Optimization for data science Smooth optimization: Gradient descent

R. Flamary

Master Data Science, Institut Polytechnique de Paris

September 17, 2024

Full course overview

1. Introduction to optimization for data science

- 1.1 ML optimization problems and linear algebra recap
- 1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent

2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems

- 3.1 Solvers for quadratic problems, conjugate gradient
- 3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods

- 4.1 Proximal operator and proximal algorithms
- 4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent

- **5.1 SGD and variance reduction techniques**
- 5.2 Lab 2: SGD for Logistic regression

6. Standard formulation of constrained optimization problems

6.1 LP, QP and Mixed Integer Programming

7. Coordinate descent

7.1 Algorithms and Labs

8. Newton and quasi-newton methods

8.1 Second order methods and Labs

9. Beyond convex optimization

9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Smooth Optimization problem

Optimization problem

 $\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}),$ (1)

- \blacktriangleright F is L-smooth (at least differentiable).
- \blacktriangleright When F is convex x^* is a solution of the problem if

 $\nabla_{\mathbf{x}} F(\mathbf{x}^*) = \mathbf{0}$

 \blacktriangleright When F is non convex x^* is a local minimizer of the problem if

 $\nabla_{\mathbf{x}} F(\mathbf{x}^{\star}) = \mathbf{0}$ and $\nabla_{\mathbf{x}}^2 F(\mathbf{x}^{\star}) \succeq 0$

How to solve optimization problems?

- Solving the problem analytically : $\nabla F(\mathbf{x}^*) = 0$
- Search for a solution numerically : iterative optimization algorithms

Iterative optimization algorithms

 $\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}),$

Iterative algorithms

- \blacktriangleright Principle : start from an initial point $\mathbf{x}^{(0)}$ and iterate to make it better.
- Gradient descent (and variants) when available, proximal methods.
- Black box optimization (a.k.a derivative free optimization) :
	- ▶ Genetic, random search, simulated annealing [\[Gen and Cheng, 1999\]](#page-51-0).
	- ▶ Particle swarm optimization, etc [\[Kennedy and Eberhart, 1995\]](#page-52-0).
	- ▶ Nelder-Mead simplex [\[Nelder and Mead, 1965\]](#page-52-1).

How to choose?

- ▶ No free lunch theorem [\[Wolpert and Macready, 1997\]](#page-53-0) : No algorithm is better than the others for all problems.
- But on can use the properties of the problem to choose the algorithm: specialize!

Assumption 1 : Convexity

Convex function (recap)

▶ Function F is convex if it lies below its chords, that is $\forall x, y \in \mathbb{R}^n$

$$
F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}), \text{ with } 0 \leq \alpha \leq 1. \tag{2}
$$

 \blacktriangleright F a differentiable function is **convex** if and only if

$$
F(\mathbf{y}) \ge F(\mathbf{x}) + \nabla F(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y}, \mathbf{x} \in \text{dom} F
$$
 (3)

▶ For $C = \mathbb{R}^n$, if x if a global minimum if and only if $\nabla_{\mathbf{x}} F(\mathbf{x}) = \mathbf{0}$.

▶ F is μ -strongly convex with $\mu > 0$ if it satisfies $\forall x, y \in \mathbb{R}^n$ and $0 \le \alpha \le 1$

$$
F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}) - \frac{\mu}{2}\alpha(1 - \alpha)\|\mathbf{x} - \mathbf{y}\|^2, \quad (4)
$$

2.1.1 - [Iterative optimization](#page-5-0) - [Optimization problems and properties](#page-3-0) - 6/36

Assumption 1 : Convexity

Convex function (recap)

▶ Function F is convex if it lies below its chords, that is $\forall x, y \in \mathbb{R}^n$

$$
F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}), \text{ with } 0 \leq \alpha \leq 1. \tag{2}
$$

 \blacktriangleright F a differentiable function is **convex** if and only if

$$
F(\mathbf{y}) \ge F(\mathbf{x}) + \nabla F(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{y}, \mathbf{x} \in \text{dom} F
$$
 (3)

▶ For $C = \mathbb{R}^n$, if x if a global minimum if and only if $\nabla_{\mathbf{x}} F(\mathbf{x}) = \mathbf{0}$.

