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Distributions are everywhere

Distributions are everywhere in machine learning
e Images, vision, graphics, Time series, text, genes, proteins.
e Many datum and datasets can be seen as distributions.
e Important questions:

e How to compare distributions?
e How to interpret similarity between distributions?
e How to use the geometry of distributions?

e Optimal transport provides many tools that can answer those questions.

lllustration from the slides of Gabriel Peyré.
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Overview of OTML part of the course

Part 1 : Introduction to optimal transport
e Optimal transport problem
e Wasserstein distance and geometry
e Computational aspects and regularized OT

e Optimal Transport extensions

Part 2 : Learning with optimal transport
e Learning to map with OT
e Learning from histograms
e Learning from empirical distributions

e Learning from structures and across spaces
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Optimal transport



What is optimal transport (OT) ?

The natural geometry of probability measures
The fathers (and grandfathers of OT):

Y 1EY:-

Monge Kantorovich Koopmans Dantzig Brenier Otto McCann Villani Figalli

Nobel 75
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The origins of optimal transport

€66* MEMOIRES DE L'AcADEMIE RovaLE
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Problem [Monge, 1781]

e How to move dirt from one place (déblais) to another (remblais) while

minimizing the effort ?
e Find a mapping T' between the two distributions of mass (transport).

e Optimize with respect to a displacement cost ¢(z,y) (optimal).
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Optimal transport (Monge formulation)

Distributions Quadratic cost c(x, y) = |x — y|?
— ¢(20,y)
—— c(40,y)
— ¢(60,y)
: - T - T T T -
0 20 40 60 80 100 0 20 40 60 80 100
Xy y

e Probability measures 15 and p¢ on and a cost function ¢ : Q25 X ; — RT.

e The Monge formulation [Monge, 1781] aim at finding a mapping 7' : Qs — €,

inf /QS c(x, T'(x))ps (x)dx (1)

TH#ps=pt

e Non convex problem because of the constraint T# s = pt.
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What is T#

QS 2 T(Xs) Qt

Pushforward operator T'#

e Transfers measures from one space {25 to another space €2,
pi(A) = ps(T~'(A)), V Borel subset A € Q
e For smooth measures s = p(z)dz and pu: = n(z)dx

T#ps = pe = p(T(x))|det(IT ()] = n(a)
a.k.a. the change of variable formula

e For empirical measures ps = Y. aidx; : TH#ps =, aidr(x;)
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Properties of mapping T

Non-existence / Non-uniqueness
e T#s = pt is a non-convex constraint.
e Existence of T" is not guaranteed.

e Unicity of T is not guaranteed.
Very difficult problem in general Prix Bordin of Académie des Sciences (3000F in
1884) never awarded.

[Brenier, 1991] proved existence and unicity of the Monge map for
¢(x,y) = ||z — y||* and distributions with densities (i.e. continuous).

Image from Gabriel Peyré
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Kantorovich relaxation

e Leonid Kantorovich (1912-1986), Economy nobelist in 1975

e Focus on where the mass goes, allow splitting [Kantorovich, 1942].

Applications mainly for resource allocation problems and economics.

Solution can be found with the simplex algorithm from 1947 [Dantzig, 1990].
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Optimal transport (Kantorovich formulati

Joint distribution y(x, y) = us(x)ue(y) Transport cost c(x, y) = [x — y|?

—— Source s(x)
—— Target u(y)
— vlxy)

e The Kantorovich formulation [Kantorovich, 1942] seeks for a probabilistic
coupling v € P(Q2s X ;) between Qs and Q:

~

~o = argmin / o, Yyv(x, y)dxdy, )
Qs Xy

st. v € Plus, ) = {7 >0, / v(x,y)dy = us,/ v(x,y)dx = m}
Q4

s

e - is a joint probability measure with marginals respectively s and p.

e Linear Program that always has a solution (us ® ut € P).
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Couplings for 1D distributions
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Image from Gabriel Peyré
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Optimal transport (Kantorovich dual formulati

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|?

—— Source ps(x)
— Target udy)
— vlx.y) x — clx.y)

Dual formulation of the OT linear program

max {/qﬁdus +/wdut ) o(x) +Y(y) < c(x, Y)} (3)

¢ and 1 are scalar function also known as Kantorovich potentials.

Equivalent problem by the Rockafellar-Fenchel theorem.

Objective value separable wrt s and ;.

Primal-dual relation : the support of v is where ¢(x) + ¥ (y) = ¢(x,y)
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Optimal transport (Kantorovich dual formulation)

The linear dual constraint suggest that there exits an optimal 1 for a given ¢.

c-transform (or c-conjugate)
¢°(y) £ H(¢) =inf  c(x,y) — ¢(x) (4)

Similar a Legendre transform (equal when c(x,y) = x"y).

