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Full course overview

1. Fourier analysis and analog filtering

1.1 Fourier Transform
1.2 Convolution and filtering
1.3 Applications of analog signal processing

2. Digital signal processing

2.1 Sampling and properties of discrete signals
2.2 z Transform and transfer function
2.3 Fast Fourier Transform

3. Random signals

3.1 Random signals, stochastic processes
3.2 Correlation and spectral representation
3.3 Filtering and linear prediction of stationary random signals

4. Signal representation and dictionary learning

4.1 Non stationary signals and short time FT
4.2 Common signal representations (Fourier, wavelets)
4.3 Source separation and dictionary learning
4.4 Signal processing with machine learning
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Signal representation

How to look at the signal

▶ The raw signal is a function of time (or space, or both).

▶ But temporal representation can be limited → Fourier domain.

▶ Fourier frequency representation is often pertinent but loses all temporal
information.

▶ Other representations (linear of non-linear) can allow for better
interpretation/processing.

Signal representations

▶ Change of bases (Fourier Domain).

▶ Global VS local representations (Short Time FT, wavelets).

▶ Linear decomposition or approximation of the signals.

▶ Non linearity (energy with a square, kernels, neural networks).
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Non stationary signals
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Stationarity

▶ Stationary stochastic processes have probabilistic properties that do not depend
on time.

▶ Reasonable assumption for noise, or some structure/regular signals in
telecommunications.

▶ Most real life signals are NOT stationary (voice, images).

Solution : locality

▶ Use a representation that focuses on local properties of the signal.

▶ Locally one can suppose the signal is stationary.

▶ For temporal signal this means focus on a temporal windows.

▶ For images it means focus on a small patch of the image.
6/98

Window function

Definition

▶ A window function (or apodization function) is a function used to reweight a
signal in order to focus on a given time interval of the signal.

▶ The signal x windowed by w can be expressed as

xw(t) = x(t)w(t) (1)

Properties of a window function

▶ Window functions are symmetric (real FT) and we suppose that w ∈ L2(R).
▶ Window functions are centered in 0:

∫ ∞

−∞
t|w(t)|2dt = 0 (2)

▶ For a window function w(t) of support [−1/2, 1/2] we can recover a window
function for a finite signal of N samples:

w[n] = w

(
(n− (N − 1)/2)

N

)
(3)
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Common window functions (1)
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Rectangular window

w(t) =

{
1 for |t| < 1

2

0 else
, w[n] =

{
1 for 0 ≤ n < N

0 else

▶ Corresponds to a selection of a signal on [−1/2, 1/2] (or 0, . . . , N − 1).

▶ Can be used to model a finite time recording of a signal.

▶ In the Fourier domain, it means that the FT of the signal is convolved by a
cardinal sine (loss of frequency resolution).
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Common window functions (2)
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Hann window

w(t) =

{
1
2
(1 + cos (2πt)) = cos2 (πt) , |t| ≤ 1/2

0, |t| > 1/2

▶ Named after meteorologist Julius von Hann.

▶ Erroneously named ”Hanning” due to its use as a verb in some references.

▶ Far quicker decrease of the lobes in frequencies, but larger principal lobe.
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Common window functions (3)
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Hamming window

w(t) =

{
25
46

+ 21
46

cos (2πt) , |t| ≤ 1/2
0, |t| > 1/2

▶ Proposed by Richard W. Hamming to cancel the first sidelobe.

▶ Similar shape than the Hann window but with a bias (non-zero borders).

▶ Also called the Hamming blip when used for sound effects.

▶ Far quicker decrease after principal lobe then slow decrease (near equiripple).
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Common window functions (4)
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Parzen window

w(t) =

{
1− 24t2 (1− 2|t|) , 0 ≤ |t| ≤ 1

4

2 (1− 2|t|)3 1
4
< |t| ≤ 1

2

▶ Also called Parzen (de la Vallée Poussin).

▶ Approximation of a Gaussian with Spline of order 4.

▶ Quick decrease in frequency and larger sidelobes than other windows.
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Common window functions (5)
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Flat Top window

w[n] =

{
a0 − a1 cos

(
2πn
N

)
+ a2 cos

(
4πn
N

)
− a3 cos

(
6πn
N

)
+ a4 cos

(
8πn
N

)
0 ≤ n < N

0 else

with coefficients: a0 = 0.21557895; a1 = 0.41663158; a2 = 0.277263158; a3 =
0.083578947; a4 = 0.006947368.

▶ Very large main lobe but very attenuated and equiripples sidelobs.

▶ Good estimation of frequency components magnitude but low frequency
resolution.

▶ Several other formulations designed from ideal low pass filter approximation.
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When to use window function?
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Applications of window functions

▶ Focus one one given temporal window centered on u of the signal:

x(t)w(t− u)

▶ Minimizing Border effects on finite signals (FFT demo).

▶ Analog apodization for canceling sidelobs (astronomy).
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Border effects in images

Orig. image Hann window Flat top window

Windowing removes border effect but leads to a loss in frequency resolution.
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Apodization in astronomy

Windowing for a telescope

▶ Apodization literally stands for ”removing the foot” in reference to the side lobs
of classical apertures.

▶ Especially important for exoplanet imaging where the exoplanet might be lost in
the lobes of its star (10−5 relative magnitude).

▶ Estimation of optimal window function for circular aperture telescope
[Soummer et al., 2003].

▶ Optimal apodization can be done for any aperture shape [Carlotti et al., 2011].

Images courtesy of F. Cantalloube and M. N’Diaye
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Apodization for the James Webb Space Telescope

▶ The James Webb Space Telescope (JWST) is a space telescope that will be
launched in 2022.

