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Introduction



Three aspects of Machine Learning

Unsupervised learning }:’*ﬁ &3&3
e Extract information from unlabeled data T ¥ @ s .
L% 4
e Find labels (clustering) or subspaces/manifolds. 3 A & ,I*L
i “Mﬁ yw‘
e Generate realistic data (GAN). \%\#j o
Supervised Learning
e Learning to predict from labeld dataset. ° \

e Regression, Classification.

e Can use unsupervised information (DA, Semi-sup.)

Reinforcement Learning

e Let the machine experiment.

e Learn from its mistakes.

SCORE: 0

e Framework for learning to play games.
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Optimal transport for machine learning

Occurences of OT+ML in Google Scholar
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Short history of OT for ML
e Recently introduced to ML (well known in image processing since 2000s).
e Computational OT allow numerous applications (regularization).
e Deep learning boost (numerical optimization and GAN and now diffusion models).
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Three aspects of optimal transport

Transporting with optimal transport

e Learn to map between distributions.
e Estimate a smooth mapping from discrete distributions.

e Applications in domain adaptation.

Divergence between histograms/empirical distributions

i e Use the ground metric to encode complex relations
\ between the bins of histograms for data fitting.
773 | 1NN e OT losses are non-parametric divergences between non
: :::}3:;}% overlapping distributions.
. e Used to train minimal Wasserstein estimators.
Divergence between structured objects and spaces

e Modeling of structured data and graphs as distribution.

° e OT losses (Wass. or (F)GW) measure similarity
@’7 between distributions/objects.

e OT find correspondance across spaces for adaptation.
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Mapping with optimal
transport



Mapping with optimal transport
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Mapping estimation
e Barycentric mapping using the OT matrix [Ferradans et al., 2014].
e Linear Monge mapping when data supposed Gaussian [Flamary et al., 2019].

e Smooth mapping estimation
[Perrot et al., 2016, Seguy et al., 2017, Paty et al., 2020].

Estimation for W3 using input convex neural networks [Makkuva et al., 2020].

Can be used to linearize the Wasserstein space [Mérigot et al., 2020]
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Transporting the discrete samples

Distributions Classt OT Reg. Entropic OT
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Barycentric mapping [Ferradans et al., 2014]

Ty (x7) = argmin 374 (i, f)e(x, %)), (1)

J

e The mass of each source sample is spread onto the target samples (line of ~,).

The mapping is the barycenter of the target samples weighted by «,,

Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).

Trick: learn OT on few samples and apply displacement to the nearest point.
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Transporting the discrete samples
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Barycentric mapping [Ferradans et al., 2014]

Ty, (x5) = argmin Y (i, j)llx — x5|%. (1)
x J

e The mass of each source sample is spread onto the target samples (line of ).

The mapping is the barycenter of the target samples weighted by «,

Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).

Trick: learn OT on few samples and apply displacement to the nearest point.
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Transporting the discrete samples
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Barycentric mapping [Ferradans et al., 2014]

T’Yo(X?) = m;’YO(ivj)xj' (1)

e The mass of each source sample is spread onto the target samples (line of ).

The mapping is the barycenter of the target samples weighted by «,,

Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).

Trick: learn OT on few samples and apply displacement to the nearest point.
7/58



Transporting the discrete samples

Distributions Classic OT (LP) Reg. Entropic OT

@ Source s
@ Target ug

Barycentric mapping [Ferradans et al., 2014]

T’Yo(X?) = m;’YO(ivj)xj' (1)

e The mass of each source sample is spread onto the target samples (line of ).

The mapping is the barycenter of the target samples weighted by «,,

Closed form solution for the quadratic loss.

Limited to the samples in the distribution (no out of sample).

Trick: learn OT on few samples and apply displacement to the nearest point.
7/58



Transporting the discrete samples
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Barycentric mapping [Ferradans et al., 2014]

T o1 i, 7)xt
T‘Yo(xi) = Z]’ ’Yo(iaj) zj:’)’o( 2 J) j (1)

e The mass of each source sample is spread onto the target samples (line of ).

The mapping is the barycenter of the target samples weighted by «,
e Closed form solution for the quadratic loss.
e Limited to the samples in the distribution (no out of sample).

e Trick: learn OT on few samples and apply displacement to the nearest point.
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Histogram matching in images

Pixels as empirical distribution [Ferradans et al., 2014]
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Histogram matching in images

Image colorization [Ferradans et al., 2014]

Original X?

B

=
5
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Proposed method




Joint OT and mapping estimation
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Simultaneous OT matrix and mapping [Perrot et al., 2016]
min  (v,C)p+ > IT(x) = T5(xi)|* + AT

T,~YEP

e Estimate jointly the OT matrix and a smooth mapping approximating the
barycentric mapping.

The mapping is a regularization for OT.

Controlled generalization error (statistical bound).