Semi-dual formulation

max { [oan+ [ ¢°d/~tt} (5)

e Depends only on one dual potential through the c-transform.
e Nice reformulation when H€ is easy to compute or closed form.

e Special cases when c¢(x,y) =[x — y|| and c(x,y) =[x — y[* .
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x,y) =[x -yl (a-k.a Wy)

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y| and dual constraint

—— Source s(x)
—— Potential ¢(x)
—— Target pu(y) — Strict equality
—— Potential y(x) — cxy)

—_— ylxy) — (x) +yly)

Case c(x,y) =[x -y
e Existence of a solution but not unique.
e For any ¢ € Lip" (set of 1-Lipschitz functions), we have ¢°(z) = —¢(x).

e The dual OT problem can be reformulated as

sup [ dd(u. — i) = sup E [pla)] - B [6(s) ©)

¢€Lip peLipl X Hs Yt

e Also known as Kantorovich-Rubinstein duality

Formulation used for Wasserstein GAN (more details in next part).
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x,y) = x - yI’/2 (a.k.a

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|? and dual constraint

—— Source ps(x)

Potential §(x)
—— Target ply) — Strict equality
—— Potential y(x) — cxy)

— vlx.y) x — 6 +yly)

Case c(x,y) = [x - y|?*/2
e When ps and p: are continuous, T'(z) the OT mapping exists and is unique.
e More remarkably, it is a gradient of a convex functions ®(z)
1) =2~ Vo) = v (12— o)) = v(@(0) ™)

e This is also known as Brenier's Theorem [Brenier, 1991].
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Discrete distributions: Empirical vs Histogram

n n
Discrete measure:  u = E aibx;, X; €€, g a; =1
i=1 i=1

Lagrangian (point clouds) Eulerian (histograms)
e %
°
°
soa® m
am 00 x;
& o8
Q
e Constant weight: a; = % e Fixed positions x; e.g. grid
e Quotient space: Q", ¥, e Convex polytope X, (simplex):

{(ai)i > 0;3, ai = 1}

17/70



The 3 ways of optimal transport

Discrete Semi-discrete Continuous

ST R

o B a B Q p

® & o o B ® T ® o ﬁ B
° ne T
(; o «

Image from Gabriel Peyré
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Optimal transport with discrete distributions

Distributions Matrix C OT matrix y

b |
=

[ Source ps
I Target pe

OT Linear Program
When j1s = 377 | aidxs and pe = 377 bidye

Ty = argmin (T,C)p = ZTi,jCi,j
TEM(ps,pt) ij
where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are
(s, pue) = {T e (RT)™*"|T1,, =a, T 1,, = b}

Linear program with nsn: variables and ns + n; constraints. Demo
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http://127.0.0.1:7999/demo-ot

Optimal transport with discrete distributions

Distributions Matrix C OT matrix y
° 8o
@
o °
®, Lo g.

@ Source g
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%

° :‘\.

OT Linear Program
When j1s = 377 | aidxs and pe = 37 bidye

To = argmin (T,C)p = ZTi,jCi,j
TEM(ps,pt) i,j
where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are

(e, pe) = {T € ()™ TL,, = a, T 1, = b}

Linear program with nsn; variables and ns + n; constraints. Demo
19/70


http://127.0.0.1:7999/demo-ot

Optimal transport with discrete distributions

Distributions Matrix C OT matrix with samples

9 8 Q
@
o °
° o {o
@ Source s
o @ Target u
% o
®3
]
° ‘K
e ©

OT Linear Program
When pe = >0 aiéxf and pp = Y1 bidye

To = argmin <r:[17 C>F = ZTiﬂqu’,yj
TE (s, pt) i,j
where C is a cost matrix with ¢; ; = ¢(x},x}) and the marginals constraints are
(s, pe) = {T € ()™ T1,, = a, T 1, = b}

Linear program with nsn; variables and ns + n; constraints. Demo
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http://127.0.0.1:7999/demo-ot

Optimal transport with discrete distributions

e Il is the Birkhoff polytope (for uniform weights).
e No unique solution in some cases, numerical instabilities

e OT loss not differentiable !
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OT Dual for discrete distributions

Joint distribution optimal y(x, y) Transport cost c(x, y) = |x — y|? and dual constraint

—— Source s(x)

—— Potential ¢(x)

—— Target pu(y) — Strict equality
—— Potential y(x) — cxy)

— ylx.y) x — $(x) +uly)

Discrete OT dual formulation

max a"a+ 38" (8)
a€eR”® Bern’

st. ai+ 585 <y Vi, g (9)

e With s = Z?:l (li(;x;’ and e = Z?:l b¢5xt
e Linear program with ns + n; variables and nsn; constraints.

e Solved with Network Flow solver of complexity O(n®log(n)) with

n = max(ns, ne).
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Matching words embedding

A

document 1 K , ‘greets’ document 2
Obama Obama ./V. 1 %4 The
L' .
speaks e , ‘speaks’ President
to President greets
the the
media ‘Chicago’ press
in ‘media’ in
Illinois Oﬂ | oe—¢ Chicago
“Illinois’ Press

word2vec embedding

Word mover’s distance [Kusner et al., 2015]
e Words embedded in a high-dimensional space with neural networks.

e Matching two documents is an OT problem, with the cost being the I> distance
in the embedded space.

e Small value of the objective means similar documents.

e OT matrix provide interpretability (word correspondance).
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Wasserstein distance

Source distribution Divergences (scaled)

—_— W{

— sz

— L (TV)
— |, (sq. eucl.)

