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Smooth Optimization problem
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Optimization problem
min
x∈Rn

F (x), (1)

▶ F is L-smooth (at least differentiable).

▶ When F is convex x⋆ is a solution of the problem if

∇xF (x⋆) = 0

▶ When F is non convex x⋆ is a local minimizer of the problem if

∇xF (x⋆) = 0 and ∇2
xF (x⋆) ⪰ 0

How to solve optimization problems?

▶ Solving the problem analytically : ∇F (x⋆) = 0

▶ Search for a solution numerically : iterative optimization algorithms
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Iterative optimization algorithms

min
x∈Rn

F (x),

Iterative algorithms

▶ Principle : start from an initial point x(0) and iterate to make it better.

▶ Gradient descent (and variants) when available, proximal methods.

▶ Black box optimization (a.k.a derivative free optimization) :

▶ Genetic, random search, simulated annealing [Gen and Cheng, 1999].
▶ Particle swarm optimization, etc [Kennedy and Eberhart, 1995].
▶ Nelder-Mead simplex [Nelder and Mead, 1965].

How to choose?

▶ No free lunch theorem [Wolpert and Macready, 1997] :
No algorithm is better than the others for all problems.

▶ But on can use the properties of the problem to choose the algorithm: specialize!
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Assumption 1 : Convexity

x y

Convex function
f(αx+ (1 −α)y)
αf(x) + (1 −α)f(y)

Convex function (recap)

▶ Function F is convex if it lies below its chords, that is ∀x,y ∈ Rn

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y), with 0 ≤ α ≤ 1. (2)

▶ F a differentiable function is convex if and only if

F (y) ≥ F (x) +∇F (x)⊤(y − x), ∀y,x ∈ domF (3)

▶ For C = Rn, if x if a global minimum if and only if ∇xF (x) = 0.

▶ F is µ-strongly convex with µ > 0 if it satisfies ∀x,y ∈ Rn and 0 ≤ α ≤ 1

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y)− µ

2
α(1− α)∥x− y∥2, (4)
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Assumption 1 : Convexity

x y

Strongly convex function
f(αx+ (1 −α)y)
αf(x) + (1 −α)f(y)
αf(x) + (1 −α)f(y) − μα(1 −α)

2 (y− x)2

Convex function lower bound
f(t)
f(x) + ∇f(x)T(t− x)

Strongly convex function lower bound
f(t)
f(x) + ∇f(x)T(t− x)
f(x) + ∇f(x)T(t− x) + μ

2 (t− x)2
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▶ F a differentiable function is convex if and only if

F (y) ≥ F (x) +∇F (x)⊤(y − x), ∀y,x ∈ domF (3)

▶ For C = Rn, if x if a global minimum if and only if ∇xF (x) = 0.

▶ F is µ-strongly convex with µ > 0 if it satisfies ∀x,y ∈ Rn and 0 ≤ α ≤ 1

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y)− µ

2
α(1− α)∥x− y∥2, (4)
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Assumption 2 : smoothness
L-smooth function

L-smooth function (recap)

▶ Function F is gradient Lipschitz, also called L-smooth, if ∀x,y ∈ C2

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥ (5)

▶ If F is L-smooth, then the following inequality holds

F (x) ≤ F (y) +∇F (y)⊤(x− y) +
L

2
∥x− y∥2 (6)

▶ If F is L-smooth, then the following inequality holds

∇2
xF (x) ⪯ LI (λmax(∇2

xF (x)) ≤ L) (7)
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Descent algorithm for smooth optimization

xk xk+ 1

Iterative algorithm (iter. k)
F
∇F(xk)
d

xk+ 2

Iterative algorithm (iter. k+ 1)
F
∇F(xk)
d

xk xk+ 1

Large step size
F
∇F(xk)
d

General iterative algorithm

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← Compute descent direction from x(k)

4: ρ(k) ← Choose stepsize
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

▶ x(k) ∈ Rn is the current iterate.

▶ d(k) ∈ Rn is a descent direction if ∇F (x(k))Td(k) < 0 .