▶ F is μ -strongly convex with $\mu > 0$ if it satisfies $\forall x, y \in \mathbb{R}^n$ and $0 \le \alpha \le 1$

$$
F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}) - \frac{\mu}{2}\alpha(1 - \alpha)\|\mathbf{x} - \mathbf{y}\|^2, \quad (4)
$$

2.1.1 - [Iterative optimization](#page-6-0) - [Optimization problems and properties](#page-3-0) - 6/36

Assumption 2 : smoothness

L-smooth function (recap)

▶ Function F is gradient Lipschitz, also called L-smooth, if $\forall x, y \in C^2$

$$
\|\nabla F(\mathbf{x}) - \nabla F(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|
$$
 (5)

 \blacktriangleright If F is L-smooth, then the following inequality holds

$$
F(\mathbf{x}) \le F(\mathbf{y}) + \nabla F(\mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2
$$
 (6)

 \blacktriangleright If F is L-smooth, then the following inequality holds

$$
\nabla_{\mathbf{x}}^2 F(\mathbf{x}) \preceq L\mathbf{I} \quad (\lambda_{\max}(\nabla_{\mathbf{x}}^2 F(\mathbf{x})) \le L) \tag{7}
$$

2.1.1 - [Iterative optimization](#page-7-0) - [Optimization problems and properties](#page-3-0) - 7/36

Descent algorithm for smooth optimization

General iterative algorithm

- 1: Initialize $\mathbf{x}^{(0)}$
- 2: for $k = 0, 1, 2, \ldots$ do
- 3: $\mathbf{d}^{(k)} \leftarrow$ Compute descent direction from $\mathbf{x}^{(k)}$
- 4: $\rho^{(k)} \leftarrow$ Choose stepsize
- 5: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)}$
- 6: end for
	- $\blacktriangleright \mathbf{x}^{(k)} \in \mathbb{R}^n$ is the current iterate.
- $\blacktriangleright \mathbf{d}^{(k)} \in \mathbb{R}^n$ is a descent direction if $\boldsymbol{\nabla} F(\mathbf{x}^{(k)})^T \mathbf{d}^{(k)} < 0$.
- ▶ For a step small enough, each iteration decreases the cost : $F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)})$
- ▶ Stopping conditions: max number of iterations or small gradient $\|\nabla F(\mathbf{x}^k)\|$.

Gradient Descent (GD) algorithm

Gradient descent algorithm (steepest descent)

- 1: Initialize $\mathbf{x}^{(0)}$
- 2: for $k = 0, 1, 2, \ldots$ do
- $\mathbf{d}^{(k)} \leftarrow -\nabla F(\mathbf{x}^{(k)})$
- 4: $\rho^{(k)} \leftarrow$ Choose stepsize
- 5: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)}$
- 6: end for
	- ▶ Iterative algorithm with descent direction $\mathbf{d} = -\nabla F(\mathbf{x})$.
	- \triangleright $-\nabla F(\mathbf{x})$ is called the steepest descent direction.
	- \blacktriangleright Equivalent to iterative algorithm above in 1D.
	- In this course we study the constant step case $\rho^{(k)} = \rho$.

Example optimization problem

1D Logistic regression

$$
\min_{w,b} \quad \sum_{i=1}^{n} \log(1 + \exp(-y_i(wx_i + b))) + \lambda \frac{w^2}{2}
$$

 \blacktriangleright Linear prediction model : $f(x) = wx + b$

▶ Training data (x_i, y_i) : $(1, -1), (2, -1), (3, 1), (4, 1)$.

▶ Problem solution for $\lambda = 1 : x^* = [w^*, b^*] = [0.96, -2.40]$

$$
\blacktriangleright
$$
 Initialization : $\mathbf{x}^{(0)} = [1, -0.5].$

▶ Complexity : Cost and gradient both $O(nd)$

Example of steepest descent

- ▶ Steepest descent with fixed step $\rho^{(k)} = 0.1$
- ▶ Slow convergence around the solution (small gradients).
- ▶ After 1000 iterations, still not converged.
- Complexity $\mathcal{O}(nd)$ per iteration.

Majorization Minimization (MM) algorithm

Principle

- \blacktriangleright Iterative algorithm that minimizes a surrogate function.
- ▶ Let F be a function to minimize and G a majorization $F(\mathbf{x}) \leq G(\mathbf{x}, \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y}$.
- MM iteration :

$$
\mathbf{x}^{(k+1)} = \underset{\mathbf{x}}{\text{argmin}} \quad G(\mathbf{x}, \mathbf{x}^{(k)})
$$
(8)

- ▶ The MM algorithm is guaranteed to decrease the cost function at each iteration.
- Most efficient when G is close to F , but simple to compute and optimize.
- References : [\[Hunter and Lange, 2004,](#page-52-2) [Sun et al., 2016\]](#page-53-1).