Target distributions

Wasserstein distance

Wy (s, pe) = min / Ix =¥y, y)dxdy = E [Ix—yl”] ~ (10)
YEP  Ja x (e y)~y
In this case we have ¢(x,y) = ||x — y|?

e AK.A. Earth Mover's Distance (1) [Rubner et al., 2000].
e Do not need the distribution to have overlapping support.
e Works for continuous and discrete distributions (histograms, empirical).
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Earth Mover’s Distance (EMD)

1) 0.00 2)8.16 3) 1223 4)12.64 5) 13.82 8) 14.78
29020.jpg 29077.jpg 29005.jpg 29017.jpg 20003.jpg | 53062.jpg 29018.jpg 29019.jpg

EMD for image retrieval [Rubner et al., 2000]
e Represent images as histograms.
e Color histogram measure de color proportion
e Histogram of gradient encodes texture.

e FastEMD [Pele and Werman, 2009] is a fast approximation.
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Wasserstein barycenter

L2 Wasserstein Matrix C

Barycenters [Agueh and Carlier, 2011]

L= argmﬂin ;N‘Wf(w,u)

Ai > 0 and Z;’LAZ =1.
e Uniform barycenter has \; = %,Vi.

e Interpolation with n=2 and A = [1 — ¢,¢] with 0 < ¢ < 1 [McCann, 1997].

Regularized barycenters using Bregman projections [Benamou et al., 2015].
e The cost and regularization impacts the interpolation trajectory.
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Wasserstein space

Geodesic in the 2-Wasserstein space

HEEEE NNNNE

t=0 t=025 t=05 t=075 t=1 t=0 t=025 t=05 t=07 t=1

Geodesic in the Euclidean space

PPty = (1= t)id +tf )y I(z,8) = (1 — )Io(z) + t ()
dp*(z,t) = I"(z,t)dx

e The space of probability distribution equipped with the Wasserstein metric
(Pp(X), W(X)) defines a geodesic space with a Riemannian
structure [Santambrogio, 2014].

e Geodesics are shortest curves on P,(X) that link two distributions

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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e The space of probability distribution equipped with the Wasserstein metric

(Pp(X), W3(X)) defines a geodesic space with a Riemannian
structure [Santambrogio, 2014].

e Geodesics are shortest curves on P,(X) that link two distributions

e Cost between two pixels is the shortest path in the maze (Riemannian metric).

Illustration from [Kolouri et al., 2017] and maze example from [Papadakis et al., 2014]
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3D Wasserstein barycenter

Shape interpolation [Solomon et al., 2015]
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Wasserstein averaging of fMRI

OT averaging of neurological data [Gramfort et al., 2015]
e Average fMRI activation maps on voxels or cortical surface (natural metric).
e Classical average across subjects and gaussian blur loose information.
e OT averaging recover central activation areas with better precision.

e Can encode both geometrical (3D position) or anatomical connectivity
information.

e Extension using OT-Lp seems more robust to noise [Wang et al., 2018].
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Computational aspects of optimal transport

Special cases: OT in 1D and between Gaussian distributions
Regularized optimal transport

Minimizing the Wasserstein distance
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Special case: OT in 1D

—— Source Us — T(X)

—— Target ¢

— c(xy)
When c¢(z,y) is a strictly convex and increasing function of |z — y|.

e If x1 < z2 and y1 < y2, we have c(x1,y1) + c(w2,y2) < c(x1,y2) + c(w2,y1)
e The OT plan respects the ordering of the elements.

e Solution is given by the monotone rearrangement of 11 onto po.

Simple algorithm for discrete distribution by sorting O(N log N).
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Special case: OT in 1D

F, F,
—

Illustration with cumulative distributions

e F), cumulative distribution function of p : F,(t) = p(—o0,t].
e F,'(q), q €[0,1] is the quantile function: F,,'(¢q) = inf{z € R: Fj,(z) > q}.

e The value of the W, Wasserstein distance
1
Walueo) = [ e (@), Fil @) da
0

e Very fast O(nlog(n)) computation on discrete distributions.
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Sliced Radon Wasserstein

1 Wass. Sliced Wass (20)  Sliced Wass (2000)

A A PAPR
V7 \ ’\/\ VAN

p-sliced Wasserstein distance (pSW) [Bonneel et al., 2015]

PSW (11ss pie) = W (R(ps,0), R(pe, 0))do

§d—1
where R is the Radon transform R(y,0) = [., 1 pu(x)5(t — 0" x)dx V0 € S*
e Can be approximated by discrete sampling of the directions 6.

e Fast 1D wasserstein on 1D projections when d > 1, fast distance estimation and
barycenter computation.

e p-sliced Wasserstein distance used for kernel learning between distributions
[Kolouri et al., 2016].
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Special case: OT between Gaussians (1)

Source and target distributions

Empirical means and covariances

Linear Monge mapping

104 Source samples x 107 Source samples 109X Target samples * X
X Target samples % Target samples +  Mapped source samples &~
8 «z\\\ 81 4 Source mean m, 81 o *
X > Target mean m;
6 x 6 % 64
/)
#
4 4+ Ao | 4
/X
24 2 ( / 24
¥ 2
o @
01 4 0+ 04
-2 3 -2 -2
Xt
0 5 10 0 5 10 0 5 10

Wasserstein between Gaussian distributions (Bures-Wasserstein)

o 11 ~N(m1,%1) and pe ~ N (mz, ¥2)

e Wasserstein distance with c(x,y) = ||x — y||3 reduces to:

W3 (11, ) = [|my — ms|[5 + B(S1, 52)*

where B(, ) is the so-called Bures metric:

B(%1, 22)2 = trace(X; + X2 — 2(21/22221/2)1/2)‘
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Special case: OT between Gaussians (2)