▶ For a step small enough, each iteration decreases the cost : F (x(k+1)) ≤ F (x(k))

▶ Stopping conditions: max number of iterations or small gradient ∥∇F (xk)∥.
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Gradient Descent (GD) algorithm

xk xk+ 1

Iterative algorithm (iter. k)
F
∇F(xk)
d

xk+ 2

Iterative algorithm (iter. k+ 1)
F
∇F(xk)
d

xk xk+ 1

Large step size
F
∇F(xk)
d

Gradient descent algorithm (steepest descent)

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: d(k) ← −∇F (x(k))
4: ρ(k) ← Choose stepsize
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

▶ Iterative algorithm with descent direction d = −∇F (x).

▶ −∇F (x) is called the steepest descent direction.

▶ Equivalent to iterative algorithm above in 1D.

▶ In this course we study the constant step case ρ(k) = ρ.
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Example optimization problem
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Cost function

1D Logistic regression

min
w,b

n∑
i=1

log(1 + exp(−yi(wxi + b))) + λ
w2

2

▶ Linear prediction model : f(x) = wx+ b

▶ Training data (xi, yi) : (1,−1), (2,−1), (3, 1), (4, 1).
▶ Problem solution for λ = 1 : x∗ = [w⋆, b⋆] = [0.96,−2.40]
▶ Initialization : x(0) = [1,−0.5].
▶ Complexity : Cost and gradient both O(nd)
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Example of steepest descent
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Discussion

▶ Steepest descent with fixed step ρ(k) = 0.1

▶ Slow convergence around the solution (small gradients).

▶ After 1000 iterations, still not converged.

▶ Complexity O(nd) per iteration.
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Majorization Minimization (MM) algorithm

xk xk+ 1

MM algorithm (iter. k)
F
G(⋅, xk)

xk+ 1 xk+ 2

MM algorithm (iter. k+ 1)
F
G(⋅, xk)

Principle

▶ Iterative algorithm that minimizes a surrogate function.

▶ Let F be a function to minimize and G a majorization F (x) ≤ G(x,y) ∀x,y.
▶ MM iteration :

x(k+1) = argmin
x

G(x,x(k)) (8)

▶ The MM algorithm is guaranteed to decrease the cost function at each iteration.

▶ Most efficient when G is close to F , but simple to compute and optimize.

▶ References : [Hunter and Lange, 2004, Sun et al., 2016].
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Majorization Minimization for smooth functions

Majorization of L-smooth functions

If F is L-smooth, then the following majorization holds:

F (x) ≤ G(x,y) = F (y) +∇F (y)⊤(x− y) +
L

2
∥x− y∥2 (9)

Solving the MM iteration with quadratic upper bound

x(k+1) = argmin
x

F (x(k)) +∇F (x(k))⊤(x− x(k)) +
L

2
∥x− x(k)∥2 (10)

▶ The MM iteration is a quadratic problem that can be solved analytically.

▶ The solution is given by:

x(k+1) = x(k) − 1

L
∇F (x(k)) (11)

▶ This is exactly the update of the gradient descent with step ρ = 1
L
.
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Convergence of gradient descent
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Questions

▶ Does Gradient descent converges to an optimal point ?

▶ At which speed is the minimum reached?

▶ How to choose the stepsize ρ(k)?

Theoretical convergence and convergence speed

▶ Fixed steps ρ(k) = ρ ?

▶ Smooth and strongly convex functions ?

▶ Acceleration techniques ?

▶ Adaptive steps ρ(k) (linesearch, next course) ?
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Convergence for smooth functions

x

Bounds for L-smooth small L
F
L-smooth upper bound
Cvx lower bound

x

Bounds for L-smooth large L
F
L-smooth upper bound
Cvx lower bound

Convergence of gradient descent for L-smooth functions

If function F is convex and differentiable and its gradient has a Lipschitz constant L,
then the gradient descent with fixed step ρ(k) = ρ ≤ 1

L
converges to a solution x⋆ of

the optimization problem with the following speed:

F (x(k))− F (x⋆) ≤ ∥x
(0) − x⋆∥2

2ρk
(12)

▶ Best for ρ = 1
L

that is the largest gradient that ensures decrease of the cost.

▶ We say the the gradient descent has a convergence O( 1
k
).

▶ In order to reach a precision ϵ one needs O( 1
ϵ
) iterations.

▶ We prove this result in the next slides 1.

1See also : https://www.stat.cmu.edu/~ryantibs/convexopt-F13/scribes/lec6.pdf

https://www.stat.cmu.edu/~ryantibs/convexopt-F13/scribes/lec6.pdf
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Convergence proof (convex L-smooth)
Step 1 : Descent VS gradient norm Lemma

F (x(k+1)) ≤ F (x(k))− ρ

2
∥∇F (x(k))∥2 (13)

Value decreases at each iteration for ρ ≤ 1
L
.