Majorization Minimization for smooth functions

Majorization of L-smooth functions

If F is L -smooth, then the following majorization holds:

$$
F(\mathbf{x}) \le G(\mathbf{x}, \mathbf{y}) = F(\mathbf{y}) + \nabla F(\mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2
$$
(9)

Solving the MM iteration with quadratic upper bound

$$
x^{(k+1)} = \underset{\mathbf{x}}{\text{argmin}} \quad F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^{\top}(\mathbf{x} - \mathbf{x}^{(k)}) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2 \tag{10}
$$

- \blacktriangleright The MM iteration is a quadratic problem that can be solved analytically.
- \blacktriangleright The solution is given by:

Majorization Minimization for smooth functions

Majorization of L-smooth functions

If F is L -smooth, then the following majorization holds:

$$
F(\mathbf{x}) \le G(\mathbf{x}, \mathbf{y}) = F(\mathbf{y}) + \nabla F(\mathbf{y})^{\top} (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||^2
$$
(9)

Solving the MM iteration with quadratic upper bound

$$
x^{(k+1)} = \underset{\mathbf{x}}{\text{argmin}} \quad F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^{\top}(\mathbf{x} - \mathbf{x}^{(k)}) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^{(k)}\|^2 \tag{10}
$$

 \blacktriangleright The MM iteration is a quadratic problem that can be solved analytically. \blacktriangleright The solution is given by:

$$
\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \frac{1}{L} \nabla F(\mathbf{x}^{(k)})
$$
(11)

▶ This is exactly the update of the gradient descent with step $\rho = \frac{1}{L}$.

Convergence of gradient descent

Questions

- ▶ Does Gradient descent converges to an optimal point ?
- ▶ At which speed is the minimum reached?
- \blacktriangleright How to choose the stepsize $\rho^{(k)}$?

Theoretical convergence and convergence speed

- ▶ Fixed steps $\rho^{(k)} = \rho$?
- Smooth and strongly convex functions?
- ▶ Acceleration techniques ?
- Adaptive steps $\rho^{(k)}$ (linesearch, next course) ?

Convergence for smooth functions

Convergence of gradient descent for L-smooth functions

If function F is convex and differentiable and its gradient has a Lipschitz constant L , then the gradient descent with fixed step $\rho^{(k)} = \rho \leq \frac{1}{L}$ converges to a solution \mathbf{x}^\star of the optimization problem with the following speed:

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2}{2\rho k}
$$
 (12)

▶ Best for $\rho = \frac{1}{L}$ that is the largest gradient that ensures decrease of the cost.

- ▶ We say the the gradient descent has a convergence $O(\frac{1}{k})$.
- ▶ In order to reach a precision ϵ one needs $O(\frac{1}{\epsilon})$ iterations.
- \blacktriangleright We prove this result in the next slides 1 .

 1 See also : https://www.stat.cmu.edu/ γ ryantibs/convexopt π F13/scribes/lec6.pdf $_{15/36}$

Step 1 : Descent VS gradient norm Lemma

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2 \tag{13}
$$

Value decreases at each iteration for $\rho \leq \frac{1}{L}$.

= 3

Proof.

$$
F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + \frac{L}{2} ||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||^2
$$

Step 1 : Descent VS gradient norm Lemma

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2 \tag{13}
$$

Value decreases at each iteration for $\rho \leq \frac{1}{L}$.

Proof.

$$
F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + \frac{L}{2} ||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||^2
$$

\n
$$
= F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T (-\rho \nabla F(\mathbf{x}^{(k)})) + \frac{L}{2} || -\rho \nabla F(\mathbf{x}^{(k)})||^2
$$

\n
$$
=
$$

Step 1 : Descent VS gradient norm Lemma

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2 \tag{13}
$$

Value decreases at each iteration for $\rho \leq \frac{1}{L}$.

Proof.

$$
F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T (\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + \frac{L}{2} ||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||^2
$$

\n
$$
= F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T (-\rho \nabla F(\mathbf{x}^{(k)})) + \frac{L}{2} || -\rho \nabla F(\mathbf{x}^{(k)})||^2
$$

\n
$$
= F(\mathbf{x}^{(k)}) - \rho ||\nabla F(\mathbf{x}^{(k)})||^2 + \frac{L\rho^2}{2} ||\nabla F(\mathbf{x}^{(k)})||^2
$$

\n
$$
=
$$

Step 1 : Descent VS gradient norm Lemma

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2 \tag{13}
$$

Value decreases at each iteration for $\rho \leq \frac{1}{L}$.