Linear and kernel mappings 7', limited to small scale datasets.
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Large scale optimal transport and mapping estimation
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Large scale mapping estimation [Seguy et al., 2017]

e 2-step procedure:

1 (Stochastic) estimation of regularized 4.
2 (Stochastic) estimation of 7" with a neural network.

e OT solved with Stochastic Gradient Ascent in the dual.

e Convergence to the true mapping for small regularization.

e Convergence to the smooth mapping for large n

[Pooladian and Niles-Weed, 2021].
10/58



Monge Mapping with input convex neural networks

/1

(a) Barycentric-OT (b) WI-LP (¢) W2GAN (d) Our approach

Principle [Makkuva et al., 2020]

e For the quadratic cost OT between two smooth distribution Brenier theorem
states that the Monge mapping is the gradient of a convex function.

e Neural network convex wrt their input (ICNN) [Amos et al., 2017].

e [Makkuva et al., 2020] proposed to estimate directly the Monge as a gradient of
an ICNN from the empirical distributions.

e Conditional mappings with ICNN [Bunne et al., 2022]. 11/58



Seamless copy in images

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.

e Solve Poisson equation to reconstruct the new image.
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https://github.com/ncourty/PoissonGradient

Seamless copy in images

target

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.
e Solve Poisson equation to reconstruct the new image.
Seamless copy with gradient adaptation [Perrot et al., 2016]
e Transport the gradient from the source to target color gradient distribution.
e Solve the Poisson equation with the mapped source gradients.

e Better respect of the color dynamic and limits false colors.
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]
e Use the color gradient from the source image.

e Use color border conditions on the target image.
e Solve Poisson equation to reconstruct the new image.
Seamless copy with gradient adaptation [Perrot et al., 2016]
e Transport the gradient from the source to target color gradient distribution.
e Solve the Poisson equation with the mapped source gradients.

e Better respect of the color dynamic and limits false colors.

Example and webcam demo: https://github.com/ncourty/PoissonGradient 12/58


https://github.com/ncourty/PoissonGradient

Monge mapping for Image-to-Image translation

5
3
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Principle
e Encode image as a distribution in a DNN embedding.
e Transform between images using estimated Monge mapping.
e Linear Monge Mapping (Wasserstein Style Transfer [Mroueh, 2019]).

e Nonlinear Monge Mapping using input Convex Neural Networks
[Korotin et al., 2019].

Allows for transformation between two images but also style interpolation with
Wasserstein barycenters.
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main Adaptation problem
‘ <
ccRcom | §Y

Feature extraction l Feature extraction l

ility Distribution F i over the

?

Our context

e Classification problem with data coming from different sources (domains).
e Distributions are different but related.
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Unsupervised domain adaptation problem

Amazon LS

) E
X GO D o
= : F -
Feature exlraclionl + Labe[s Feature extraction l no | abe|S |
Source Domain Target Domain

Problems

o Labels only available in the source domain, and classification is conducted in the
target domain.

o Classifier trained on the source domain data performs badly in the target domain
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OT for domain adaptation : Step 1

Dataset Optimal transport Classification on transported samples

++ Class 1
OO Class 2 AN
L 4O Samples T, (x5)

t

+0 Samples T, (x)
amples X; ‘

t

nples X

Classifier onx; — Classifier on T, (x})

Step 1 : Estimate optimal transport between distributions.
e Choose the ground metric (squared euclidean in our experiments).

e Using regularization allows

e Large scale and regular OT with entropic regularization [Cuturi, 2013].
e Class labels in the transport with group lasso [Courty et al., 2016].

e Efficient optimization based on Bregman projections [Benamou et al., 2015] and

e Majoration minimization for non-convex group lasso.
e Generalized Conditionnal gradient for general regularization (cvx. lasso,
Laplacian).
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OT for domain adaptation : Steps 2 & 3

Dataset Optimal transport Classification on transported samples

++ Class 1
Class 2
55 Samples x;

Samples x!

+0 Samples T, (x?)
Samples x!

—— Classifier onx;

Step 2 : Transport the training samples onto the target distribution.
e The mass of each source sample is spread onto the target samples (line of ).

e Transport using barycentric mapping [Ferradans et al., 2014].
e The mapping can be estimated for out of sample prediction

[Perrot et al., 2016, Seguy et al., 2017].

Step 3 : Learn a classifier on the transported training samples
e Transported sample keep their labels.

e Classic ML problem when samples are well transported.
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OTDA for biomedical data (1)

o = N w &

15

Target, Subject Al
NonTarget, Subject Al
Target, Subject A8

NonTarget, Subject A8

10

= Target, Subject Al

-+ NonTarget, Subject Al |
= Target, Subject A8

NonTarget, Subject A8

_8.0 0.06 0.12 0.18 0.25 0.31 0.37 043 0.5 =15 -10 -5 0 5 10 15 20

Multi-subject P300 classification [Gayraud et al., 2017]

e Objective : reduce calibration for BCl users.

P300 signal is different accross subjects so adapting models is hard.

Perform XDAWN [Rivet et al., 2009] as pre-processing.