Source and target distributions Empirical means and covariances Linear Monge mapping
10 10 10
+ Source samples x X Source samples X Target samples x X
X Target samples % Target samples +  Mapped source samples &+
81 «z\\\ 81 <4 Source mean ms 84 +
“ > Target mean m;
6 X 6 6
44 44 4
2 2 2
k]
++:
04 0 0
-2+ -2+ -2+
Xt
0 5 10 0 5 10 0 5 10

OT mapping between Gaussian distributions
e s ~N(mi,%1) and py ~ N (maz, o)

e The optimal map T for ¢(x,y) = ||x — y||3 is given by
T(x) =msz + A(x —my)

with
A= 2171/2(21/22221/2)1/22;1/2
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Regularized optimal transport

Ty = argmin  (T,C), +AQ(T),  (11)
TE(ps,pmt)

Regularization term Q(T) ,

e Entropic regularization [Cuturi, 2013]. il>

e Group Lasso [Courty et al., 2016a].

e KL, Itakura Saito, S-divergences,

[Dessein et al., 2016]. o 5-

Why regularize? L g

e Smooth the “distance” estimation: ~

Wi (s, ue) = (T4, C)

e Encode prior knowledge on the data. L -

o Better posed problem (convex, stability). .T—IclJ

o Fast algorithms to solve the OT problem. =
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2

F || ]

R I
° o go -

N @® Source ys .. u

; @ Target u; n 1

%

Entropic regularization [Cuturi, 2013]

Ty = argmin  (T,C), +A> Ti;(logTi; — 1)
TEM(ps,pt) i,

Regularization with the negative entropy of ~.

e Looses sparsity, gains stability.

Strictly convex optimization problem.

Loss and OT matrix are differentiable.
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Entropic regularized optimal transport

Distributions Reg. OT matrix with A=1e-3 Reg. OT matrix with A=1e-2
® 8 (Y
@
o, °
° go0° o
@ Source ys
o @ Target u¢
% S
L)
®
° “\
e ©

Entropic regularization [Cuturi, 2013]

T) = argmin (T,C), + A ZTM (logTi; — 1)
TEM (s, pt) i.J

Regularization with the negative entropy of ~.

Looses sparsity, gains stability.

Strictly convex optimization problem.

Loss and OT matrix are differentiable.

35/70



Solving the entropy regularized problem

Lagrangian of the optimization problem

L(T,a,B) = > T;;Ci; + A\Ty;(log Ti; — 1) + ™ (T1,, —a) + BT (T 1,, —b)

ij

6£(T7 a, 6)/6le = Ci]' + Alog Tl‘j —+ a; + ﬁj

o o i _Cyj Bi
OL(T, e, B)/0T5; =0 = le—exp(/\>exp< )\)exp(/\>

Entropy-regularized transport

The solution of entropy regularized optimal transport problem is of the form

T = diag(u) exp(—C/\)diag(v)

e Through the Sinkhorn theorem diag(u) and diag(v) exist and are unique.
e Relation with dual variables: u; = exp(a;/X), v; = exp(5;/N).

e Can be solved by the Sinkhorn-Knopp algorithm.
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Sinkhorn-Knopp algorithm

Algorithm 1 Sinkhorn-Knopp Algorithm (SK).
Require: a,b,C, \
ul® =1, K = exp(—C/\)
foriinl,...,n; do
v() =b @K ul*~Y // Update right scaling
u®” = a@Kv® // Update left scaling
end for
return T = diag(u™*))Kdiag(v (™))

The algorithm performs alternatively a scaling along the rows and columns of
K = exp(—%) to match the desired marginals.

Complexity O(kn?), where k iterations are required to reach convergence

Fast implementation in parallel, GPU friendly

Convolutive/Heat structure for K [Solomon et al., 2015] for solving OT and
barycenters on images/tensors.
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Dual formulation of entropic OT

Primal formulation of entropic OT
min (T,C)p+A>_vij(logyi,; — 1)

TEM(ps,ut) I
,

Dual formulation of entropic OT

Tat 8™ - Lexp ()" B ith K — exp — S
12?5( aa+pBb )\exp(}\) Kexp()\) WlthK_eXp( /\> (12)

e Sinkhorn algorithm is a gradient ascent on the dual variables.

e Dual problem is unconstrained: stochastic gradient descent (SGD)
[Genevay et al., 2016, Seguy et al., 2017] or L-BFGS [Blondel et al., 2017].

e Semi-dual : closed form for 3 for a fixed & (Logsumexp) leads to fast SAG
algorithm [Genevay et al., 2016].
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Solving entropic OT with Bregman Projections

Kullback Leibler (KL) divergence

7 T
KL(T,p) = Y _Ti;log =2 =< T,log e
ij

Pij
where T anf p are discrete distributions with the same support.

OT as a Bregman projection [Benamou et al., 2015]

T* is the solution of the following Bregman projection

T = argmin KL(T,K), where K =exp <—§) (13)

TE(ps,pt)

e Sinkhorn is an iterative projection scheme, with alternative projections on
marginal constraints.

e Generalizes to Barycenter computation [Benamou et al., 2015].
e Also generalizes to other regularization but less efficient (Dykstra’s Projection

algorithm [Dessein et al., 2016]).
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Sinkhorn divergence

Sinkhorn loss
Wi(ps, pe) = min (T,C)p+A> TijlogT,

TE(ps,pt) oy

e Entropic term has smoothing effect.

e Not a divergence (Wx(u, p) > 0 for A > 0).
OT loss (aka Sharp Sinkhorn [Luise et al., 2018])
OTs(ussp) = (T3,C)

e T} is the solution of entropic OT above.

e Not a divergence (OT\(u, p1) > 0 for A > 0).