▶ It includes a coronagraph for exoplanet imaging that can be selected by a wheel
of different masks.

▶ Two shapes of masks are available: Round and Bar occulter.

https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-instrumentation/

nircam-coronagraphic-occulting-masks-and-lyot-stops

HIP 65426 b in different bands of infrared light, as seen from the JWST (10−5 smaller than
star light).

From NASA JWST Blog Step. 2022.

16/98

Short Time Fourier Transform (STFT)

Definition
The short time Fourier transform associated to the window function w can be
expressed as

Xw(u, f) = ST Fw[x(t)] =

∫ ∞

−∞
x(t)w(t− u)e−2iπftdt = F [x(t)w(t− u)] (4)

▶ We define the basis function wu,f as

wu,f (t) = w(t− u)e2iπft

▶ It is localized both in frequency f and time u.

▶ The STFT can be expressed as a scalar product

Xw(u, f) =< x,wu,f >=

∫ ∞

−∞
x(t)w∗

u,f (t)dt
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Temporal and frequency variance

We investigate the time and frequency resolution of the STFT.

Temporal variance

The temporal variance of the basis function wu,f can be expressed as

σ2
t =

1

∥w∥2
∫ ∞

−∞
(t− u)2|wu,f (t)|2dt = 1

∥w∥2
∫ ∞

−∞
t2|w(t)|2dt (5)

It does not depend on time u or frequency f .

Frequency variance

The FT of of the basis function wu,f0 can be expressed as

Wu,f0(f) = F [w(t− u)e2iπf0t] = e−2iπfuW (f) ⋆ δ(f − f0) = e−2iπ(f−f0)uW (f − f0)
(6)

This means that the frequency variance of Wu,f0 is

σ2
f =

1

∥W∥2
∫ ∞

−∞
(f − f0)

2|e−2iπ(f−f0)uW (f − f0)|2df =
1

∥W∥2
∫ ∞

−∞
t2|W (f)|2df

(7)
Which again does not depend on u or f0.
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Uncertainty principle (1)

Scaling the window function with s > 0

ws(t) =
1√
s
w

(
t

s

)
, ∥w∥2 = ∥ws∥2

▶ The TF of ws is : W s(f) =
√
sW (sf).

▶ Small values of s leads to small support of ws but with large support for W s (and
vice versa).

▶ The time/frequency is sampled regularly (σt and σf are independent from u, f0)

▶ One cannot have simultaneously a good precision in time and frequency!
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Uncertainty principle (2)

Heisenberg-Gabor uncertainty (discussed in [Ricaud and Torrésani, 2014])

Let w ∈ L2(R) be a window function with both the function and its FT centered in 0:

∫ ∞

−∞
t|w(t)|2dt =

∫ ∞

−∞
f |W (f)|2df = 0

then the variances σt and σf satisfy the following

σ2
t σ

2
f ≥ 1

16π2
. (8)

The inequality above becomes an equality only for a Gaussian window function of the
form

w(t) = ae−bt
2
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Inverse Short Time Fourier Transform

Inverse STFT

The signal x can be reconstructed for w(t) such that ∥w∥2 =
∫∞
−∞ w(t)2dt = 1 with:

x(t) =

∫ ∞

−∞

∫ ∞

−∞
Xw(u, f)w(t− u)e2iπftdudf (9)

▶ For a window function that is not normalized the inverse is scaled by 1
∥w∥2 .

▶ Note that the basis functions are NOT orthogonal in this case.

▶ There also exists an energy preservation formula such that for ∥w∥2 = 1 we have

∫ ∞

−∞
x(t)2dt =

∫ ∞

−∞

∫ ∞

−∞
|Xw(u, f)|2dudf

▶ This formula justifies that one looks at |Xw(u, f)|2 as a spectral energy density
(see spectrogram later).
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STFT on discrete signals
Discrete STFT
For a finite signal x[n] of N samples supposed periodic the DSTFT can be computed
as

Xw[m, k] =

N−1∑

n=0

x[n]w[n−m]e
−i2πkn

N (10)

▶ The matrix Xw[m, k] can be computed with N FFT of size N with a complexity
O(N2 log2(N)).

▶ For a window w[n] of small support M < log2(N) direct computation can be
more efficient.

▶ For a rectangular window the DSTFT can be computed in O(N2).

▶ In practice reconstruction can be done with a larger temporal sampling of
Xw[m, k] as long as the ”nonzero overlap add” (NOLA) condition si respected.

Scipy scipy.signal.stft function

▶ window is the type of window function.

▶ nperseg is the length of the window M .

▶ overlap is overlap between windows (M − 1 for DSTFT above).

▶ nfft is the size of the FFT (0 padding if nfft>nperseg).
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Spectrogram

Definition
The spectrogram of a signal is the squared modulus of its STFT. For a signal x(t) of
STFT Xw(u, f) the spectrogram can be expressed as

Sw(u, f) = |Xw(u, f)|2

▶ The spectrogram represent the distribution of energy in the time/frequency
domain.

▶ It can be used to visualize (as an image) the evolution of the frequency content
of a signal.

▶ Good tool for interpretation of non-stationary signal.

▶ Due to the modulus, the phase information is partly lost and one cannot
reconstruct a signal from the spectrogram only.

▶ Methods that perform processing of the spectrogram usually use the Phase of the
STFT for reconstruction.
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Examples of spectrograms (1)
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Chirp signal

▶ One second signal, sampled at 8KHz.

▶ Starts at frequency 0 and ends at frequency 500Hz.

▶ Window size of M = 512, overlap at 50%.
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Examples of spectrograms (2)
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Frequency modulation signal

▶ One second signal, sampled at 8KHz.