Proof.

$$
F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}) + \frac{L}{2} ||\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)}||^2
$$

\n
$$
= F(\mathbf{x}^{(k)}) + \nabla F(\mathbf{x}^{(k)})^T(-\rho \nabla F(\mathbf{x}^{(k)})) + \frac{L}{2} || -\rho \nabla F(\mathbf{x}^{(k)})||^2
$$

\n
$$
= F(\mathbf{x}^{(k)}) - \rho ||\nabla F(\mathbf{x}^{(k)})||^2 + \frac{L\rho^2}{2} ||\nabla F(\mathbf{x}^{(k)})||^2
$$

\n
$$
= F(\mathbf{x}^{(k)}) - \frac{\rho}{2} ||\nabla F(\mathbf{x}^{(k)})||^2 (2 - \rho L)
$$

\n
$$
\leq F(\mathbf{x}^{(k)}) - \frac{\rho}{2} ||\nabla F(\mathbf{x}^{(k)})||^2
$$

Step 2 : Objective w.r.t. optimal value

$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$
(14)

Proof.

Using convexity one has: $F(\mathbf{x}) \leq F(\mathbf{x}^*) + \nabla F(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*)$ so from [\(13\)](#page-17-1):

 $F(\mathbf{x}^{(k+1)}) \leq$

Step 2 : Objective w.r.t. optimal value

$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$
(14)

Proof.

Using convexity one has: $F(\mathbf{x}) \leq F(\mathbf{x}^*) + \nabla F(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*)$ so from [\(13\)](#page-17-1):

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\$\le\$

Step 2 : Objective w.r.t. optimal value

$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$
(14)

Proof.

Using convexity one has: $F(\mathbf{x}) \leq F(\mathbf{x}^*) + \nabla F(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*)$ so from [\(13\)](#page-17-1):

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\le F(\mathbf{x}^*) + \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

 $F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^{\star}) \leq$

Step 2 : Objective w.r.t. optimal value

$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$
(14)

Proof.

Using convexity one has: $F(\mathbf{x}) \leq F(\mathbf{x}^*) + \nabla F(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*)$ so from [\(13\)](#page-17-1):

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\le F(\mathbf{x}^*) + \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\le
$$

Step 2 : Objective w.r.t. optimal value

$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$
(14)

Proof.

Using convexity one has: $F(\mathbf{x}) \leq F(\mathbf{x}^*) + \nabla F(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*)$ so from [\(13\)](#page-17-1):

$$
F(\mathbf{x}^{(k+1)}) \le F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\le F(\mathbf{x}^*) + \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\le \frac{1}{2\rho} \left(2\rho \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \rho^2 \|\nabla F(\mathbf{x}^{(k)})\|^2 - \|\mathbf{x}^{(k)} - \mathbf{x}^*\|^2
$$

\n
$$
+ \|\mathbf{x}^{(k)} - \mathbf{x}^*\|^2 \right)
$$

\n
$$
\le \frac{1}{5}
$$

Step 2 : Objective w.r.t. optimal value

$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \le \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$
(14)

Proof.

Using convexity one has: $F(\mathbf{x}) \leq F(\mathbf{x}^*) + \nabla F(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*)$ so from [\(13\)](#page-17-1):

$$
F(\mathbf{x}^{(k+1)}) \leq F(\mathbf{x}^{(k)}) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\leq F(\mathbf{x}^*) + \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
F(\mathbf{x}^{(k+1)}) - F(\mathbf{x}^*) \leq \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \frac{\rho}{2} \|\nabla F(\mathbf{x}^{(k)})\|^2
$$

\n
$$
\leq \frac{1}{2\rho} \left(2\rho \nabla F(\mathbf{x}^{(k)})^\top (\mathbf{x}^{(k)} - \mathbf{x}^*) - \rho^2 \|\nabla F(\mathbf{x}^{(k)})\|^2 - \|\mathbf{x}^{(k)} - \mathbf{x}^*\|^2
$$

\n
$$
+ \|\mathbf{x}^{(k)} - \mathbf{x}^*\|^2 \right)
$$

\n
$$
\leq \frac{1}{2\rho} \left(-\|\mathbf{x}^{(k)} - \rho \nabla F(\mathbf{x}^{(k)}) - \mathbf{x}^*\|^2 + \|\mathbf{x}^{(k)} - \mathbf{x}^*\|^2 \right)
$$

\n
$$
= \frac{1}{2\rho} (\|\mathbf{x}^k - \mathbf{x}^*\|^2 - \|\mathbf{x}^{k+1} - \mathbf{x}^*\|^2)
$$