Use OTDA to adapt each subject in the dataset to a new subject.

e Train independent classifier on transported data and perform aggregation.
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OTDA for biomedical data (1)
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Multi-subject P300 classification [Gayraud et al., 2017]
e Objective : reduce calibration for BCl users.
e P300 signal is different accross subjects so adapting models is hard.
e Perform XDAWN [Rivet et al., 2009] as pre-processing.
e Use OTDA to adapt each subject in the dataset to a new subject.

e Train independent classifier on transported data and perform aggregation.
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OTDA for biomedical data (2)

EEG sleep stage classification [Chambon et al., 2018]

e Use pre-trained neural network.

with LpL1 (max
°
S
\

Balance
°

e Adapt with OTDA on the penultimate layer.

e 1record

e OTDA best DA approach to adapt between EEG 06-;/05 S S A it
y with S

Balanced Accurac!

recordings.
Prostace cancer classification [Gautheron et al., 2017]

e Adaptation of MRI voxel features
from 1.5T to 3T.

e Achieve good performance accross
subjects and modality with no target

labels.
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Convolutional Monge Mapping Normalization
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Principle (Multi-OTDA on signal data) [Gnassounou et al., 2023]
e Multiple source datasets: compute a barycenter (Gaussian assumption).

e Map datasets to barycenter and train predictor [Montesuma and Mboula, 2021].

e At test time map test dataset to barycenter and predict. 20 /58



Convolutional Monge Mapping
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Principle (Multi-OTDA on signal data) [Gnassounou et al., 2023]
e Multiple source datasets: compute a barycenter (Gaussian assumption).
e Map datasets to barycenter and train predictor [Montesuma and Mboula, 2021].
e At test time map test dataset to barycenter and predict.
e Each domain has a specific final predictor with Mapping—+Classification.

Applied on Sleep Stage Classification problem with gain in Balanced Accuracy.

e Large gain on subjects with poor performance without adaptation.
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Learning from histograms with Optimal Transport
Unsupervised learning

Supervised learning
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Learning from histograms

Distributions

ima 1ges jrure

=== classification .

sparse '

learnin
linear prOblem task g .
method

allows vector

Data as histograms
e Fixed bin positions x; e.g. grid, simplex A = {(pi)i > 0;>, i = 1}
e A lot of datasets comes under the form of histograms.

e Images are photo counts (black and white), text as word counts.

Natural divergence is Kullback—Leibler.

Not all data can be seen as histograms (positivity+constant mass)!
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Data samples Data samples

0.1 :g; 0.1 :222
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0 -6 0 6 0 -6 0

DL with Wasserstein distance [Sandler and Lindenbaum, 2011]
%1’1{[1 Z We(vi, Dh;)

e NMF: columns of D and H are on the simplex.

e Metric C can encode spatial relations between the bins of the histograms.

e Ground metric learning [Zen et al., 2014].

e Fast DL with regularized OT [Rolet et al., 2016].
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Dictionary learning on histograms

Wasserstein NMF KL NMF
0.1 0.1
—aq —_ay
0.08 —ay 0.08 —az
0.06 %l 0.06 s
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0.02 0.02 /\\r} \j
0 —_—a 0 = !
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DL with Wasserstein distance [Sandler and Lindenbaum, 2011]
min Z We(vi, Dh;y)

D.H

e NMF: columns of D and H are on the simplex.
e Metric C can encode spatial relations between the bins of the histograms.
e Ground metric learning [Zen et al., 2014].

e Fast DL with regularized OT [Rolet et al., 2016].
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Optimal Spectral Transportation (OST)

- Harmonic cost C (log)
80 e - ————a
5 = = —_
s [—
40 j—
[} 1 2 3 4 5
6000
+ 4000
B
2000
ol

OT linear spectral unmixing of musical data [Flamary et al., 2016]
géig We (v, Dh) (2)
e Objective : robustness to harmonic magnitude and small frequency shift
e Encode harmonic structure in the cost matrix (harmonic robustness).
e Can use simple dictionary (diracs on fundamental frequency).
e Very fast solver for sparse and entropic regularization.

Demo : https://github.com/rflamary/0ST 23/58
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Euclidean Simplex: {ZL Aipi, A € 23} Wasserstein simplex: {P()), A € T3}

Nonlinear unmixing with Wasserstein simplex [Schmitz et al., 2017]

I]:I)I)II{'II ZL(V“WB(D,hL))

with WB(D, h) = argmin, >, h;Wc(d;, a)
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Wasserstein dictionary learning (2)

Nonlinear unmixing with Wasserstein simplex [Schmitz et al., 2017]
min Z L(v;, WB(D,h;))

with WB(D, h) = argmin, ), hiWc(di, a)

e Linear model is a barycenter for the squared /5 distance.
e Use Wasserstein barycenter for non-linear modeling.
e Application to cardiac sequence in MRI.

e One cardiac cycle is a trajectory in the simplex of the dictionary.
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Principal Geodesics Analysis
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Geodesic PCA in the Wasserstein space [Bigot et al., 2017]

e Generalization of Principal Component Analysis to the Wassertsein manifold.
e Regularized OT [Seguy and Cuturi, 2015].

e Approximation using Wasserstein embedding [Courty et al., 2017a].
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Multi-label learning with Wasserstein

- Flickr : street, parade, dragon Flickr : water, boat, ref ection, sun-shine
Eskimo dog Prediction : people, protest, parade Prediction : water, river, lake, summer;

Learning with a Wasserstein Loss [Frogner et al., 2015]