Proof.

F (x(k+1)) ≤
2
F (x(k)) +∇F (x(k))T (x(k+1) − x(k)) +

L

2
∥x(k+1) − x(k)∥2

=
3
F (x(k)) +∇F (x(k))T (−ρ∇F (x(k))) +

L

2
∥ − ρ∇F (x(k))∥2

= F (x(k))− ρ∥∇F (x(k))∥2 + Lρ2

2
∥∇F (x(k))∥2

= F (x(k))− ρ

2
∥∇F (x(k))∥2(2− ρL)

≤
4
F (x(k))− ρ

2
∥∇F (x(k))∥2

2Convexity upper bound w.r.t. x(k)

3Inject gradient step x(k+1) = x(k) − ρ∇F (x(k))
4For ρ ≤ 1

L
, −(2− ρL) ≤ −1
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Convergence proof (convex L-smooth)
Step 2 : Objective w.r.t. optimal value

F (x(k+1))− F (x⋆) ≤ 1

2ρ
(∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2) (14)

Proof.
Using convexity one has: F (x) ≤ F (x⋆) +∇F (x)⊤(x− x⋆) so from (13):

F (x(k+1)) ≤ F (x(k))− ρ

2
∥∇F (x(k))∥2

≤ F (x⋆) +∇F (x(k))⊤(x(k) − x⋆)− ρ

2
∥∇F (x(k))∥2

F (x(k+1))− F (x⋆) ≤ ∇F (x(k))⊤(x(k) − x⋆)− ρ

2
∥∇F (x(k))∥2

≤ 1

2ρ

(
2ρ∇F (x(k))⊤(x(k) − x⋆)− ρ2∥∇F (x(k))∥2 − ∥x(k) − x⋆∥2

+ ∥x(k) − x⋆∥2
)

≤
5

1

2ρ

(
−∥x(k) − ρ∇F (x(k))− x⋆∥2 + ∥x(k) − x⋆∥2

)
=

1

2ρ
(∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2)

5Factorization of ∥x(k) − ρ∇F (x(k))− x⋆∥2
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Convergence proof (convex L-smooth)
Step 2 : Objective w.r.t. optimal value
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2ρ
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2
∥∇F (x(k))∥2

≤ F (x⋆) +∇F (x(k))⊤(x(k) − x⋆)− ρ

2
∥∇F (x(k))∥2

F (x(k+1))− F (x⋆) ≤ ∇F (x(k))⊤(x(k) − x⋆)− ρ

2
∥∇F (x(k))∥2

≤ 1

2ρ

(
2ρ∇F (x(k))⊤(x(k) − x⋆)− ρ2∥∇F (x(k))∥2 − ∥x(k) − x⋆∥2

+ ∥x(k) − x⋆∥2
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≤
5

1

2ρ
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Convergence proof (convex L-smooth)
Step 3 : Putting all iterations together

F (x(k))− F (x⋆) ≤ ∥x
(0) − x⋆∥2

2ρk
Proof.

F (x(k))− F (x⋆) =
1

k

k∑
i=1

F (x(k))− F (x⋆)

≤
6

1

k

k∑
i=1

F (x(i))− F (x⋆)

≤
7

1

2ρk

k∑
i=1

∥xk−1 − x⋆∥2 − ∥xk − x⋆∥2

=
8

∥x(0) − x⋆∥2 − ∥x(k) − x⋆∥2

2ρk

≤ ∥x
(0) − x⋆∥2

2ρk

6Descent Lemma (13)
7Inject Eq. (14)
8Summation of telescopic series
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Convergence example for smooth function

1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

−1.0

−0.5

0.0

0.5

1.0

y
Training dataset

w

0.0 0.5 1.0 1.5 2.0
b−4

−2
0

2
4
6
8
10

L-smooth cost function

Discussion

▶ Steepest descent with fixed step ρ(k) = 0.05

▶ Non regularized logistic regression (λ = 0).

▶ Slow O( 1
k
) convergence of Gradient Descent.
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▶ Non regularized logistic regression (λ = 0).