 5 Factorization of $\|{\bf x}^{(k)} - \rho \nabla F({\bf x}^{(k)}) - x$. $\|^2$ Convergence of gradient descent - [Convergence for smooth functions](#page-16-0) \square 7/36

Step 3 : Putting all iterations together

Proof.
$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{\star}) \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2}{2\rho k}
$$

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) = \frac{1}{k} \sum_{i=1}^k F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*)
$$

$$
\frac{<}{6}
$$

⁶Descent Lemma [\(13\)](#page-17-1) 7 Inject Eq. (14) ⁸Summation of telescopic series

Step 3 : Putting all iterations together

Proof.
$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{\star}) \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2}{2\rho k}
$$

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) = \frac{1}{k} \sum_{i=1}^k F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*)
$$

$$
\leq \frac{1}{6} \sum_{i=1}^k F(\mathbf{x}^{(i)}) - F(\mathbf{x}^*)
$$

$$
\leq \frac{1}{7}
$$

⁶Descent Lemma [\(13\)](#page-17-1) 7 Inject Eq. (14) ⁸Summation of telescopic series

2.3.1 - [Convergence of gradient descent](#page-28-0) - [Convergence for smooth functions](#page-16-0) - 18/36

Step 3 : Putting all iterations together

 \overline{F}

Proof.
$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{\star}) \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2}{2\rho k}
$$

$$
(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) = \frac{1}{k} \sum_{i=1}^k F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*)
$$

\n
$$
\leq \frac{1}{6} \sum_{i=1}^k F(\mathbf{x}^{(i)}) - F(\mathbf{x}^*)
$$

\n
$$
\leq \frac{1}{2\rho k} \sum_{i=1}^k ||\mathbf{x}^{k-1} - \mathbf{x}^*||^2 - ||\mathbf{x}^k - \mathbf{x}^*||^2
$$

\n
$$
= \frac{1}{8}
$$

⁶Descent Lemma [\(13\)](#page-17-1) 7 Inject Eq. (14)

⁸Summation of telescopic series

2.3.1 - [Convergence of gradient descent](#page-29-0) - [Convergence for smooth functions](#page-16-0) - 18/36

Step 3 : Putting all iterations together

Proof.
$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{\star}) \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2}{2\rho k}
$$

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) = \frac{1}{k} \sum_{i=1}^k F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*)
$$

\n
$$
\leq \frac{1}{6} \sum_{i=1}^k F(\mathbf{x}^{(i)}) - F(\mathbf{x}^*)
$$

\n
$$
\leq \frac{1}{2\rho k} \sum_{i=1}^k \|\mathbf{x}^{k-1} - \mathbf{x}^*\|^2 - \|\mathbf{x}^k - \mathbf{x}^*\|^2
$$

\n
$$
= \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{(k)} - \mathbf{x}^*\|^2}{2\rho k}
$$

\n
$$
\leq \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2}{2\rho k}
$$

⁶Descent Lemma [\(13\)](#page-17-1) 7 Inject Eq. (14) ⁸Summation of telescopic series

2.3.1 - [Convergence of gradient descent](#page-30-0) - [Convergence for smooth functions](#page-16-0) - 18/36

Convergence example for smooth function

L-smooth cost function

- ▶ Steepest descent with fixed step $\rho^{(k)} = 0.05$
- ▶ Non regularized logistic regression ($\lambda = 0$).
- ▶ Slow $O(\frac{1}{k})$ convergence of Gradient Descent.

Convergence example for smooth function

- Steepest descent with fixed step $\rho^{(k)} = 0.05$
- ▶ Non regularized logistic regression $(λ = 0)$.
- ▶ Slow $O(\frac{1}{k})$ convergence of Gradient Descent.

Convergence example for smooth function

- Steepest descent with fixed step $\rho^{(k)} = 0.05$
- ▶ Non regularized logistic regression $(λ = 0)$.
- ▶ Slow $O(\frac{1}{k})$ convergence of Gradient Descent.

Assumption 3 : Strong convexity

μ -strongly convex function (recap)

▶ F is μ -strongly convex with $\mu > 0$ if it satisfies $\forall x, y \in \mathbb{R}^n$ and $0 \le \alpha \le 1$

$$
F(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha F(\mathbf{x}) + (1 - \alpha)F(\mathbf{y}) - \frac{\mu}{2}\alpha(1 - \alpha)\|\mathbf{x} - \mathbf{y}\|^2, \qquad (15)
$$

If F is a differentiable μ -strongly convex then

$$
F(\mathbf{y}) \ge F(\mathbf{x}) + \nabla F(\mathbf{x})^{\top}(\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2, \quad \forall \mathbf{y}, \mathbf{x} \in \text{dom} F
$$

Strongly convex functions have a unique minimum x^* .