▶ Signal instantaneous frequency changes between 100 and 600Hz

▶ Window size of M = 256, overlap at 50%.

▶ The peaks in the spectrogram follow the frequencies along time.
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Examples of spectrograms (3)
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Real music signal

▶ Excerpt from ”Stairway to heaven”.

▶ 9 sec signal with 44100Hz sampling, window of size M = 1024.

▶ The peaks in the spectrogram follow the frequencies along time.

▶ Regular harmonics are notes from the guitar, vertical lines are drum, harmonics
with variation along time are due to the voice of the singer.
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Effect of the window size (uncertainty)
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Window size M = 2048

Demos
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Periodogram method for PSD estimation

Principle

▶ PSD estimation can be done for finite random signal realizations from empirical
autocorrelation and square of FFT of the signal.

▶ Those estimations are noisy and sometimes hard to interpret.

▶ Periodogram method estimate a PSD from the spectrogram

▶ Welch’s method [Welch, 1967] propose to average the spectrogram :

Ŝx(f) =

∫
|Xw(u, f)|2du

▶ It reduces the estimation noise of estimation of the D in exchange for a loss in
frequency resolution.

Scipy scipy.signal.welch periodogram function

▶ window is the type of window function.

▶ nperseg is the length of the window M .

▶ overlap is overlap between windows (M/2 by default).

▶ nfft is the size of the FFT (0 padding if nfft>nperseg).

One can also use scipy.signal.periodogram (Bartlett method with overlap=0).
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Examples of periodogram (1)
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Noisy sine

▶ Signal containing a sine at frequency f0 = 0.1 with Gaussian IID noise.

▶ FFT PSD estimation and Welsh periodogram estimation for M = 1024 and
M = 512.

▶ The noise density is less noisy (near constant).

▶ The magnitude of the peak at f0 is smaller (energy is spread due to windowing).
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Examples of periodogram (2)
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AR model

▶ Simulate an AR model of order 2.

▶ FFT PSD estimation and Welsh periodogram estimation for M = 1024 and
M = 512.

▶ The smoothed Welch periodogram estimation is much closer to the true PSD.
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Filtering the STFT with spectral subtraction

Noise suppression in the time frequency domain [Boll, 1979]

1. Compute the STFT Xw[m, k] of the signal x(t).

2. Apply a thresholding operator with λ > 0 to its magnitude:

|X̂w[m, k]| = max(0, |Xw[m, k]| − λ)

3. Reconstruct the denoised signal with

x̂(t) = ST F−1
w [|X̂w[m, k]|eiArg(Xw [m,k])]

Discussion

▶ Use the thresholded magnitude and original phase and perform inverse STFT..

▶ When PSD of noise Pn[k] available one can use is as an adaptive threshold:

|X̂w[m, k]| = max
(
0, |Xw[m, k]| −

√
Pn[k]

)

▶ Thresholding can be done on blocks of STFT coefficients instead of individual
[Yu et al., 2008].
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Example of spectral subtraction
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▶ FM signal with additive gaussian noise.

▶ Comparison of bandpass filter and spectral subtraction.
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Common signal representations
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Signal representation

▶ Basis of function to represent the signal as a linear combination.

▶ Wavelets allow spatial/frequency representation with an adaptive time/frequency
resolution.

▶ Discrete Cosine Transform is a non local orthogonal basis used for image
compression.

▶ Sparsity of the signals is used for compressing and signal
denoising/reconstruction.
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Continuous Wavelet Transform (1)

Definition [Mallat, 1999]

Let ψ ∈ L2(R) be the normed (∥ψ∥ = 1) ”mother” wavelet. The Continuous Wavelet
Transform (CWT) of the signal x(t) can be expressed as

Xψ(u, s) =
1

|s|1/2
∫ ∞

−∞
x(t)ψ∗

(
t− u

s

)
dt (11)

▶ Coefficient u correspond to the time (equivalent to u in STFT).

▶ Coefficient s is the scale coefficient (indirect equivalence to frequency).

▶ ”Adaptive” resolution in the time frequency representation (uncertainty remains).

▶ The CWT can be reformulated as a convolution.
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Continuous Wavelet Transform (2)
Properties of CWT

▶ Shifting y(t) = x(t− τ) : Yψ(u, s) = Xψ(u− τ, s)

▶ Scaling y(t) = 1√
a
x( t

a
) : Yψ(u, s) = Xψ(

u
a
, s
a
)

▶ Localization x(t) = δ(t− t0) : Xψ(u, s) =
1√
s
ψ
(
u−t0
s

)

Reconstructing the signal

▶ The real mother wavelet ψ is assumed to respect the admissibility condition :

Cψ =

∫ ∞

0

|Ψ(f)|2
|f | df <∞

where Ψ(f) = F [ψ(t)] This condition implies that

Ψ(0) =

∫ ∞

−∞
ψ(t)dt = 0

▶ The signal can be reconstructed by using Calderón’s reproducing identity:

x(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

0

Xψ(u, s)Φ

(
t− u

s

)
1

s2
dsdu (12)
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Ricker Wavelet example
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2 (13)

▶ Used in Computer vision to detect multiscale
edges in images.

▶ Slow components can be seen at small scale
but edges are detected at large scale (quick
changes).
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Ricker Wavelet
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Discrete Wavelet Transform
▶ For a finite sampled signal x[n] with N samples, one can use a discrete version of

the wavelet Transform.

▶ A sufficient sampling to allow reconstruction is the log space of [−1/N, 1] with
s = ak0 for k ∈ Z with usually a0 = 2.