Sinkhorn divergence [Genevay et al., 2017]

1 1
SDx (s, ) = Wx(ps, pie) — §Wx(us,us) - §WA(ut,ut)

e True divergence (SDx(u, 1) = 0).

e Better statistical properties as Wasserstein distance [Genevay et al., 2018]. 40 /70



Regularized OT (general case)

Yo = argmin  (v,C), + (),
YE(ps,pt)

e Group lasso [Courty et al., 2016b]

&(T) ::EE: 25: 77
g9 4,J€Gg
Promotes group sparsity (also submodular reg. [Alvarez-Melis et al., 2017])

e Frobenius norm [Blondel et al., 2017]
Q(y) = Z T72,j
2%

Strongly convex regularization that keeps some sparsity in the solution.

e [Dessein et al., 2016]: KL, Itakura Saito, j-divergences.

Solved with Alternative optimization techniques when projection is efficient.
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Minimizing the Wasserstein distance

Grad. wrt a of W(us, ) Grad. wrt x? of W(us, )

Distributions
) E XS TYA :a‘f o. ° :¢~.¢
°e® 0 e®
o %0e® o, L2 e LI o
[ ) [ ]
@ Source s © Gradientwrta
° @ Target u N e Target
% ° 09 g
] ® 3
° ° o
° ‘K ° 0%,
o © o ©

Minimizing the Wasserstein distance

Let s => 00, (1,1;5,(?. We seek the minimal Wasserstein estimator:

min - W (ps, pur)

ps
In practice for a discrete distribution js there are two ways of doing this:

e Case 1: For a fixed support X, = {x;} find the optimal weights a (Eulerian).

e Case 2: For fixed weights a find the optimal support X = {x;} (Lagrangian).
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Case 1: fixed support ={ }

Distributions Grad. wrt a of W(us, ut) Grad. update a
H ® ° H e
° t XS °%e o LA °
° Seee ° e, ®,°° .:. *.° .:.
° °
@ Source s @ Gradient wrt a
° @ Target u; N e Target ©
0o, © 0% o 00, ©
°3 ® g ®Q
°
° $“ ° o %%O ° o %%b
o ° o © o ®
Gradient with respect to weigths a
T T
W (s, i) = max aa+p8 b (14)

5 t
a€cR"® ,BeRT ,ai+ﬂj§6(xis,x§)

W (s, pit) is convex wrt. a

Dual solution ™ is a sub-gradient : & € 0aW (s, u1t)

Entropy regularized: W (s, 1+) is smooth, convex and VWi (us, pt) = Alog u.

OT loss: V.OTx(ps, pe) computed using the implicit function theorem

[Luise et al.

, 2018].
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Case 2: fixed probability masses

Distributions Grad. wrt x7 of W(us, H¢) Grad. update x;7
° H [ ° H o
° de 0o e 0% °
° ° .'.. o, e ° o .:c [ ° o ':c
° °
@ Source s @?
°
..‘ ° @ Target g C/ Ooooo-, g%
’ @j @ o %%
°
° $S‘ o ODO%%
e © c ©

Gradient and update respect to weigths X, = {x;} for c(x,y) = ||x — y|*

W (jis, ) = i T, llx: — x5 15
e Gradient: VX;WZ?(,uS,pt) =2x; — 2@% Z]. Ti,jx§

° W22(,us,7 ut) decreases if Xg < diag(afl)T*Xt

e Expression above called barycentric interpolation [Ferradans et al., 2014a].
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Case 2: fixed probability masses

Distributions

Grad. wrt x7 of W(us, U¢)

Update x; for fixed y

° e o $e o $e
° L) ® 900 e ® 500 °
.:-.O '0:. ®.° .:. ®,°%° .:'
Source Us
° o
oo, © Target u¢ J 0 O
®Q ® g
°
] “\ o Ooo%o
° °
° o ©

Gradient and update respect to weigths X, = {x;} for c(x,y) = ||x — y|*

W3 (1, pie)

= min
TE (s, pt)

° W22(,us,7 ut) decreases if Xg < diag(afl)T*Xt

> T lx: - x5
i

e Gradient: VX;WZ?(,uS,pt) =2x; — 2@% Z]. Ti,jx§

e Expression above called barycentric interpolation [Ferradans et al., 2014a].

(15)
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General case for entropic OT: autodifferentiation

uI( K © Mxy)vg

v
x KT

Vi+1

Wi,

I [ [ Up+1

L+ 0+1
Sinkhorn /=1,..., L—-1

Image from Marco Cuturi
Sinkhorn Autodiff [Genevay et al., 2017]

e Computing gradients through implicit function theorem can be costly
[Luise et al., 2018].

Each iteration of the Sinkhorn algorithm is differentiable.

e Modern neural network toolboxes can perform autodiff (Pytorch, Tensorflow).

Fast but needs log-stabilization for numerical stability.

e At convergence, closed form solution of the gradients exist (no need to autodifﬁsl}.m



Extensions of Optimal Transport

Partial and Unbalanced Optimal Transport
Multi-Marginal Optimal Transport (MMOT)

Gromov-Wasserstein and transport across spaces
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Extensions of Optimal Transport

Relaxation and extensions
e OT is a powerful formulation for several ML applications.

e But as illustrated by entropic regularization, one can also change the optimization
problem to get a better/more representative problem.

e Several extensions and variants of OT has been studied by mathematicians and
ML practitioners.