Convergence for strongly convex functions

Convergence of gradient descent for μ -strongly convex functions

If function F is μ -strongly convex, then the gradient descent with fixed step $\rho^{(k)} = \rho = \frac{1}{L}$ converges to a solution \mathbf{x}^\star of the optimization problem with the following speed:

$$
F(\mathbf{x}) - F(\mathbf{x}^*) \le \left(1 - \frac{\mu}{L}\right)^k \left(F(\mathbf{x}^{(0)}) - F(\mathbf{x}^*)\right)
$$
(16)

▶ For a function F, $\mu = \lambda_{\min}(\nabla^2 F(\mathbf{x}))$ and $L = \lambda_{\max}(\nabla^2 F(\mathbf{x}))$.

- ▶ The condition $\kappa = \frac{L}{\mu} \ge 1$ has important impact (close to 1 is better approx).
- ▶ We say the the gradient descent has a convergence $O(e^{-k/\kappa})$.
- In order to reach a precision ϵ one needs $O(\log(1/\epsilon))$ iterations.

Convergence proof (μ -strongly convex, L -smooth)

Polyak-Lojasciewicz (PL) inequality

If F is a μ -strongly convex function and \mathbf{x}^{\star} its optimal point then $\forall \mathbf{x}$

$$
F(\mathbf{x}) - F(\mathbf{x}^*) \le \frac{1}{2\mu} \|\nabla F(\mathbf{x})\|^2 \tag{17}
$$

Proof.

Exercise 3 in class. Hints:

- ▶ Use strong convexity lower bound.
- ► Set $y = x \frac{1}{\mu} \nabla F(x)$.
- Inject optimal point x^*

Convergence proof (μ -strongly convex, L -smooth)

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) \le \left(1 - \frac{\mu}{L}\right)^k \|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2
$$

Proof.

Using the descent lemma [\(13\)](#page-17-1):

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^{(k-1)}) \le -\frac{1}{2L} \|\nabla F(\mathbf{x}^{(k-1)})\|^2
$$

\n
$$
\le -\frac{\mu}{L} \left(F(\mathbf{x}^{(k-1)}) - F(\mathbf{x}^*) \right)
$$

\n
$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) \le F(\mathbf{x}^{(k-1)}) - F(\mathbf{x}^*) - \frac{\mu}{L} \left(F(\mathbf{x}^{(k-1)}) - F(\mathbf{x}^*) \right)
$$

\n
$$
\le \left(1 - \frac{\mu}{L} \right) \left(F(\mathbf{x}^{(k-1)}) - F(\mathbf{x}^*) \right)
$$

\n
$$
\le \left(1 - \frac{\mu}{L} \right)^k \left(F(\mathbf{x}^{(0)}) - F(\mathbf{x}^*) \right)
$$

⁹Use PL inequality [\(17\)](#page-36-1)

Convergence example for strongly convex function

- Steepest descent with fixed step $\rho^{(k)} = 0.02$
- ▶ Fully regularized logistic regression ($\lambda = 1$ for w and b).
- \blacktriangleright L-smooth and μ -strongly convex upper bounds.
- ▶ Fast $O(e^{-k/\kappa})$ convergence of Gradient Descent.

Convergence example for strongly convex function

- Steepest descent with fixed step $\rho^{(k)} = 0.02$
- Fully regularized logistic regression ($\lambda = 1$ for w and b).
- L-smooth and μ -strongly convex upper bounds.
- ▶ Fast $O(e^{-k/\kappa})$ convergence of Gradient Descent.

Convergence example for strongly convex function

- ▶ Steepest descent with fixed step $\rho^{(k)} = 0.02$
- Fully regularized logistic regression ($\lambda = 1$ for w and b).
- L -smooth and μ -strongly convex upper bounds.
- ▶ Fast $O(e^{-k/\kappa})$ convergence of Gradient Descent.

How to make Gradient Descent faster?

Gradient descent is slow

- \blacktriangleright Unless on strongly convex fonction it has a $O(\frac{1}{k})$ convergence.
- Needs to recompute the gradient at each iteration $(O(nd)$ in ERM).

Acceleration techniques

- \blacktriangleright Use adaptive stepsizes (smarter $\rho^{(k)}$).
- Use momentum (remember previous gradients).
- ▶ Use second order information (Newton, quasi-Newton).
- Speedup gradient computation (stochastic gradient, slower but more efficient).

