known” or can be estimated empirically
from a finite sampling of both signals.
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Estimation error and non centered signals

Estimation error
The estimation error of the Wiener filter can be expressed as

E[(Y [n]− Ŷ [n])2] =E[Y [n]2]− E[Ỹ [n]2] = E[Y [n]2]− E[Ỹ [n](Y [n]− E[n])] (82)

=E[Y [n]2]−
N∑

l=0

h[l]E[Y [n]X[n− l]] (83)

=RY [0]−
N∑

l=0

h[l]RXY [l] (84)

Where (82) and (83) are due to the Pythagorean theorem and orthogonality
respectively.

Non-centered signals

When X[n] and Y [n] are non centered WSS such that E[X[n]] = µX and
E[Y [n]] = µY then the linear relation becomes

Ỹ [n] = µY +
N∑

l=0

h[l](X[n− l]− µX) (85)

and all the Wiener-Hopf equations still hold.
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Example of Wiener filtering (1)

Known random signals

▶ Y [n] is a stochastic process with known w0 and a uniform random variable
ϕ ∼ U(0, 2π) such that

Y [n] = cos(w0n+ ϕ)

▶ The observed signal X[n] contains an additive IID noise such that
W [n] ∼ N (0, σ2) and can be expressed as

X[n] = Y [n] +W [n]

▶ The random variables ϕ and W [n] ∀n are all considered independent.

Computation of the correlations

▶ RX [k] = E[X[n]X[n+ k]] = 1
2
cos(w0k) + σ2δ[k]

▶ RXY [k] = E[X[n]Y [n+ k]] = 1
2
cos(w0k)

▶ Here we have access to the exact correlations and do not need to estimate them.
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Example of Wiener filtering (2)

0 200 400 600 800 1000

2

0
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4
Random signals (SNR=-2.47 dB)

Y[n]
X[n]
W[n]

0 200 400 600 800 1000

1

0

1
Y[n]
Y[n], N = 5, SNR = 6.53
Y[n], N = 10, SNR = 8.74
Y[n], N = 50, SNR = 12.43

▶ Realization for a finite signal of length Ns = 1024, noise level σ2 = 1.

▶ Use of known theoretical auto and cross-correlations to estimate the wiener filter.

▶ Computation of filters for N = {5, 10, 50} and corresponding SNR.
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Linear prediction

Objective

▶ Predict X[n] from a weighted sum of {X[n− k]}1≤k≤N (note that k ̸= 0).

▶ The model is the following:

X̂[n] =
N∑

k=1

aN [k]X[n− k] (86)

▶ Optimal filter minimizes the expected square error.

▶ Similar problem to Wiener filtering with Y [n] = X[n].

Estimation and equivalence to AR models

▶ The Wiener Hopf equations for the model are:

RX [k]−
N∑

l=1

ãN [l]RX [k − l] = 0

▶ We recover exactly the Yule-Walker equations for the AR model with a change in
sign a[l] = −aN [l].
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Solving the linear system (1)
Linear system with Toeplitz matrix

The linear methods discussed before (AR, Wiener, Linear prediction) exhibit a linear
system of the form:

Rh = r

where R is a symmetric Toeplitz matrix.

Solving the system

▶ Solving general linear system of size N requires O(N3) operation.

▶ Since R is Toeplitz, one can use a O(N2) method called Levinson-Durbin
recursion (see Sec. 5.2 [Mallat et al., 2015]) to diagonalize R with

D = LRXLT

whe L is a lower triangular matrix leading to the solution:

ĥ = R−1r = LTD−1Lr.

▶ Equivalent to a Gram-Schmidt orthogonalization.

▶ When the matrix R is not invertible, it means that some random variables are
linearly dependent and suggests that N is too large (an infinite number of
solution exist).
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Solving the linear system (2)

Linear system from finite signals

▶ Finite signals of size N + 1 (1D or 2D) are considered to be periodic.

▶ In this case causality might not be necessary.

Solving the system with FFT

▶ With periodic signals the covariance matrix R is Toeplitz circulant and can be
diagonalized with the Discrete Fourier Transform.

▶ The solution can be computed with

ĥ[n] = IFFT

(
SXY [k]

SX [k]

)
= IFFT

(
SY [k]

SY [k] + SW [k]

)
(87)

where the second equality is true when W [n] and Y [n] are centered independent.

▶ The PSD can be estimated with FFT with the following formula:

SX [k] = |FFT (X[n])|2 (88)

▶ The complexity of Wiener filtering (estimation+filtering) is O(N log2(N)).
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Example of Wiener filtering with FFT solver

0 200 400 600 800 1000

2.5

0.0

2.5

Random signals (N=1024,SNR=-2.47 dB)
Y[n]
X[n]
W[n]

0 200 400 600 800 1000
0.0

0.5

1.0
H[k] = SXY[k]/SX[k]

0 200 400 600 800 1000

1

0

1

Y[n]
Y[n], N = 1024, SNR = 13.19

▶ Finite signals of length Ns = 1024, noise level σ2 = 1.