▶ The discrete scaled wavelet can be expressed as

ψk[n] =
1√
ak0
ψ

(
n

ak0

)

▶ The Discrete Wavelet Transform can be computed as a convolution:

Xψ[m, k] =

N−1∑

n=0

x[n]ψ∗
k[n−m] = x ⋆ ψ∗−

k [m] (14)

▶ When the signal is supposed to be periodic, one can used Fast Convolution with
FFT and can compute the log2(N) scales on the signals with complexity
O(N(log2(N)2)).

▶ Temporal sampling can also be adapted to the resolution with a decimation
depending on the scale leading to a transform of size N .

▶ Fast computation base on filtering/decimation can be done : Fast DWT
[Mallat, 1989].
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Applications of Wavelet Transforms

Wavelet transform as data transformation

▶ Data representation : natural signal and images are sparse in the Wavelet domain
so easier to interpret.

▶ Sparsity can also be used for compression and denoising (noise is not sparse).

▶ Alternative to (Short Time) Fourier Transform in numerous applications (less
sensible to Gibbs phenomenon).

Some applications

▶ JPEG2000 image standard [Group et al., 2000].

▶ Alternative to (Short Time) Fourier Transform in EEG
Analysis [Adeli et al., 2003].

▶ Image deconvolution and reconstruction (see sparsity in
the next part).
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Discrete Cosine Transform

▶ Decomposition of discrete signals in Fourier require the use of complex number.

▶ Complex numbers comes with a price in memory and complexity.

▶ We want a similar real transform that remain interpretable in terms of frequency.

▶ We also want to limit the border effects for non periodic signals.

→ Discrete Cosine Transform (DCT) [Ahmed et al., 1974]

Symmetrization of the signal (for variant DCT-II)

▶ Let x[n] be a finite signal with N samples.

▶ We use a symmetric version (around -1/2) of signal x of size 2N such that

x̃[n] =

{
x[n] for 0 ≤ n < N

x[−n− 1] for −N ≤ n < 0
(15)

▶ This symmetrization of the signal allows for a decomposition of the signal of the
form

x̃[n] =

N−1∑

k=0

ak cos

(
2kπ

2N

(
n+

1

2

))
(16)
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Discrete Cosine Transform (2)

Basis of discrete cosines
The family of discrete cosine

{
ck[n] = λk

√
2

N
cos

(
kπ

N

(
n+

1

2

))}

k=0,...,N−1

with λk =

{
1√
2

if k = 0

1 else

is an orthonormal basis of RN .

Discret Cosine Transform
The discrete cosine transform (DCT) of signal x[n] is

Xc[k] =< x[n], ck[n] >=

N−1∑

n=0

λk

√
2

N
cos

(
kπ

N

(
n+

1

2

))
x[n] (17)

and the signal x[n] can be recovered with

x[n] =

N−1∑

k=0

Xc[k]ck[n] (18)
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Discrete Cosine Transform in practice

Implementations

▶ Several variants of DCT exist with
slight differences in the
symmetrization process (we saw
DCT-II in the course).

▶ All variants can be computed with an
adaptation of the FFT algorithm in
O(N log2(N))
[Vetterli and Kovacevic, 1995].

DCT in practice

▶ Extension to 2D bases as product of 1D bases recover Fast transforms.

▶ Very common in signal/image processing and compression.

▶ In practice one uses a windowing of the signal in order to get space/frequency
representations of the images (multiple DCT on small signal/images).

▶ Provided in Scipy with function scipy.fft.dct (not normalized by default like
fft) and its inverse scipy.fft.idct.
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Discrete Cosine Transform 1D example (1)
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Range signal example

▶ FFT supposes that the signal is periodic so it has a large discontinuity in n = 0.

▶ Transformation coefficients are provided in the center of the figure above.

▶ The right part shows the sorted (decreasing value) modulus values of the
coefficients for FFT and DCT.

▶ We can see that thanks to the symmetrization, the DCT is sparse around 50%
(contains 0 components) while FFT representation is not.
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Discrete Cosine Transform 1D example (2)
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Range signal compression

▶ Compute DCT of the signal.

▶ Threshold coefficients in order to keep only the largest.

▶ Reconstruction of the signal after threshold.

▶ Very good reconstruction from few coefficients.

▶ Principle used for DCT compression in JPEG.
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DCT for JPEG compression (1)

Image representation (Global DCT)
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Thresholding + reconstruction (Global DCT)
Rec. image 1.0% coeff. Rec. image 5.0% coeff. Rec. image 10.0% coeff. Rec. image 20.0% coeff.
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DCT for JPEG compression (2)

Thresholding + reconstruction (Global DCT)
Rec. image 1.0% coeff. Rec. image 5.0% coeff. Rec. image 10.0% coeff. Rec. image 20.0% coeff.

Thresholding + reconstruction (JPEG local 8× 8 DCT)
Rec. image 1.0% coeff. Rec. image 5.0% coeff. Rec. image 10.0% coeff. Rec. image 20.0% coeff.
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Linear model for finite signals

Finite signal as vector

▶ A finite signal x[n] can of N samples be represented as a vector

x = [x[0], x[1], . . . , x[N − 1]]T

▶ We suppose that the signals have a finite energy : ∥x∥ <∞

Linear model
We supposed in all the previous signal representations that the signal x ∈ Rn can be
represented as a weighted sum of basis signals:

x = Da =
m∑

j=1

ajdj (19)

▶ D = [d1, . . . ,dm] ∈ Rn×m is the dictionary and the dk are the basis vectors.

▶ a ∈ Rm is the representation of the signal on the dictionary D.

▶ Note that the discrete Fourier and Cosine Transforms representation have m = n
and the basis vectors are orthogonal.
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Linear model and approximation

x = Da =
m∑

j=1

ajdj

Case m < n : Approximation

▶ The equality is true only when x is in the span of D.