▶ Slow O( 1
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) convergence of Gradient Descent.
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Assumption 3 : Strong convexity

x y

Strongly convex function
f(αx+ (1 −α)y)
αf(x) + (1 −α)f(y)
αf(x) + (1 −α)f(y) − μα(1 −α)

2 (y− x)2

Strongly convex function lower bound
f(t)
f(x) + ∇f(x)T(t− x)
f(x) + ∇f(x)T(t− x) + μ

2 (t− x)2

µ-strongly convex function (recap)

▶ F is µ-strongly convex with µ > 0 if it satisfies ∀x,y ∈ Rn and 0 ≤ α ≤ 1

F (αx+ (1− α)y) ≤ αF (x) + (1− α)F (y)− µ

2
α(1− α)∥x− y∥2, (15)

▶ If F is a differentiable µ-strongly convex then

F (y) ≥ F (x) +∇F (x)⊤(y − x) +
µ

2
∥y − x∥2, ∀y,x ∈ domF

▶ Strongly convex functions have a unique minimum x⋆.
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Convergence for strongly convex functions

x

Bounds for large κ= L/μ
F
L-smooth upper bound
μ-strongly cvx lower bound

x

Bounds for small κ= L/μ
F
L-smooth upper bound
μ-strongly cvx lower bound

Convergence of gradient descent for µ-strongly convex functions

If function F is µ-strongly convex, then the gradient descent with fixed step
ρ(k) = ρ = 1

L
converges to a solution x⋆ of the optimization problem with the

following speed:

F (x)− F (x∗) ≤
(
1− µ

L

)k (
F (x(0))− F (x∗)

)
(16)

▶ For a function F , µ = λmin(∇2F (x)) and L = λmax(∇2F (x)).

▶ The condition κ = L
µ
≥ 1 has important impact (close to 1 is better approx).

▶ We say the the gradient descent has a convergence O(e−k/κ).

▶ In order to reach a precision ϵ one needs O(log(1/ϵ)) iterations.
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Convergence proof (µ-strongly convex, L-smooth)

x x ⋆

PL upper bond
F
F(x ⋆ ) + |∇F(x)|2/(2μ)
Slope at x

xx ⋆

PL upper bond
F
F(x ⋆ ) + |∇F(x)|2/(2μ)
Slope at x

Polyak-Lojasciewicz (PL) inequality

If F is a µ-strongly convex function and x⋆ its optimal point then ∀x

F (x)− F (x∗) ≤ 1

2µ
∥∇F (x)∥2 (17)

Proof.
Exercise 3 in class. Hints:

▶ Use strong convexity lower bound.

▶ Set y = x− 1
µ
∇F (x).

▶ Inject optimal point x⋆
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Convergence proof (µ-strongly convex, L-smooth)

F (x(k))− F (x∗) ≤
(
1− µ

L

)k

∥x(0) − x⋆∥2

Proof.
Using the descent lemma (13):

F (x(k))− F (x(k−1)) ≤ − 1

2L
∥∇F (x(k−1))∥2

≤
9
−µ

L

(
F (x(k−1))− F (x⋆)

)
F (x(k))− F (x⋆) ≤ F (x(k−1))− F (x⋆)− µ

L

(
F (x(k−1))− F (x⋆)

)
≤

(
1− µ

L

)(
F (x(k−1))− F (x⋆)

)
≤

(
1− µ

L

)k (
F (x(0))− F (x⋆)

)

9Use PL inequality (17)
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Convergence example for strongly convex function
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Discussion

▶ Steepest descent with fixed step ρ(k) = 0.02

▶ Fully regularized logistic regression (λ = 1 for w and b).

▶ L-smooth and µ-strongly convex upper bounds.

▶ Fast O(e−k/κ) convergence of Gradient Descent.
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▶ Steepest descent with fixed step ρ(k) = 0.02

▶ Fully regularized logistic regression (λ = 1 for w and b).

▶ L-smooth and µ-strongly convex upper bounds.

▶ Fast O(e−k/κ) convergence of Gradient Descent.
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How to make Gradient Descent faster?
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Gradient descent is slow

▶ Unless on strongly convex fonction it has a O( 1
k
) convergence.

▶ Needs to recompute the gradient at each iteration (O(nd) in ERM).

Acceleration techniques

▶ Use adaptive stepsizes (smarter ρ(k)).

▶ Use momentum (remember previous gradients).

▶ Use second order information (Newton, quasi-Newton).