▶ Computation of filters for N = 1024 with FFT and corresponding SNR.

▶ Border effects when the signal is not really periodic.
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Applications of linear modeling

0 1000 2000 3000 4000 5000 6000 7000 8000
f in Hz

PSD estimation with AR model

SX(z),N= 1000

SX(z),N= 100

SX(z),N= 50

SX(z),N= 10

Wiener filt. (SNR=6.06dB)

Applications for linear models on stochastic processes

▶ Smooth PSD estimation with AR modeling.

▶ Modeling speech signal with AR/linear prediction models.

▶ Denoising in 1D and 2D with Wiener filtering.

▶ Deconvolution in the presence of noise.
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Smooth PSD estimation with AR modeling

0 1000 2000 3000 4000 5000 6000 7000 8000
f in Hz

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025
Estimated PSD SX(z) from real signal

0 1000 2000 3000 4000 5000 6000 7000 8000
f in Hz

0.00000

0.00002

0.00004

0.00006

PSD estimation with AR model

SX(z), N = 1000
SX(z), N = 100
SX(z), N = 50
SX(z), N = 10

Principle

▶ Autocorrelation and PSD estimation for finite signals of size Ns usually brings a
lot of noise and makes them hard to interpret.

▶ One can estimate a small number of parameters N of an AR model to estimate a
smooth version of the PSD:

ŜX(z) =
σ2

∑N
k=0 a[k]z

−k

▶ The order N can tune the complexity of the PSD.
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Speech modeling with linear models

Speech signals
▶ Speech signals are NOT stationary.

▶ But they can be supposed stationary on a small temporal window of a few ms.

Acoustic theory of speech production
▶ On small windows speech is modeled with a source-filter model [Fant, 1970].

X(z) = Y (z)H(z)

that is a (locally) LTI model where

▶ Y (z) is the Z-transform of a mixture of excitation signals.
▶ H(z) is the transfer function of the resonant filter due to the vocal, nasal,

and pharyngeal tracts.

▶ H(z) can be modeled as a linear prediction with

H(z) =
1

A(z)
=

1∑N
k=0 a[k]z

−k

where N is relatively small (of the order of 10)

▶ Both Y (z) and H(z) change for each temporal window.
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Voiced and unvoiced excitation signals

Voiced sounds

▶ Sounds made while pronouncing vowels (a, e, i, o, u).

▶ They have a pitch 1/T0 (fundamental frequency) that is tuned by the vocal
chords vibrations.

▶ The excitation is modeled as as Dirac comb:

Y [n] =
∞∑

k=−∞
δ[n− kT0]

Unvoiced sounds

▶ Sounds made while pronouncing consonants (f, ch, s ,v).

▶ They are produced by the flow of air through the vocal track.

▶ The excitation is modeled as IID Gaussian noise:

Y [n] ∼ N (0, σ2)
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Voiced and unvoiced sounds examples

0 250 500 750 1000 1250 1500
0.00

0.05

0.10
Voiced "a"

0 250 500 750 1000 1250 1500
0.00

0.05

0.10 Voiced "e"

0 250 500 750 1000 1250 1500
f in Hz

0.00

0.05

0.10 Voiced "o"

0 2000 4000 6000 8000
0.000

0.005

0.010 Unvoiced "ch"

0 2000 4000 6000 8000
0.0000

0.0025

0.0050

0.0075 Unvoiced "f"

0 2000 4000 6000 8000
f in Hz

0.000

0.005

0.010

0.015 Unvoiced "s"

We represent the FFT of the signals with frequency in Hz. 86/98

Voiced signal generation example

0 200 400 600 800 1000

0.5

0.0

0.5

True signal
x[n]

0 200 400 600 800 1000
0.4

0.2

0.0

0.2

0.4

Generated signals
x[n], N = 50
x[n], N = 200

0 200 400 600 800 1000 1200 1400 1600
f in Hz

0.00

0.02

0.04

0.06

0.08

0.10
X[k]

0 200 400 600 800 1000 1200 1400 1600
f in Hz

0.00

0.05

0.10

0.15
X[k], N = 50
X[k], N = 200

▶ Voiced sound ”a”, sampled at 44100Hz.

▶ Estimation of AR coefficients for N = 50 (1ms) and N = 200 (4ms).

▶ Generate signals by filtering a Dirac comb of period 8ms (inverse of 124.6Hz).
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Unvoiced signal generation example

0 100 200 300 400 500

0.5

0.0

0.5

True signal
x[n]

0 100 200 300 400 500
0.4

0.2

0.0

0.2

0.4

Generated signals
x[n], N = 10
x[n], N = 50

0 1000 2000 3000 4000 5000 6000 7000 8000
f in Hz

0.000

0.005

0.010

0.015 X[k]

0 1000 2000 3000 4000 5000 6000 7000 8000
f in Hz

0.000

0.002

0.004

0.006

0.008 X[k], N = 10
X[k], N = 50

▶ Voiced sound ”s”, sampled at 44100Hz.