How to make Gradient Descent faster?

Gradient descent is slow

- \blacktriangleright Unless on strongly convex fonction it has a $O(\frac{1}{k})$ convergence.
- Needs to recompute the gradient at each iteration $(O(nd)$ in ERM).

Acceleration techniques

- \blacktriangleright Use adaptive stepsizes (smarter $\rho^{(k)}$).
- ▶ Use momentum (remember previous gradients).
- ▶ Use second order information (Newton, quasi-Newton).
- Speedup gradient computation (stochastic gradient, slower but more efficient).

Barzilai-Borwein stepsize (BB-rule)

Principle [\[Barzilai and Borwein, 1988\]](#page-51-1)

- \triangleright Use the gradient and the previous gradient to compute the stepsize.
- It is a two-step approximation of the secant method (to cancel the gradient).
- \blacktriangleright The stepsize is computed as:
	- ▶ Long BB stepsize:

$$
\rho^{(k)} = \frac{\Delta \mathbf{x}^\top \Delta \mathbf{x}}{\Delta \mathbf{x}^\top \Delta \mathbf{g}} \tag{18}
$$

▶ Short BB stepsize:

$$
\rho^{(k)} = \frac{\Delta \mathbf{x}^\top \Delta \mathbf{g}}{\Delta \mathbf{g}^\top \Delta \mathbf{g}} \tag{19}
$$

▶ where $\Delta x = x^{(k)} - x^{(k-1)}$ and $\Delta g = \nabla F(x^{(k)}) - \nabla F(x^{(k-1)})$.

- The stepsize can be clipped to avoid too large steps (or with linesearch).
- ▶ Convergence for quadratic [\[Raydan, 1993\]](#page-53-2) and non-quadratic functions [\[Raydan, 1997\]](#page-53-3) with linesearch.
- ▶ Variants used for hyperparameter-free optimization with provably better constant.
- Discussed more in details in next courses.

Example of BB rule for Gradient Descent

- ▶ GD and first step of BB rule use step $\rho^{(k)} = 0.01$.
- Acceleration is important w.r.t. steepest descent step.
- Unstable and the stepsize can be too large and lead to loss increase.
- BB rule is best used with linesearch (see next course).

Accelerated gradient descent

Accelerated gradient descent (AGD) [\[Nesterov, 1983,](#page-52-3) [Walkington, 2023\]](#page-53-4)

- 1: Initialize $\mathbf{x}^{(0)}, \mathbf{y}^{(0)} = \mathbf{x}^{(0)}, \alpha^{(0)} = 0$ and $\rho \leq \frac{1}{L}$ 2: for $k = 0, 1, 2, \ldots$ do
- 3: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{x}^{(k)} \rho \nabla F(\mathbf{x}^{(k)})$
- 4: $\alpha^{(k+1)} = \leftarrow \frac{1 + \sqrt{1 + 4(\alpha^{(k)})^2}}{2}$
- 2 $\mathbf{5:} \quad \mathbf{x}^{(k+1)} \leftarrow \mathbf{y}^{(k+1)} + \frac{\alpha^{(k)} - 1}{\alpha^{(k+1)}} (\mathbf{y}^{(k+1)} - \mathbf{y}^{(k)})$
- 6: end for
	- ▶ Also called Nesterov accelerated gradient (NAG).
	- ▶ Acceleration of gradient descent with momentum.
	- ▶ Update is gradient step $(y^{(k+1)})$ + momentum of previous step.
	- ▶ The algorithm has a $O(\frac{1}{k^2})$ convergence for *L*-smooth functions and $\rho = \frac{1}{L}$:

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) \le \frac{2L \|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2}{k^2}
$$
 (20)

 \blacktriangleright Convergence speed $O(\frac{1}{k^2})$ is optimal for a first order method.

Example of Accelerated Gradient Descent

- ▶ Both GD and AGD use fixed step $\rho^{(k)} = 0.1$.
- Acceleration speedup is important w.r.t. steepest descent step.
- The momentum due the the Nesterov acceleration can be seen in the trajectory.
- Non monotonic convergence but faster than GD.
- Complexity $O(nd)$ per iteration when no line search.

Least squares and ridge regression

$$
\min_{\mathbf{w}} \quad F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2 + \lambda \|\mathbf{w}\|^2 \tag{21}
$$

▶ Training dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with $y_i \in \mathbb{R}$ and $\mathbf{w} \in \mathbb{R}^d$.

- **►** Least Squares ($\lambda = 0$) and Ridge regression ($\lambda > 0$).
- ▶ Prediction is done with $\hat{y} = \mathbf{w}^\top \mathbf{x}$.