▶ When this is not the case one can only approximate the signal.

▶ Classical way is to find a representation a that minimizes an error L(·, ·) between
x and its reconstruction Da:

â = argmin
a

L(x,Da) (20)

Case m = n : Change of basis

▶ When D is full rank the change in representation is a change of basis in Rn.
▶ In this case there is a unique a such that the equality is true.

Case m > n : overcomplete dictionary

▶ In this case there is a possibly infinite number of a such that the equality is true.

▶ Representation used in conjunction with sparsity.
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Least square estimation

â = argmin
a

∥x−Da∥2 (21)

Solving the least square estimation when L(x, x̂) = ∥x− x̂∥2

▶ The solution is a projection on the span of D such that:

DTDâ = DTx, → â = (DTD)−1DTx (22)

▶ Already seen for Wiener filtering and in MAP 535 (Regression)

▶ Requires DTD to be invertible (strictly positive definite) for a unique solution.

Special cases

▶ DTD non strictly positive definite : Add regularization term to find the
minimal norm solution by minimizing with λ > 0 :

â = argmin
a

∥x−Da∥2 + λ∥a∥2 (23)

with solution â = (DTD+ λI)−1DTx where I is the identity matrix (similar to
noise in Wiener filtering).

▶ D is orthonormal basis (Fourier, Cosine) : â = (DTD)−1DTx = DTx
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Sparsity and sparsity promoting regularization

Sparsity

▶ A sparse vector is a vector that contain a proportion of values exactly 0.

▶ Most natural signal are not sparse in the time domain but can be sparse (or near
sparse) in a given dictionary.

▶ Usually the presence of noise comes with a loss of sparsity.

▶ Examples: DCT of images, Wavelet representation.

Sparsity for signal processing

▶ Can be used to denoise or reconstruct signals with Dâ where â is sparse.

▶ Sparse data is handled efficiently on computers (memory, complexity).

▶ Better estimation of the few active coefficients (the rest are 0).

▶ How to use sparsity is signal processing:

▶ The easy way: hard thresholding (used in spectrograms and DCT
compression).

▶ The subtle way : add a regularization term that will promote sparsity.
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The Lasso optimization problem

â = argmin
a

1

2
∥x−Da∥2 + λ∥a∥1 (24)

where ∥a∥1 =
∑
j |aj | is the L1 norm of the vector.

▶ Non smooth objective function (absolute value is non differentiable).

▶ The non-differentiability in 0 will attract the minimum toward sparse solutions.

▶ No closed form for solving the problem (except for D orthogonal).

▶ Several existing algorithms of complexity O(m3).

Absolute value and sparsity (in 1D)

â = argmin
a

(a− x)2/2 + λ|a|

The solution is the soft thresholding operator

â = max(0, |x| − λ)sign(x)

The function above is called the proximal operator
of the absolute value.
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Signal and image reconstruction with sparsity

Denoising with additive noise (Basis Pursuit [Chen and Donoho, 1994])

â = argmin
a

1

2
∥x−Da∥2 + λ∥a∥1 (25)

▶ Original signal y is sparse, additive IID noise w is not and x = y +w.

▶ λ has to be chosen w.r.t. the noise level.

▶ Estimate the signal with ŷ = Dâ.

Signal reconstruction

â = argmin
a

1

2
∥x−HDa∥2 + λ∥a∥1 (26)

▶ Original signal y is sparse, additive IID noise w is not and x = Hy +w.

▶ H is a known linear operator (LTI system, convolution, ... ).

▶ When H is a convolution operator it is a Toeplitz matrix (block-Toeplitz in 2D).

▶ Estimate the signal with ŷ = Dâ.
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Denoising images with sparsity

Noisy image DCT = 20 DCT = 70 DCT = 100 DCT = 200

DCT 8x8 = 600 DCT 8x8 = 2100 DCT 8x8 = 3000 DCT 8x8 = 6000

Denoising with sparsity in the DCT decomposition

▶ Noisy image with IID Gaussian noise.

▶ Reconstructed by solving Equation (25) with different values of λ.

▶ Comparison between DDCT corresponding to the Full DCT decomposition (top)
and DDCT8×8 for a local decomposition on 8× 8 patches (bottom).
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Source separation and dictionary learning

Estimate simultaneously the dictionary D and the representation A from the data:

min
A∈CA,D∈CD

L(X,DA) (27)

▶ X = [x1, . . . ,xp] ∈ Rn×p is a dataset of (usually centered) p signals xi ∈ Rn.
▶ A = [a1, . . . ,ap] ∈ Rm×p contains the representations of all the samples.

▶ L(·, ·) measure the discrepancy between the signals xi and their model Dai.

▶ CA and CD are constraint sets that encode prior knowledge about the data.

▶ This general approach is know under several names depending on the constraints
on the dictionary and coefficients and the loss L.
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Principal Component Analysis
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Principle

min
A∈Rm×p,D∈Rn×m,DTD=Im

∥X−DA∥2F (28)

where ∥M∥2F =
∑
i,jM

2
i,j is the squared Frobenius norm.

▶ With m < n we seeks for the subspace of Rn such that D is orthonormal.

▶ Solving the problem can be done with a SVD decomposition of matrix
X = UΣWT and keeping the m largest singular values. The solution is
D = Um and A = ΣmWT

m.

▶ Can also be computed from the eigendecomposition of the matrix XTX.

▶ Used to perform Dimensionality Reduction from n to m.

▶ Denoising of the signals x̂ = Da can be done for IID noise (isotropic).
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Application of PCA : Eigenfaces

Principle [Sirovich and Kirby, 1987]

▶ Use dataset of human faces (centered).