▶ Estimation of AR coefficients for N = 10 (0.2ms) and N = 50 (1ms).

▶ Generate signals by filtering gaussian noise.
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Linear Predictive Coding Vocoder

Principle

▶ Compress speech signal for telecommunications.

▶ Split the signal in small windows.

▶ Detect voiced or unvoiced speech and estimate AR coefficients.

▶ Perform quantization of all estimated values (pitch/AR coefficients)

Standard LPC-10 (FIPS 137 [FIPS, 1984])

▶ Bit rate of 2400bits/sec to store speech at 8000KHz.

▶ Windows of Ns = 180 samples (22.5ms) and and AR of order N = 10.

▶ Requires 20 MIPS of processing power, 2 kilobytes of RAM.
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Code Excited Linear prediction (CELP)

Principle [Schroeder and Atal, 1985]

▶ Similar to LPC but allows better quality with finer modelization of excitation.

▶ Excitation is a sum of fixed codebooks and adaptive pitch.

▶ Variants of CELP are used for GSM, internet VOIP.
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Surface roughness in imperfect optics

Principle [Harvey et al., 2007]

▶ In optics lenses and mirrors are not perfect.

▶ Scattering of the light occurs due to micro-structures on the surface.

▶ Scattering of a planar wave can be modeled as a phase proportional to the
micro-structure H(x, y).

▶ One can fit a linear model such that H = W ⋆F where W is a IID noise and F is
a LTI filter describing the scattering.

▶ Used to model imperfect optics in telescopes and solar coronagraphs
[Rougeot et al., 2019].
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Denoising with Wiener filtering
Model for additive noise

▶ Observed signal X[n] contains signal of interest Y [n] and additive noise W [n]:

X[n] = Y [n] +W [n]

▶ Wiener filter aim at finding a FIR filter h[n] of order N such that

Ŷ [n] = X[n] ⋆ h[n] ≈ Y [n]

▶ When Y [n] and W [n] and independent and W [n] centered then

RX [n] = RY [n] +RW [n]

Simplification for additive IID noise

▶ When W [n] is IID its autocorrelation is

RW [n] = σ2δ[n]

and only σ2 has to be known or estimated from the data.

▶ This corresponds to a correlation matrix RX = RY + σ2I making it invertible for
σ2 > 0.
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Wiener filtering for noisy images

M31 Galaxy M33 Galaxy Noisy M31 (SNR=-3.49dB) Wiener filt. (SNR=6.06dB)

▶ Observed X is a noisy (additive IID noise) N ×N image of M31 Galaxy.

▶ Autocorrelation R̂Y [n] estimated from clean version of the M33 Galaxy.

▶ Autocorrelation of noise is set to R̂W [n] = σ̂2δ[n].

▶ Wiener filter obtained by FFT and circular convolution:

ĥ[n] = IFFT

(
ŜY [k]

ŜY [k] +N2σ̂2

)
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Deconvolution in the presence of noise
Model for Wiener filtering

▶ Observed signal X[n] contains signal of interest Y [n] convolved by a filter g[n]
and additive noise W [n]:

X[n] = Y [n] ⋆ g[n] +W [n]

▶ Wiener filter aim at finding a FIR filter h[n] of order N such that

Ŷ [n] = X[n] ⋆ h[n] = Y [n] ⋆ g[n] ⋆ h[n] +W [n] ⋆ h[n] ≈ Y [n]

▶ The filter h[n] aim at both inverting the convolution by g[n] but also limit the
impact of the noise

Wiener filter in the Fourier domain
▶ The correlations can be expressed when Y [n] and W [n] are independent as

RX [n] = (g ⋆ RY ⋆ g−)[n] +RW [n], RXY [n] = g ⋆ RY [n]

▶ The optimal Wiener filter can be estimated in the Fourier domain as

Ĥ[k] =
SY [k]G[k]

SY [k]|G[k]|2 + SW [k]
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Deconvolution with Wiener filtering

M31 Galaxy M31 Galaxy conv. Conv.+noisy M31 (SNR=2.85dB) Wiener filt. (SNR=6.23dB)

▶ Observed X is an image of M31 Galaxy convolved bu g and with additive noise.

▶ g is the Point Spread Function observation by a circular telescope.

▶ Autocorrelation of noise is set to R̂W [n] = σ̂2δ[n].

▶ Autocorrelation R̂Y [n] estimated from clean version of the M33 Galaxy.

▶ Wiener filter use the known operator g and the theoretical expression for noise
PDF.
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