N
min S W (£6x), 1)
k=1

e Empirical loss minimization with Wasserstein loss.
e Multi-label prediction (labels 1 seen as histograms, f output softmax).
e Cost between labels can encode semantic similarity between classes.

e Good performances in image tagging.
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Wasserstein Adversarial Regularization

Entropic W, A=0.1  Entropic W, A=0.05

%\

Principle [Fatras et al., 2021]

Ro(f,x) = max Wo(f(x +v), f(x))
e Use (virtual) adversarial examples to promote a better generalization of DNN
(close samples should have close predictions) [Miyato et al., 2018].

e The ground metric C in regularization Rc(f,x) encodes pairwise class relations

and will promote smooth/complex between them.

e State of the art performance for learning with label noise when using semantic
relations between the classes for C (word2vec). 28 /58



Learning from empirical distributions with Optimal Transport

Unupervised learning

Supervised learning and domain adaptation
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Empirical distributions A.K.A datasets

M:Zﬂ:ai(sxi: x; € €, Zn:a,; =1
i=1 i=1

Empirical distribution

e Two realizations never overlap.
e Training base of all machine learning 0.....$
approaches. ..0‘“
Qup 00 .Xi
e How to measure discrepancy? o °8
e Maximum Mean Discrepancy ({2 after w
convolution).
Q

e \Wasserstein distance.
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OT for modeling cell development
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Principle [Schiebinger et al., 2019]
e Developmental trajectories of cells from stem cells to more specialized.
e Cell populations are samples at different times with scRNA-seq.
e Optimal transport can be used to find mapping/correspondances between across
population measurements.

e Unbalanced OT is used to model cellular growth and death rates. 30/58



OT for modeling cell development

c _ D E
=
Time % Time
Descendants Ancestors Shared ancestry

Principle [Schiebinger et al., 2019]
e Developmental trajectories of cells from stem cells to more specialized.
e Cell populations are samples at different times with scRNA-seq.

e Optimal transport can be used to find mapping/correspondances between across
population measurements.

e Unbalanced OT is used to model cellular growth and death rates.

e Learning continuous version of the mapping with neural networks 30/58



Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]
minmax By, 08 D)) + Eaonlloa(l — D(G(2)))]
e Learn a generative model G that outputs realistic samples from data 4.
e Learn a classifier D to discriminate between the generated and true samples.

e Make those models compete (Nash equilibrium [Zhao et al., 2016]).
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Generative Adversarial Networks (GAN)

E [d+[i-

woman
with glasses W|thoul glasses without glasses

‘woman with glasses

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]
minmax By [log DEO)] + Bynro.n log(1 — D(G(2)))]

Learn a generative model GG that outputs realistic samples from data jq.

Learn a classifier D to discriminate between the generated and true samples.

Make those models compete (Nash equilibrium [Zhao et al., 2016]).

Generator space has semantic meaning [Radford et al., 2015].

But extremely hard to train (vanishing gradients).
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Wasserstein Generative Adversarial Networks (WGAN)
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Wasserstein GAN [Arjovsky et al., 2017]
. 1
min - Wy (G#pz, pa), (3)

e Minimizes the Wasserstein distance between the data ;14 and the generated data
G#. whe p. = N(0,1).

No vanishing gradients ! Better convergence in practice.

e Wasserstein in the dual (separable w.r.t. the samples).

mcgn sup Exrpg [0(%)] = Eamp [0(G(2))]
peLipt

e ¢ is a neural network that acts as an actor critic 32/58



WGAN: the devil in the approximation

Neural network belonging to Lip* ?
e Not really! [Arjovsky et al., 2017] proposes to do weight clipping that force an
upper bound on the Lipschitz constant.
e |t is actually the supremum over K-Lipschitz functions that is approximated by a
neural network

max  Lwean(f,G) < sup  Lwean($,G) = K-Wi(G(z), 1)

FENN class Il <K
e Actually not equivalent to solve the optimal transport, but gradients are aligned.

Improved WGAN [Gulrajani et al., 2017]

min - sup  Euepg [£(%)] = Eamp. [f(G(2))] + Ny [([VF ()2 = 1)°]
fENN class

Relaxation of the constraint (for Wi the gradient of the potential is 1 almost

everywhere).
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Wasserstein GAN loss on Biomedical images

Part 2. Perceptual Loss Calculator

NDCT Images

Part 1. CNN Generator
n32s1 n32s1 n32s1 n32s1 n32s1 n32s1 n32sl nlsl

VGG network

Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU
Conv+RelU

Part 3. Discriminator Network

LDCT Images
Generated Images

Discriminator

g
g
&
&

Reconstructing low dose CT images [Yang et al., 2018]
min - Wi (G og) + M By [| VGG (1) = VGEG(G(x0)|1], (4)

e Use Wasserstein to make reconstruction of quarter dose CT images (4;) similar
to high dose (resolution) CT images (pr).

e Perceptual loss based on VGG [Simonyan and Zisserman, 2014] embedding to
keep image information.
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Wasserstein GAN loss on Biomedical images

Full dose Quarter dose Dico rec.