▶ PCA is performed in order to recover the eigenvector of the faces dataset.

▶ Can be used for representation (face recognition ) or for reconstructing missing
data [Turk and Pentland, 1991] or data generation.

▶ Original GAN : ”This person does not exist” .
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Independent Component Analysis

0.10 0.05 0.00 0.05 0.10
x1

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

x 2

Data for n = 2 and p = 500

0.10 0.05 0.00 0.05 0.10
x1

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

x 2

ICA Dictionary
d1
d2

0.10 0.05 0.00 0.05 0.10
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100
ICA Colored representation

Principle [Herault and Jutten, 1986]

▶ Find a decomposition of the signal that is independent (as opposed to orthogonal
for PCA).

▶ Not expressed as the general optimization problem (27) but still linear model.

▶ Works particularly well on non Gaussian data (or else PCA is optimal).

▶ Efficient algorithm : FastICA [Hyvärinen and Oja, 2000].

▶ Applied with success to several source separation problems (biomedical signal
processing).
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Vector Quantization (K-means)
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Principle [MacQueen et al., 1967]

min
A∈{0,1}m×p,D∈Rn×m,

∑
j Aj,i=1,∀i

∥X−DA∥2F (29)

▶ Find m dictionary element (clusters) that represent the dataset.

▶ The representation ai for one signal an be only binary with a unique active
component at one (each signal is represented only by its closest dj).

▶ Solved classically with the K-means (block coordinate descent):

1. Update D by computing an average of the signals assigned to each cluster.
2. Update A by finding the closest cluster for each signal.
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Sparse Dictionary Learning
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Principle

min
A∈Rm×p,D∈Rn×m,∥di∥=1,∀i

∥X−DA∥2F + λ
∑

i

∥ai∥1 (30)

▶ Constraints on the norm of di ensure normalized basis (not orthogonal).

▶ Sparsity regularization on the representations ai promotes samples in linear
subspaces of the span of D.

▶ Can be generalized to other losses L .

▶ Can be solved efficiently with stochastic optimization [Mairal et al., 2009].
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Non Negative Matrix Factorization (NMF)
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Principle [Lee and Seung, 2000]

min
A∈Rm×p

+ ,D∈Rn×m
+ ,∥di∥=1,∀i

∥X−DA∥2F + λ
∑

i

∥ai∥1 (31)

▶ For positive data (for instance power densities) it makes sens to have both
dictionary elements dj and representations aj positive.

▶ Other losses can be used to better adapt to the data (Kullback–Leibler
divergence, Itakura-Saito [Févotte et al., 2009]).

▶ Sparsity can sometimes be used for regularization.
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NMF for audio source separation

NMF on the spectrogram

▶ Factorize the spectrogram of audio sequence as a low rank matrix and perform
NMF to separate the sources with different spectra [Févotte et al., 2009].

▶ Reconstruction of individual sources can be done in for the STFT by keeping the
phase and scaling wrt to the sources proportions (similar to spectral substraction).

▶ Can be extended to multiple channel recordings for instance to separate
instruments and voice from stereo recordings [Ozerov and Févotte, 2009].
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Dictionary learning comparison on faces

▶ Comparison of different variants of DL/marix factorization on the faces dataset.

▶ Results from https://scikit-learn.org/stable/auto_examples/

decomposition/plot_faces_decomposition.html
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Dictionary learning with missing data

Principle

min
A∈Rm×p,D∈Rn×m,∥di∥=1,∀i

∥M⊙ (X−DA)∥2F (32)

▶ ⊙ is the pointwise multiplication and M ∈ {0, 1}n×p is a binary mask denoting
which features that are observed in the matrix X.

▶ Data is only partially observed but one wants to predict the values for all
components of the matrix X (observed values are stored in a sparse matrix).

▶ Solved using truncated Singular Vector Decomposition that return a low rank
p < min(d, n) factorization X ≈ ADT .

▶ Used in recommender systems and for data imputation.

▶ Example for image inpainting in [Mairal et al., 2009].
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WaveNet

Principle [Oord et al., 2016a]

p(x) =
N∏

t=1

p(xt|x1, . . . , xt−1) (33)

▶ The model suppose a factorization of the probability of a whole signal.

▶ The value xt depends only on values of the past.

▶ Model the conditional probabilities are modeled as a DNN with staking of
convolutional layers (Non-linear AR).

▶ Train the model by maximizing the log-likelihood wrt the parameters (separable
thanks to factorization above).

▶ Variants of the model can include conditional variables and signals (for speaker
selection and Text-To-Speech applications)
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µ-law quantization and categorical prediction

Quantization of the signal

▶ Using the classical µ-law transformation (standard PCM encoding in the US)

f(xt) = sign(xt)
log(1 + µ|xt|)
log(1 + µ)

with µ = 256 and −1 < xt < 1

▶ Transformed signal is quantized on 256 levels.

▶ Known as a good quantization for speech signals that have high dynamic.

Categorical prediction and softmax

▶ Predicting the value of xt cast as a classification problem instead of a regression.

▶ The output of the neural network has K = 256 score functions f(x)k that go
through the softmax operator to ensure a discrete probability distribution :

Softmax(fk(x))k =
exp(fk(x))∑
j exp(fj(x))

▶ Prediction error is measures with the categorical cross entropy that is a classical
loss for multi-class classification equivalent to likelihood maximization.
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Dilated convolution

Principle [Combes et al., 2012]

▶ WaveNet uses causal convolutions and non-linear activations for modeling.

▶ Good modeling of a high frequency signal requires a long ”receptive field”
(equivalet of the size N of the AR model).

▶ Dilated convolution performs a convolution of two samples separated by a factor
several dilatation layers ensuring that the whole window is used.