Extensions of Optimal Transport

Partial OT, only a portion of the mass is required to be transported.

Unbalanced OT, can transport between distributions with different total mass.

e Multi-marginal OT, searches for a transport between more than two
distributions.

Gromov-Wasserstein OT, searches for a transport across metric spaces.

Co-Optimal Transport, searches for a transport across samples and features.
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Partial Optimal Transport

Partial OT with m=0.1 Partial OT with m=0.5 Partial OT with m=0.8
o, & ° $e $o
e % ﬂ *fe

°
% s
° °
° Y ° %
e © o © o ©

Partial OT [Caffarelli and McCann, 2010, Figalli, 2010]

min T,C),. = T icij
e (e e {< )F sz: d ]}
where C is a cost matrix with ¢; ; = c(xf,xﬁ) and the marginals constraints are
m +\ns XN T T —
™ (t1s, i) = {T € (R)™ ™| T1,, < a,T"1,, <b,17 T1,, = m}

e The equality constraint is on the total transported mass that must be equal to m.

e Allows distributions with different total mass when m < min(1} a,1;,b) 47,70



Solving Partial OT

Partial OT solver [Figalli, 2010, Chapel et al., 2020]
e Partial OT can be used solved using standard OT solvers using dummy variables.

e The problem to solve is the following

min <’T7 6> = ﬁ iCij
TEM (p1s,pt) { E lz]: o
where TI(js, pe) = {’f e (RY)ynstixmetl 71, =&, T 1, 11 = l~)} and

C Onq ~ a g b
y &= ) = ’
OZ,, Cmax aTlnS —m lent —m

e where ¢ynaz > cij, Vi,j and p, q contains the mass not transported.

T q
p’ 0

)

e The solution T for Partial OT can be extracted from the solution of the
augmented problem.
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Unbalanced Optimal Transport

L2 UOT with AY =30

L2 UOT with AY =50

KL UOT withA¥=1

° t Y t XY ° ®
e °¢, °d. ...0. °¢,
[J T [J
% ;
®oe ®e
Unbalanced Optimal transport (UOT) [Benamou, 2003]
min (T, C), + A\“Dy(T1p,a) + A\“Dy (T 1,,b) (16)

T>0

e D, is a a Bregman divergence penalizing the violation of the marginal constraints.

Only a portion of the total mass is transported, total mass can be unbalanced
between source and target due to constraint relaxation.

e Balanced problem equivalent to Partial OT when D, is the total variation.

Closed form exists between Gaussians [Janati et al., 2020, Janati, 2021].
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Solving unbalanced OT

Non regularized UOT
e Smooth convex optimization problem under positivity constraints.
e Classical approach is to use L-BFGS under box constraint [Byrd et al., 1995].
e Problem is actually equivalent to non-negative regression [Chapel et al., 2021]

e Majorization minimization methods lead to a sinkhorn-like updates without
regularization (multiplicative updates).
e Regularization path can be done with quadratic divergence (Lasso/LARS).

Regularized UOT
min (T, C), + XDy (T1y,a) + A“Dy(T ' 1,,b) + AQ(T) (17)

T>0
e Entropic regularization leads to convex problem [Chizat et al., 2018].

Can be solved in the dual using block coordinate ascent.

Algorithm similar to sinkhorn (fast, easy to implement) [Séjourné et al., 2022].

Can be debiased to get a proper divergence [Séjourné et al., 2019].
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Multi-Marginal Optimal Transport (MMOT)

/ Transport

i| Transport a i| Plan - /a

Plan 1 — 3
'~ | )

Optimization problem for MMOT
min Tip,oieCiy, i
Ten ({pr}x) 2 D Tovsixc i

k=11ij,=1
o =) 1 aks, r with k € {1,..., K} are K discrete distributions.

ik —c(x”,...,x”() is the MM cost and:

M({ph) = {T € RO 5] S0 Ty = iy Vayia € {1} )
e Properties of MMOT (review in [Pass, 2015])

e Search for a joint distribution (expressed as a tensor).

PR

e When K =2, T is a matrix and we recover classical OT problem.

e Link to Wasserstein barycenter for specific ¢ [Agueh and Carlier, 2011].
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Solving Multi-marginal Optimal Transport

Solving exact MMOT
e Linear program (LP) but with dimensionality exp.in the number of marginal.
e In the primal LP with [], nx variables and )", n constraints.
e Very complex to solve for medium to large scale problems.
e [Tupitsa et al., 2020] use accelerated alternated minimization.

e For specific separable cost in 1D, fast solver [Mehta et al., 2023].

Entropic MMOT

K ng

min Tivyoie Ciy,vie + AT
Ten({pr}r) 2 D T G (T)

k=1i,=1

Problem becomes smooth and strictly convex.

Can be solved using Bregman projections [Benamou et al., 2015].