Exercise 1: Linear regression

- 1. Reformulate the objective value of least square as a squared norm of residual vector of prediction errors.
- 2. Compute the gradients for the least square and ridge regression.
- **3.** Express the Hessian and compute the Lipschitz constant L and μ for the least square and ridge regression.

Logistic regression

$$
\min_{\mathbf{w}} \quad F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i)) + \lambda \|\mathbf{w}\|^2 \tag{22}
$$

- ▶ Training dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ with $y_i \in \{1, 1\}$ and $\mathbf{w} \in \mathbb{R}^d$.
- **Regularized logistic regression** $(\lambda > 0)$.
- ▶ Prediction is done with $\hat{y} = sign(\mathbf{w}^T \mathbf{x})$.

Exercise 2: Logistic regression

- 1. Compute the gradients for the logistic regression.
- 2. Express the Hessian and compute the Lipschitz constant L and μ for the logistic regression.

Lab: Gradient Descent

For the optimization problems

▶ Least squares regression and Ridge regression.

$$
\min_{\mathbf{w}} \quad F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^{\top} \mathbf{x}_i - y_i)^2 + \lambda \|\mathbf{w}\|^2
$$

▶ Logistic regression.

$$
\min_{\mathbf{w}} \quad F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i)) + \lambda \|\mathbf{w}\|^2
$$

Your mission

- ▶ Implement te loss functions f and gradients df for the three problems.
- ▶ Implement the gradient descent algorithm (and accelerated variant).
- ▶ Compare the convergence speed of the three algorithms.

Bibliography I

Convex Optimization [\[Boyd and Vandenberghe, 2004\]](#page-51-2)

▶ Available freely online: <https://web.stanford.edu/~boyd/cvxbook/>.

Nonlinear Programming [\[Bertsekas, 1997\]](#page-51-3)

- ▶ Reference optimization book, contains also most of the course.
- \triangleright Unconstrained optimization (Ch. 1), duality and lagrangian (Ch. 3, 4, 5).

Convex analysis and monotone operator theory in Hilbert spaces [\[Bauschke et al., 2011\]](#page-51-4)

- ▶ Awesome book with lot's of algorithms, and convergence proofs.
- ▶ All definitions (convexity, lower semi continuity) in specific chapters.

Numerical optimization [\[Nocedal and Wright, 2006\]](#page-52-4)

 \blacktriangleright Classic introduction to numerical optimization.

References I

Barzilai, J. and Borwein, J. M. (1988). Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1):141–148.


```
Bauschke, H. H., Combettes, P. L., et al. (2011).
```
Convex analysis and monotone operator theory in Hilbert spaces, volume 408. Springer.


```
Bertsekas, D. P. (1997).
```
Nonlinear programming.

Journal of the Operational Research Society, 48(3):334–334.

Boyd, S. and Vandenberghe, L. (2004).

Convex optimization.

Cambridge university press.

Gen, M. and Cheng, R. (1999).

Genetic algorithms and engineering optimization, volume 7. John Wiley & Sons.

References II

Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms.

The American Statistician, 58(1):30–37.

Kennedy, J. and Eberhart, R. (1995).

Particle swarm optimization.

In Proceedings of ICNN'95-international conference on neural networks, volume 4, pages 1942–1948. ieee.

Nelder, J. A. and Mead, R. (1965).

A simplex method for function minimization.

The computer journal, 7(4):308–313.

Nesterov, Y. E. (1983).

A method for solving the convex programming problem with convergence rate o $(1/k²)$ 2).

In Dokl. akad. nauk Sssr, volume 269, pages 543–547.

Nocedal, J. and Wright, S. (2006).

Numerical optimization.

Springer Science & Business Media.

References III

Raydan, M. (1993).

On the barzilai and borwein choice of steplength for the gradient method.

IMA Journal of Numerical Analysis, 13(3):321–326.

Raydan, M. (1997).

The barzilai and borwein gradient method for the large scale unconstrained minimization problem.

SIAM Journal on Optimization, 7(1):26–33.

Sun, Y., Babu, P., and Palomar, D. P. (2016).

Majorization-minimization algorithms in signal processing, communications, and machine learning.

IEEE Transactions on Signal Processing, 65(3):794–816.

Walkington, N. J. (2023).

Nesterov's method for convex optimization.

SIAM Review, 65(2):539–562.

Wolpert, D. H. and Macready, W. G. (1997).

No free lunch theorems for optimization.

IEEE transactions on evolutionary computation, 1(1):67–82.