Reconstructing low dose CT images [Yang et al., 2018]
min - Wi (G g) + M B [| VGG (x1) = VEG(G(x0)|1°], (4)
e Use Wasserstein to make reconstruction of quarter dose CT images (y;) similar
to high dose (resolution) CT images (1 r).
e Perceptual loss based on VGG [Simonyan and Zisserman, 2014] embedding to

keep image information.
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Wasserstein GAN loss on Biomedical images

Full dose Quarter dose WGAN-VGG rec.

Reconstructing low dose CT images [Yang et al., 2018]
min - Wi (G#pi, ig) + M B [| VGG (1) = VGG(G ()], (4)
e Use Wasserstein to make reconstruction of quarter dose CT images (y;) similar
to high dose (resolution) CT images (u5).

e Perceptual loss based on VGG [Simonyan and Zisserman, 2014] embedding to

keep image information.
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Wasserstein Discriminant Analysis (WDA)

Original space Optimal projected space

= X =
-2 -1 0 1 2
D eerse WA(PXE PX*) e X° are samples from class c.
max ,C c )
pes 2o Wia(PXe, PXe) e P is an orthogonal projection;

e Converges to Fisher Discriminant when A — oo.

e Non parametric method that allows nonlinear discrimination.

e Problem solved with gradient ascent in the Stiefel manifold S.

e Gradient computed using automatic differentiation of Sinkhorn algorithm.
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Wasserstein Discriminant Analysis (WDA)

Original space Optimal projected space

X x,.)éw}“(v
3B S

AREE e o
04 Xﬁ.m § o'+
BE L o 5

Lowmwn

1
N
[

-

> ‘s Wi (PX° PXC') e X°¢ are samples from class c.
max Ge e ’
PeS > Wa(PXe, PXc) e P is an orthogonal projection;
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Wasserstein Discriminant Analysis (WDA)

Example 1 : projected test samples Example 2 : projected test samples

-1

S Wa(PXC PXCI) e X¢ are samples from class c.
max se - ’ 5
Pes > WA (PXe, PX¢) e P is an orthogonal projection;
e Converges to Fisher Discriminant when A — oc.

e Non parametric method that allows nonlinear discrimination.

Problem solved with gradient ascent in the Stiefel manifold S.

e Gradient computed using automatic differentiation of Sinkhorn algorithm.
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Data imputation with Optimal Transport

Missing Data imputation [Muzellec et al., 2020]

min - E[SD(pm (X), tm(X))]

e X ® M is the partially observed data with binary mask M.
e X=XOM+ (1 -M)®X"™P s the data imputed by X™?

1m (X) is a minibatch of X, expectation is taken w.r.t. the minibatches.

e Out of sample imputation with model [Muzellec et al., 2020, Algo 2 & 3]

Optimizing minibatch Wasserstein is a classical approach [Fatras et al., 2020].
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main adaptation with Wasserstein distance

1.0

Feature Extractor Discriminator

08

0.6

SSOT
UOT)EDTJISSE[D)
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oF oF
S 2 g
> ) @ g- 0.0
_____ 0.0 02 04 0.6 0.8 1.0
Domain Critic (d) t-SNE of WDGRL features

Domain adaptation for deep learning [Shen et al., 2018]
e Modern DA aim at aligning source and target in the deep representation :
DANN [Ganin et al., 2016], MMD [Tzeng et al., 2014], CORAL [Sun and Saenko, 2016].

e Wasserstein distance (WGAN loss [Arjovsky et al., 2017]) used as objective for

the adaptation [Shen et al., 2018].
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Joint Distribution Optimal Transport for DA

Training data JDOT model with 7%
° e 7
) e [
< %}
> (] ™) >
° ®
[}
)
8 °
) [0)0]0)050)))) (€0))).0)01(0 0. 0) N0}

X

Learning with JDOT [Courty et al., 2017b]

. 3 A f . s s t t
mfm {Wl(Ps,Pt ):gel%isz(xi’yi;xj’ (Xj))‘hj} (6)

75tf = N% Zf\;’l Oyt sxt is the proxy joint feature/label distribution.

D(x7,y73 x5, f(x5)) = allx] = x5|1* + L(y7, £(x7)) with o> 0.

e We search for the predictor f that better align the joint distributions.
e OT matrix does the label propagation (no mapping).

e JDOT can be seen as minimizing a generalization bound. 38/58



JDOT for large scale deep learning

Loss (9):
s(47, fg(27)))

o \ Lt S (o)

DeepJDOT [Damodaran et al., 2018]
e Learn simultaneously the embedding g and the classifier f.
e JDOT performed in the joint embedding/label space.

e Use minibatch to estimate OT and update g, f at each iterations.

Scales to large datasets and estimate a representation for both domains.
e TSNE projections of embeddings (MNIST—MNIST-M).
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JDOT for large scale deep learning

Source Only

DeepJDOT [Damodaran et al., 2018]
e Learn simultaneously the embedding g and the classifier f.
e JDOT performed in the joint embedding/label space.

e Use minibatch to estimate OT and update g, f at each iterations.

Scales to large datasets and estimate a representation for both domains.
e TSNE projections of embeddings (MNIST—MNIST-M).
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JDOT for large scale deep learning
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DeepJDOT [Damodaran et al., 2018]
e Learn simultaneously the embedding g and the classifier f.
e JDOT performed in the joint embedding/label space.

e Use minibatch to estimate OT and update g, f at each iterations.