The solution is of the form T = exp(—C/\) ® @), ur where uy are positive
scaling updated at each projections.

e Tensor extension of Sinkhorn algorithm updates uy alternatively. 52/70



sport accross different spaces ?

e () : source space, (), : target space.

e Both domains/spaces do not share the same variables.

e There is no ¢(x,y) between the two domains.

e They are related (observe similar objects) but not registered.

e Example: multi-modality with observations on different objects.
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ldx (z,2") — dy (y,y')

Inspired from Gabriel Peyré

GW for discrete distributions [Memoli, 2011]

QNAMMM):( min §:|Dwf—DhVﬂJﬂu>

TEM(ps,
(raotie) 0

1
P

with MHs = ZZ a,5x; and J A Z]» bJ51§ and Di,k = HX; — Xi”vD;,l = HX? — XH|

e Distance between metric measured spaces : across different spaces.
e Search for an OT plan that preserve the pairwise relationships between samples.

e Invariant to isometry in either spaces (e.g. rotations and translation).
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Solving the Gromov Wasserstein optimization problem

GWp(pes ) = i S 7 |Die = D" Tiy T
W04,k
with ps =37, aidxs and pp = 37, bjdwj and D; i, = ||x§ — %3, D}, =[x} — x|
Optimization problem
e Quadratic Program (Wasserstein is a linear program).

e Nonconvex, NP-hard, related to Quadratic Assignment Problem (QAP).

Optimization algorithm
e Large problem and non convexity forbid standard QP solvers.

e Local solution can be obtained with conditional gradient (Frank-Wolfe)
[Vayer et al., 2018] (each iteration is an OT problems).

e Gromov in 1D has a good approximation in close form (solved in discrete with a
sort) [Vayer et al., 2019].

e Can be regularized by entropy similarly to classical OT [Peyré et al., 2016a].
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Entropic Gromov-Wasserstein

Optimization Problem [Peyré et al., 2016a]
OWE (s, o) = _min > |Diy — D5[PTi; Tuu+ € TijlogTi;  (18)
TEH(HmHt)ijkl i
with 15 = 37, aidxs and pe = 35, b6, and Dip = |[x7 — xil, D), = [|Ix5 — x{|
: ! :

e Smoothing the original GW with a convex and smooth entropic term.

Solving the entropic G\ [Peyré et al., 2016a]
e Problem (18) can be solved using a KL mirror descent.

e This is equivalent to solving at each iteration ¢

T — min <T, G<”>F +e> T log T,
i

Where Git; =2, 1Dik — D;l\pTlgtl) is the gradient of the GW loss at previous
point T
e Problem above can be solved using a Sinkhorn-Knopp algorithm of entropic OT.

e Very fast approximation exist for low rank distances [Scetbon et al., 2021]. 56/70



Gromov-Wasserstein between graphs
E Adjacency

Modeling the graph structure with a pairwise matrix D

X X

XX X X

Shortest path
matrix

|

o

e An undirected graph G := (V, E) is defined by V = {x;};c[n] set of the N nodes
and E = {(xi,xj)|x:i <> x;} set of edges.

e Structure represented as a symmetric matrix D of relations between the nodes.

e Possible choices : Adjacency matrix (used in this study), Laplacian matrix,
Shortest path matrix.

Graph as a distribution (D, h)
e Graph represented as px =), hidz, .

e The positions x; are implicit and represented
as the pairwise matrix D.

o 00 L " e h,; are the masses on the nodes of the graphs
c0@e " ! (uniform by default).
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Applications of GW [Solomon et al., 2016]

Shape matching between 3D and 2D surfaces

Source Targets

Multidimensional scaling (MDS) of shape collection

A
e
RO
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Labeled graphs as distributions

'YX K
eoe eece

X; :';: } HA = Zz hz'(sai

} H= Zz hié(xi,ai)

0-00 ) O ax = bt
e 0@ '

Graph data representation

e Nodes are weighted by their mass h;.
e But no common metric between the structure points x; of two different graphs.

e Features values a; can be compared through the common metric
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Fused Gromov-Wasserstein distance

X

Fused Gromov Wasserstein distance
n m
Hs = Zi:l hibz;,a; and pe = Zj:l gjéyj,b;

=

‘FgWP,Q»a(DvD,vMSHU‘t) = ( min Z ((1ia)ciq,j+a|D7@,kiD;,l‘q)pTivj Tk,l)

TEM (s,
(eotie) 50

with D; = |lzi — 21| and D}, = [lyi — wil| and Cij = [|a; — by ||
e Parameters ¢ > 1, Vp > 1.

e « € [0,1] is a trade off parameter between structure and features. 60 /70



FGW Properties (1)

FOWY oD, D s, ) = min >~ (1= a)C; + a| Dy — D[ ") ' Tij Try

Tel(ps,
(bsspet) il

Metric properties [Vayer et al., 2020]

e FGWV defines a metric over structured data with measure and features
preserving isometries as invariants.

e FGW is a metric for ¢ = 1 a semi metric for ¢ > 1, Vp > 1.
e The distance is nul iff :

e There exists a Monge map T#s = put.
e Structures are equivalent through this Monge map (isometry).
e Features are equal through this Monge map.