▶ Better factorization into small filters and more changes to add non linearity.
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Residual net and gated activations

▶ Each layer k in the NN contains a dilated convolution followed by a gated
activation [Oord et al., 2016b] of the form

z = tanh(Wf,k ⋆ x)⊙ σ(Wg,k ⋆ x)

where σ is the sigmoid that reweights the output of the tanh activation focusing
on some temporal areas .

▶ The output of each layer is a residual net [He et al., 2016]: x+ αz

▶ The final prediction is a weighted sum of all the output of the layers (skip
connections).
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Conditional WaveNet

Generative model

▶ Model will provide probabilities for the values of the next sample from the past
observations.

▶ Can be used for generic signal generation (speech is meaningless).

▶ Practical application might require more control such as a selection of speaker or
a sequence of musical notes et phonemes.

Conditional model

▶ Main idea is to condition the model w.r.t. the variables provided in the training
dataset.

▶ Conditional representation w.r.t. a latent variable h ∈ Rd:

z = tanh(Wf,k ⋆ x+V⊤
f,kh)⊙ σ(Wg,k ⋆ x+V⊤

g,kh)

▶ Conditional representation w.r.t. a latent signal y ∈ RN :

z = tanh(Wf,k ⋆ x+Vf,k ⋆ y)⊙ σ(Wg,k ⋆ x+Vg,k ⋆ y)

▶ y can be the (learned) upsampling of a low temporal resolution time series.
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Applications of WaveNet

History of Wavenet

▶ Proposed originally in [Oord et al., 2016a] to generate realistic signals at 16KHz.

▶ Made more efficient and integrated in Google Assistant in 2017.

Applications

▶ Original applications in [Oord et al., 2016a]

▶ Multi-speaker speech generation
▶ Text-To-Speech (TTS)
▶ Music generation

▶ Provided in Google cloud as a TTS service conditioned by text and speakers.

▶ Used for signal representation and speaker swapping [Chorowski et al., 2019].
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Deep learning on signal and images

Deep learning on sequences and images

▶ Convolution neural networks (CNN) are non-linear filters learned on data but
limited expressivity.

▶ Recurrent neural networks (RNN) and more recently Long Short-Term Memory
models work well on sequences but harder to train.

Attention models: Transformers

▶ Attention mechanism is a way to focus on specific parts of the input sequence.

▶ Transformer model [Vaswani et al., 2017] is a sequence-to-sequence model that
uses attention mechanism.

▶ Used for machine translation, image captioning, speech recognition.
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Attention mechanism

Principle [Vaswani et al., 2017]

AttLayer(X) = X+ Softmaxh(XWQ︸ ︷︷ ︸
Q

(XWK)T︸ ︷︷ ︸
K⊤

/
√
p)XWV︸ ︷︷ ︸

V

(34)

▶ Parameters WQ ∈ Rd×p,WK ∈ Rd×p,WV ∈ Rd×d are learned from the data
and when d is large WV is a rank p matrix.

▶ Horiz. softmax Softmax(x) = exp(xi)/
∑
j exp(xj) is a way to focus on specific

parts of the input sequence (quadratic memory w.r.t. sequence size).

▶ The Transformer model is a stack of several layers of attention followed by
normalization and feed forward layers.

▶ Warning: Ordering of the ”tokens” done by positional encoding.
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Transformers for time series

Autoformer [Wu et al., 2021]

▶ Separate average trend and residual signal (Series Decomp. layers).

▶ Perform attention on the residual signal with autocorrelation for computing.

▶ Select the largest attention weights (corresponding to period of seasonal
variations).

▶ Use FFT to accelerate the computation of the autocorrelation.

▶ Other approach: AST Audio Spectrogram Transformer [Gong et al., 2021]
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State-Space Models for time series

Mamba: Linear-Time Sequence Modeling with Selective State-Spaces
[Gu and Dao, 2023]

▶ Use a (time discretized) state space model to model the time series:

hk+1 = Akhk +Bkxk (35)

yk+1 = Ckhk+1 (36)

▶ Implemented as a global (fast) convolution for training, but recurrently for
predicting (IIR filter can be approximated by FIR filter).

▶ Selection mechanism is done by a gating mechanism to select the relevant state
space, efficient memory implementation on GPU.

▶ Similar perf. to Transformer but faster to train and predict (linear complexity).
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Transformer for images

ViT : Vision Transformer [Dosovitskiy et al., 2020]

▶ Use of the transformer model for image classification.

▶ The image is divided into patches that are processed by the transformer model.

▶ Very large models, require large datasets at least for pre-training.

▶ Basis for recent Generative Diffusion models [Peebles and Xie, 2023]

▶ Joint image/text modeling with cross attention [Xu et al., 2015].
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Conclusion on Transformers

Transformers in signal processing

▶ Attention mechanism is a powerful tool for focusing on specific parts of
structured data.

▶ Transformer model are applied on tokens: tokenization is necessary sometimes
with positional encoding.

▶ Used for machine translation, image captioning, speech recognition.

▶ Very important computational/energy cost and required extremely large dataset.
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Graph Signal Processing (GSP)

Principle (Tutorial [Ortega et al., 2018])

▶ Time and space signals have a regular and very specific structure.

▶ In some applications, the relation between the samples might be more complex.

▶ Graphs can be used to model this relation between samples (nodes of the graph).

▶ The signal on the graph is plotted through the color of the nodes.

▶ Illustrations in this course are done using

▶ PyGSP Python GSP toolbox [Defferrard et al., 2017]
▶ Strong inspiration by the awesome notebooks from

https://github.com/mdeff/pygsp_tutorial_graphsip.
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Graphs and matrices

Graph and signal

▶ We define a Signal on graph as

▶ A graph G described through its adjacency matrix A ∈ {0, 1}N×N .
▶ x ∈ RN the signal where xi is the samples/signal at node i in the graph.