Scales to large datasets and estimate a representation for both domains.

TSNE projections of embeddings (MNIST—MNIST-M).
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Learning from structured data and across spaces

Optimal Transport between graphs

Optimal Transport across spaces
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Graph Optimal Transport

Principle [Maretic et al., 2019]

e Graph signal processing community model graph through their laplacian matrix
L = diag(A1) — A where A is the adjacency matrix.

e The pseudo-inverse of L can be seen as a covariance for a Gaussian distribution
for which Wasserstein has a closed form giving a similarity between graphs.

e The nodes of the two graphs are aligned by a permutation matrix that is
optimized.

e Extension to graphs with different number of nodes in [Maretic et al., 2020].
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Optimal transport on structured data

eooce .
eoe * soce

X; :';: } HA = Zz hz'(sai

} H= Zz hié(xi,ai)

0-00 ) O ax = bt
e 0@ '

Graph data representation n
K= E hia(l‘z‘ai)
=1

e Nodes are weighted by their mass h;.
e But no common metric between the structure points x; of two different graphs.
e Features values a; can be compared through the common metric

e Gromov-Wasserstein on graphs, Fused Gromov-Wasserstein on attributed graphs.
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FGW for graphs based clustering

Centroids
Training dataset examples »iter

cluster 1

cluster 2

cluster 3

cluster 4

e Clustering of multiple real-valued graphs. Dataset composed of 40 graphs (10
graphs X 4 types of communities)

e k-means clustering using the FFGW barycenter
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FGW for community clustering

Graph with communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering
min - FGW(D, Do, i, o)
e

e Approximate the graph (Do, o) with a small number of nodes.
e OT matrix give the clustering affectation.

e Works for signle and multiple modes in the clusters.
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FGW for community clustering

Graph with bimodal communities Approximate Graph Clustering with transport matrix

Graph approximation and comunity clustering
min - FGW(D, Do, i, o)
e

e Approximate the graph (Do, o) with a small number of nodes.
e OT matrix give the clustering affectation.

e Works for signle and multiple modes in the clusters.
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Linear model for graphs

- N
Adjacency v
N w + W. + W —~— .
matrices ! 2 it -~

Graph atoms Graph sample

Corresponding
graphs

Linear modeling of graphs

C~ E: wsCs (7)

se[s]
e Approximate a given graph structure C as a non-negative weighted sum of
template graphs C..

e {C,}; is the dictionary of templates that all have the same order (nb. of nodes).
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mov-Wasserstein Linear unmixing

Displacement

argmin d(w, E E :E.! i
W1,Wp,W3 90k i
N —
- — —
Probabilit
Simp|le;y Graph atoms Graph sample

constraint

Sparse linear unmixing with Gromov-Wasserstein [Vincent-Cuaz et al., 2021]

min  GW3 Z wsCs , C | = \|wl3 (8)

bo)
wexs s€[S]
e Estimate the linear representation on the simplex w minimizing the GW distance
w.r.t. the target graph C (non-negative unmixing).

e )\ € R, negative quadratic regularization promotes sparsity on the simplex
[Li et al., 2016] while keeping a nonconvex QP. 45/58
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mov-Wasserstein Linear unmixing

Displacement

argmin d(w, X k

Wy ,Wp, Wy ; e
Probabilit —~
simplle;y ) Graph atoms Graph 5§mp|e

constraint

Sparse linear unmixing with Gromov-Wasserstein [Vincent-Cuaz et al., 2021]

min  GW3 Z wsCs , C | = \|wl3 (8)

bo)
wexs s€[S]
e Estimate the linear representation on the simplex w minimizing the GW distance
w.r.t. the target graph C (non-negative unmixing).

e )\ € R, negative quadratic regularization promotes sparsity on the simplex
[Li et al., 2016] while keeping a nonconvex QP. 45/58



Gromov-Wassrestein dicti

Dataset Learned atoms

Atom 1 (matrix) Atom 2 (matrix) Atom 3 (matrix)

o N

0.75 .
0.8

0.50] .
0.6

0.25)

Atom 1 (graph) ~ Atom 2 (graph)  Atom 3 (graph)

v s
4 s
Graph Dictionary learning [Vincent-Cuaz et al., 2021]
K
min Y gw; [ €M, Y wMC | - AIw™®|3 (9)
{W(k)}ke[K] k=1 s€[S]

{Cs}sers
e On a dataset of K undirected graphs {C™*) € Sy (R) b eelx-
e \We want to estimate simultaneously the unmixing w®) of each graphs and the
optimal dictionary {63}56[5].

e Very similar to classical DL approach but with GW as a data fitting term.
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Embedding space

GDL unmixing w¥ with A =0 Examples GDL unmixing w'® with A = 0.001

o Class 1
Class 2
Class 3

2 o Class1
p Class 2
> Class 3

Graph Dictionary learning [Vincent-Cuaz et al., 2021]