Other properties for continuous distributions
e Interpolation between W (o = 0) and GW (« = 1) distances.

e Geodesic properties (constant speed, unicity).
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Computing FGW

Algorithm 2 Conditional Gradient (CG) for FGW
1 TO — pxpy
2: fori=1,..., do
3: G < Gradient from Eq. (62) w.r.t. T¢~1)
4. T + Solve OT with ground loss G
5: 7 « Line-search for loss with 7 € (0,1)
6 T o (1—rO)YTE-1 1 7O
7: end for

Algorithmic resolution (p = 1)

T* = argmin  vec(T)” Qvec(T)+vec((1—a)C) vec(T), with Q = —2aD'®D

TEP (ps,1t)

e Problem is a non-convex Quadratic Program (GW with an additional linear term).
e Conditional gradient [Ferradans et al., 2014b] with network simplex solver.
e Convergence to a local minima [Lacoste-Julien, 2016].

e With entropic regularization, KL mirror descent descent [Peyré et al., 2016b].62/70



FGW barycenter

Euclidean barycenter FGW barycenter

Ty

(Da, p2)

sl T3 (Dh M) (D37 ,us)
min 3, M [l — a2 pein, 2. NFGWID:,D, i, )

FGW barycenter p = 1,9 =2
e Estimate FGW barycenter using Frechet means (similar to [Peyré et al., 2016al).
e Barycenter optimization solved via block coordinate descent (on T, D, {a;}:).
e Can chose to fix the structure (D) or the features {a;}; in the barycenter.

e a;;, and D updates are weighted averages using T.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples

Barycenter of noisy graphs
e We select a clean graph, change the number of nodes and add label noise and
random connections.

e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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FGW barycenter on labeled graphs

Noiseless graph Noisy graphs samples Barycenter

o
ot

e We select a clean graph, change the number of nodes and add label noise and
random connections.

Barycenter of noisy graphs

e We compute the barycenter on n = 15 and n = 7 nodes.

e Barycenter graph is obtained through thresholding of the D matrix.
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Unbalanced and semi-relaxed GW

Unbalanced Gromov-Wasserstein [Séjourné et al., 2020]
min > D — DjlPT; Thi + A Dy(T1pm,a) + XDy (T 1,,b)

TE (s
(ks spt) il

The marginal constraints are relaxed by penalizing with divergence D,,.

Semi-relaxed GW [Vincent-Cuaz et al., 2022]
min > Dk = D5 PTi; Tiey

T20,Tlm=a Lot
e Second marginal constraint relaxed: optimal weights b w.r.t. GW.

e Very fast solver (Frank-Wolfe) because constraints are separable

e Extended to FGW, can eb used to learn a dictionary of graphs (see next course).

srGW(C, h,C) =0.05 srGW(C, h,C) =0.113




Heterogeneous datasets

o X =[x1,...,x,)7 € R and X' =[x}, ...,x,,]T € R"*% contains the

source and target data (heer with uniform weights on teh samples).

e Gromov-Wasserstein can be applied across different spaces (focus on pairwise
distance).

e OT matrix gives a correspondances of the samples.
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Heterogeneous datasets

‘<

o X =[x1,...,x,)7 € R and X' =[x}, ...,x,,]T € R"*% contains the

source and target data (heer with uniform weights on teh samples).
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Joint samples/features transport

Transpose(X')
4 6

0 2 8

e We want to estimate simultaneously a transport matrix T® between samples and
T" a transport matrix between variables.

e = Co-Optimal transport (COOT).
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Joint samples/features transport

Transpose(X')
4 6 8

e We want to estimate simultaneously a transport matrix T® between samples and
T" a transport matrix between variables.

e = Co-Optimal transport (COOT).
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CO-Optimal Transport

Dataset and dimensions
o X =[x1,...,x,)7 € R and X' =[x}, ...,x,,]T € R"*? contains the

source and target data.
e w € A, and w € A, contain the weights of the samples in source and target.

e vE Ay and v € Ay contain the weights of the features in source and target.

COOT Optimization problem [Redko et al., 2020]

COOT(X, X', w,w',v,v') = min > L(Xiw, X; 0TI, (19)
T° € I(w,wW') ijki
T € Tl(v,Vv')

o L(-,-) :R? = RT is the similarity measure.
e T° is the OT matrix between samples, T" is the OT matrix between

features/variables.

e COOQT entropic regularized version adds some entropic terms to the objective
value.
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lustration of COOT on real data

n°® matrix for COOT

MNIST samples

=
Z =
MNIST samples

G |

USPS samples USPS samples

COOT between MNIST-USPS datasets
e Sample digits from MNIST 28 x 28 and USPS 16 x 16 ordered per classes.
e Uniform weights w, w’ on samples, weights v, v’ on feature is average value.

e Comparison between T from Gromov Wasserstein and COOT T?: better class

correspondence.
e Visualization of T® with colors across pixels: spatial structure preserved.
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lustration of COOT on real data

USPS colored pixels MNIST pixels through ¥ MNIST pixels through entropic n¥

COOT between MNIST-USPS datasets
e Sample digits from MNIST 28 x 28 and USPS 16 x 16 ordered per classes.
e Uniform weights w, w’ on samples, weights v, v’ on feature is average value.

e Comparison between T from Gromov Wasserstein and COOT T?: better class

correspondence.

e Visualization of T* with colors across pixels: spatial structure preserved.
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Summary for Part 1

Optimal transport
e Theoretically grounded ways of comparing probability distributions.
e Non-parametric comparison (between empirical distributions).
e Ground metric encode the geometry of the space (barycenters, geodesic).
e Two aspects: mapping (Monge) vs coupling (Kantorovitch).

e Several variants exists depending on the application.

Optimization
e Solving OT is a linear program.
e Regularization (entropic) leads to faster algorithms.
e Minimization of Wasserstein distance can be done.

e Reference for computational OT : [Peyré et al., 2019]

Next step: how to use it in machine learning applications ?
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