▶ Speedup gradient computation (stochastic gradient, slower but more efficient).
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Barzilai-Borwein stepsize (BB-rule)

Principle [Barzilai and Borwein, 1988]

▶ Use the gradient and the previous gradient to compute the stepsize.

▶ It is a two-step approximation of the secant method (to cancel the gradient).

▶ The stepsize is computed as:

▶ Long BB stepsize:

ρ(k) =
∆x⊤∆x

∆x⊤∆g
(18)

▶ Short BB stepsize:

ρ(k) =
∆x⊤∆g

∆g⊤∆g
(19)

▶ where ∆x = x(k) − x(k−1) and ∆g = ∇F (x(k))−∇F (x(k−1)).

▶ The stepsize can be clipped to avoid too large steps (or with linesearch).

▶ Convergence for quadratic [Raydan, 1993] and non-quadratic functions
[Raydan, 1997] with linesearch.

▶ Variants used for hyperparameter-free optimization with provably better constant.

▶ Discussed more in details in next courses.
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Example of BB rule for Gradient Descent
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Discussion

▶ GD and first step of BB rule use step ρ(k) = 0.01.

▶ Acceleration is important w.r.t. steepest descent step.

▶ Unstable and the stepsize can be too large and lead to loss increase.

▶ BB rule is best used with linesearch (see next course).
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Accelerated gradient descent

Accelerated gradient descent (AGD) [Nesterov, 1983, Walkington, 2023]

1: Initialize x(0),y(0) = x(0), α(0) = 0 and ρ ≤ 1
L

2: for k = 0, 1, 2, . . . do
3: y(k+1) ← x(k) − ρ∇F (x(k))

4: α(k+1) =← 1+
√

1+4(α(k))2

2

5: x(k+1) ← y(k+1) + α(k)−1

α(k+1) (y
(k+1) − y(k))

6: end for

▶ Also called Nesterov accelerated gradient (NAG).

▶ Acceleration of gradient descent with momentum.

▶ Update is gradient step (y(k+1)) + momentum of previous step.

▶ The algorithm has a O( 1
k2 ) convergence for L-smooth functions and ρ = 1

L
:

F (x(k))− F (x⋆) ≤ 2L∥x(0) − x⋆∥2

k2
(20)

▶ Convergence speed O( 1
k2 ) is optimal for a first order method.
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Example of Accelerated Gradient Descent
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Discussion

▶ Both GD and AGD use fixed step ρ(k) = 0.1.

▶ Acceleration speedup is important w.r.t. steepest descent step.

▶ The momentum due the the Nesterov acceleration can be seen in the trajectory.

▶ Non monotonic convergence but faster than GD.

▶ Complexity O(nd) per iteration when no line search.
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Least squares and ridge regression

min
w

F (w) =
1

n

n∑
i=1

(w⊤xi − yi)
2 + λ∥w∥2 (21)

▶ Training dataset {(xi, yi)}ni=1 with yi ∈ R and w ∈ Rd.

▶ Least Squares (λ = 0) and Ridge regression (λ > 0).

▶ Prediction is done with ŷ = w⊤x.

Exercise 1: Linear regression

1. Reformulate the objective value of least square as a squared norm of residual
vector of prediction errors.

2. Compute the gradients for the least square and ridge regression.

3. Express the Hessian and compute the Lipschitz constant L and µ for the least
square and ridge regression.
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Logistic regression

min
w

F (w) =
1

n

n∑
i=1

log(1 + exp(−yiw⊤xi)) + λ∥w∥2 (22)

▶ Training dataset {(xi, yi)}ni=1 with yi ∈ {1, 1} and w ∈ Rd.

▶ Regularized logistic regression (λ > 0).

▶ Prediction is done with ŷ = sign(w⊤x).

Exercise 2: Logistic regression

1. Compute the gradients for the logistic regression.

2. Express the Hessian and compute the Lipschitz constant L and µ for the logistic
regression.
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Lab: Gradient Descent

For the optimization problems

▶ Least squares regression and Ridge regression.

min
w

F (w) =
1

n

n∑
i=1

(w⊤xi − yi)
2 + λ∥w∥2

▶ Logistic regression.

min
w

F (w) =
1

n

n∑
i=1

log(1 + exp(−yiw⊤xi)) + λ∥w∥2

Your mission

▶ Implement te loss functions f and gradients df for the three problems.

▶ Implement the gradient descent algorithm (and accelerated variant).

▶ Compare the convergence speed of the three algorithms.
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