K
min > 0w (€, 3 we. | - Alw®)3 ©)
W beeixy vm1 se[s]
{Cs}be[s]

e On a dataset of K undirected graphs {C*) Sy (R) }ee(x]-

e \We want to estimate simultaneously the unmixing w*) of each graphs and the
optimal dictionary {C.}sc(s)-

e Very similar to classical DL approach but with GW as a data fitting term.
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Gromov-Wassrestein dictionary learning

w=[0.0,1.01 w=[0.2,0.8] w=[0.4,0.6] w=[0.6,0.4] w=[0.8,0.2] w=[1.0,0.0]
Atom 1 Atom2

Interpolation

Graph Dictionary learning [Vincent-Cuaz et al., 2021]

K
min > gws [ €PN wC, | - Alw|3 (9)
(Wim}ke[K] k=1 s€[S]
{Cslsers

e On a dataset of K undirected graphs {C“” € Sy (R) }rerxg

e We want to estimate simultaneously the unmixing w'®) of each graphs and the
optimal dictionary {C.}se(s)

e Very similar to classical DL approach but with GW as a data fitting term.
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Graph Neural Networks

Gu (515585 Du, (41 85558)

Qs'u,, ,(f” &l’v I(,jl)
Y ¢u,, ,(',;)

¢“’/ '(fg) \T (bu,,.:(&)
b, (1)

Principle [Bronstein et al., 2017]

e Each layer of the GNN compute features on graph node using the values from the

connected neighbors : message passing principle.

e A step of global aggregation or pooling allows to go from a complex graph object

to a vector representation.

e The pooling step must remain invariant to permutations (min, max, mean).

Can we encode graphs as disributions in GNN?
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Wasserstein on Graph Convolutional Networks embeddings

Principle [Bécigneul et al., 2020]

e Extract structural features features the nodes of the graph using a Convolutional
Graph neural Network.

e Models the nodes as samples of an empirical distribution (permutation
invariance).

e Compute Wasserstein distance between the input graph and learned template
distributions and use this as features for a final multi layer neural network.

e Diffusion Wasserstein is a linear alternative to GCN for similarity between graphs

[Barbe et al., 2020]. 4858



Template based Graph Neural Network with OT Distances

TFGW layer
; - (C1,Fy,hy)
0.2 i v

0.2 EE—
i (] A—"TH [E
0.1 (Cs3,Fy,hy) \
" y . ~
Ci | (C,,gzbu(F,),h,)‘::: ----- > FGW, ——> | | - i
: MLP
5. -

fon
. _ } A ]
F; = A Templates : RK
NN T (Ck,Fk,hk)

Template based FGW layer (TFGW) [Vincent-Cuaz et al., 2022]

e Principle: represent a graph through its distances to learned templates.
e Novel pooling layer derived from OT distances.
e New end-to-end GNN models for graph-level tasks.

e learnable parameters are illustrated in red above. /
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Template based Graph Neural Network with OT Distances

l TFGW layer

(Cq,Fy1.hy)

(Ciy du(F.), i) -+ Ui
: MLP

S [

R =

N\ Templates | R¥
T (Ck,Fk,hg)

- . - 0 - L °
1. Modeling graphs as discrete distributions eoe I

e C;: node relationship matrix e.g adjacency,

shortest-path, laplacian, etc.
e F;: node feature matrix. Vadil @
e h;: nodes relative importance (probabilities). c
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Template based Graph Neural Network with OT Distances

TFGW layer

(Cy,F1.hy)

> Ui

I : MLP
T
A
I Templates RE
I (Ck,Fk,hg)
| |

2. Node embeddings

e ¢,: GNN of L layers
parameterized by u e.g 4
GIN, GAT, etc.

b, (4 {b O]
(1) eee / b, (£)

@, (%) N
é,(5) & \T B (1)

b, (1)

o

e Promotes discriminant

features on the nodes
Ou(Fi) 51/58



Template based Graph Neural Network with OT Distances

TFGW layer

(C1,Fy,hy)

Yy
-1
I
MLP
I
Fi= | | Templates
GNN 1 | (Ck,Fxk,hg) |
3. Template-based Fused Gromov-Wasserstein (TFGW) pooling
. . OT matrix
e FGW,: OT soft graph matching distance.
e « € [0;1]: relative importance between
structure C; and node features ¢y (F;). g

e {Cy, Fr,hy}: FGW distances to K
templates used as graph representation.
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Template based Graph Neural Network with OT Distances

TFGW layer
4|7 L -
" (Cy,Fy,hy)
0.2 A4
0.2 —
" (Cy,Fahy)
) A v
. .
c:lh | (Cuou (), B) oo FGW, [—]

Pu R N —
F,; E— Y
i @ Templates
GNN

(Cx,Fr.hr) | o oo o o o o o4

Py

MLP

L

4. Final MLP for predictions
e . MLP with non-linearities fed with the distance embeddings.
e y;: final prediction for graph-level tasks (classification or regression).
e End-to-end optimization of all parameters:
e u and v parameters of GNN ¢, and final MLP 1),,.