▶ The adjacency matrix define the existence of edges between two node: Ai,j = 1
is there exist an edge from node i to j.

▶ A graph is said to be symmetric if Ai,j = Aj,i, ∀i, j (often the case in GSP).

Graph matrices

▶ The adjacency matrix A ∈ {0, 1}N×N describes the connections between nodes.

▶ The Laplacian matrix is defined as

L = D−A, with D = diag(A1N ) (37)

where D is the diagonal degree matrix.

▶ Sometime the adjacency matrix can be weighted A ∈ RN×N
+ , in this case it is

often denoted as W.
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Notion of shift

Shift in 1D signals

▶ In a discrete 1D signal a temporal shift is a convolution by a dirac

xs[n] = x[n] ⋆ δ[n− 1]

▶ From a matrix point of view a circular temporal shift can be done with the
following linear operation

xs = Ax, A =




0 0 . . . 1
1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 0




▶ The matrix A is both the adjacency matrix of the graph for a circular signal and
its shift operator.

▶ A shift of k can be expressed as Akx.

Shift in a graph

▶ Shift Ax is the propagation of the signal for general graphs.

▶ Similarly to time signal we can define the property of an operator f as shift
invariant when f(xs) = f(x)s.
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Example of shifts
Circular 1D signal
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Symmetric Circular 1D signal
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Sensor graph
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Matrix A Signal Shift k=1 Shift k=2 Shift k=5 Shift k=10
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Spectral decomposition of a graph

Decomposition of the Laplacian

▶ The Laplacian matrix of a graph can be factorized as

L = UΛU⊤

where the columns of U are an orthonormal basis and Λ = diag(λ1, . . . , λN ) are
the eigenvalues .

▶ For a symmetric graph, the Laplacian is SPD and U is real.

▶ The basis vector uk are sorted by increasing λk where λk can be seen as
frequencies in the graph (spatial variance of the basis function uk).

▶ For non-symmetric graphs one can decompose the adjacency matrix but the basis
will be complex (for a 1D circular graph, it recovers the discrete Fourier basis).

Fourier transform on graph

▶ The operator U⊤ is called the Graph Fourier Transform.

▶ A shift invariant operator V can be diagonalized by U.

▶ Similarly to a convolution it can be applied by a pointwise product in the Fourier
domain/
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Fourier basis : 1D perodic signal

Adjacency matrix and graph
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Fourier basis u6 Fourier basis u7 Fourier basis u8 Fourier basis u9 Fourier basis u10 Fourier basis u11
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Fourier basis : regular 2D grid

Adjacency matrix and graph
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Fourier basis : Sensor graph

Adjacency matrix and graph
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Fourier basis : Stochastic Block Model

Adjacency matrix and graph
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Graph Fourier Transform
Graph signal
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Fourier transform of the graph signal
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Filtering a signal on graph
Principle

▶ Filtering is done with a point-wise product in the frequency domain by a
frequency response function H(λ).

▶ Let h be the frequency response hi = H(λi) as a function of the frequencies in
the graph. The filtered signal is:

xf = GFT −1[GFT [x]⊙ h] = U(h⊙U⊤x) (38)

▶ GFT can be costly on large graph, filters can be approximated using Chebyshev
polynomials.

Low and high pass filter : H1(λ) =
1

1+τλ
, H2(λ) =

τλ
1+τλ

Signal Low pass τ=0.05 Low pass τ=0.1 Low pass τ=0.5 Low pass τ=1 Low pass τ=5

Signal High pass τ=0.01 High pass τ=0.05 High pass τ=0.1 High pass τ=1 High pass τ=5

Low pass filter : H(λ) = 1
1+τλ

Signal High pass τ=0.01 High pass τ=0.05 High pass τ=0.1 High pass τ=1 High pass τ=5
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Graph Neural Networks (GNN)

Graph Neural Network (Review : [Wu et al., 2020])

▶ GNN are a way to perform deep learning on graph structured data.

▶ Multiple layers alternate between filtering (message passing) and non-linear
transformation [Scarselli et al., 2008].

▶ Spectral GNN are based on the graph Fourier transform and learn the filter H(λ).

▶ Graph Convolutional Networks (GCN) [Kipf and Welling, 2016] are a popular
variant of GNN where the local propagation update is :

Xl+1 = σ
(
ÃXlWl

)
with Ã = D−1/2(A+ I)D−1/2, D = diag(A1)

▶ Can perform node or edge prediction, graph classification (after pooling), etc.
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Attention mechanism on graphs

GAT: Graph Attention Networks [Velicković et al., 2017]

▶ Attention mechanism can be used to focus on specific nodes in the graph.

▶ Combination of a GNN and and attention layers where the message passing is
weighted by the attention (Ã is attention matrix masked by A+ I ).

▶ The attention mechanism is learned from the data and allows to select the most
relevant nodes in the neighborhood.

▶ Recent approach directly learn the attention mechanism between all nodes (and
edges) in the graph [Buterez et al., 2024].
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Geometric Deep Learning

Principle (Recent reference : [Bronstein et al., 2021])

▶ Objective : go beyond euclidean data (independent samples in Rd)
▶ Importance of symmetry, invariance and equivariance on geometric data.

▶ Common framework for modeling

▶ Convolutional Neural Networks (CNN)
▶ Graph Neural Networks (GNN)
▶ Recurrent Neural Networks (RNN)
▶ Transformers can learn geometric structure from the data.

Image from [Bronstein et al., 2021, Figure 9]
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