o {Cy, Fr,h} TFGW graph templates. 53/58



TFGW benchmark

category model MUTAG PTC ENZYMES | PROTEIN NCI1 IMDB-B IMDB-M | COLLAB

Ours TFGW ADJ (L=2) || 96.4(3.3) | 72.4(5.7) | 73.8(4.6) | 82.9(2.7) | 88.1(2.5) || 78.3(3.7) | 56.8(3.1) | 84.3(2.6)
(6w =GIN) | TFGW SP (L=2) || 94.8(3.5) | 70.8(6.3) | 75.1(5.0) | 82.0(3.0) | 86.1(2.7) | 74.1(5.4) | 54.9(3.9) | 80.9(3.1)

)

OT emb. OT-GNN (L=2) | 91.6(4.6) | 68.0(7.5) | 66.9(3.8) | 76.6(4.0) | 82.9(2.1) | 67.5(3.5) | 52.1(3.0) | 80.7(2.9)
OT-GNN (L=4) || 92.1(3.7) | 65.4(9.6) | 67.3(4.3) | 78.0(5.1) | 83.6(2.5) || 69.1(4.4) | 51.9(2.8) | 81.1(2.5)
WEGL 91.0(3.4) | 66.0(2.4) | 60.0(2.8) | 73.7(1.9) | 75.5(1.4) || 66.4(2.1) | 50.3(1.0) | 79.6(0.5)
GNN PATCHYSAN 01.6(4.6) | 58.9(3.7) | 55.9(45) | 75.1(3.3) | 76.9(2.3) | 62.9(3.9) | 45.9(2.5) | 73.1(2.7)
GIN 90.1(4.4) | 63.1(3.9) | 622(3.6) | 76.2(2.8) | 82.2(0.8) | 64.3(3.1) | 50.9(1.7) | 79.3(1.7)
DropGIN 80.8(6.2) | 62.3(6.8) | 65.8(27) | 76.9(4.3) | 81.9(2.5) | 66.3(4.5) | 51.6(3.2) | 80.1(2.8)
PPGN 90.4(5.6) | 65.6(6.0) | 66.9(4.3) | 77.1(4.0) | 82.7(1.8) | 67.2(4.1) | 51.3(2.8) | 81.0(2.1)
DIFFPOOL 86.1(2.0) | 45.0(5.2) | 61.0(3.1) | 71.7(1.4) | 80.9(0.7) | 61.1(2.0) | 45.8(1.4) | 80.8(1.6)
Kernels FGW - ADJ 82.6(7.2) | 55.3(8.0) | 72.2(4.0) | 72.4(4.7) | 74.4(2.1) | 70.8(3.6) | 48.9(3.9) | 80.6(1.5)
FGW - SP 84.4(7.3) | 55.5(7.0) | 70.5(6.2) | 74.3(3.3) | 72.8(1.5) | 65.0(4.7) | 47.8(3.8) | 77.8(2.4)
WL 87.4(5.4) | 56.0(3.9) | 69.5(3.2) | 74.4(2.6) | 85.6(1.2) | 67.5(4.0) | 48.5(4.2) | 78.5(1.7)
WWL 86.3(7.9) | 52.6(6.8) | 71.4(5.1) | 73.1(1.4) | 85.7(0.8) | 71.6(3.8) | 52.6(3.0) | 8L.4(2.1)

Gain with TFGW +4.3 +4.4 +2.9 +4.9 +2.4 +6.7 +4.2 +2.9

e Comparison with state of the art approach from GNN and graph kernel methods.
e Systematic and significant gain of performance with GIN+TFGW.
e Gain independent of GNN architecture (GIN or GAT).
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Single cell alignement with OT (SCOT)
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Domain #1 (Gene Expression)

Aligning cell population in different modalities [Demetci et al., 2022b]
e Population of cells in different modalities (Gene, chromatin).
e Not the same cells because destructive observations.
e Use of Gromov-Wasserstein to recover correspondences.

e Adaptation to cells with different proportions with unbalanced OT
[Demetci et al., 2022a, Tran et al., 2023].
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Mapping cells through time and space
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Unified framework

Moscot: multi-omics single-cell optimal transport [Klein et al., 2025]
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Heterogeneous Domain Adaptation with GW

A A A source data < ¢ ¢ transported source data
OOQ target data @ ® @ labeled target data in SGW

(a) source data (b) target data (c) T obtained by EGW (e) T obtained by SGW

Semi-supervised Heterogeneous Domain Adaptation [Yan et al., 2018]
e OT for DA initially proposed by [Courty et al., 2016].
e Use the OT matrix to transfer labels or samples between datasets.
e GW find correspondences across spaces but very noisy.
e Semi-supervised strategy allows very good performances.

e Alternative : Co-optimal transport that find correspondances between the
variables and samples simultaneously [Redko et al., 2020].
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Conclusion
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Three aspects of optimal transport

Transporting with optimal transport

e Learn to map between distributions.
e Estimate a smooth mapping from discrete distributions.

e Applications in domain adaptation.

Divergence between histograms/empirical distributions

i e Use the ground metric to encode complex relations
\ between the bins of histograms for data fitting.
773 | 1NN e OT losses are non-parametric divergences between non
: :::}3:;}% overlapping distributions.
. e Used to train minimal Wasserstein estimators.
Divergence between structured objects and spaces

e Modeling of structured data and graphs as distribution.

° e OT losses (Wass. or (F)GW) measure similarity
@’7 between distributions/objects.

e OT find correspondance across spaces for adaptation.
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