Solvers for dense and sparse quadratic problems

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

• where $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is the objective function

Wood

Quadratic functions

Definition (Quadratic form)

A quadratic form reads

$$q(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c$$

where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

 \rightarrow What equation do stationary points satisfy?

 \rightarrow What condition on A do we need to guarantee the existence and uniqueness of x^* ?

 \rightarrow Show that minimizing q boils down to solving a linear system.

Assuming f is twice differentiable, the Taylor expansion at order 2 of f at x reads:

$$\forall h \in \mathbb{R}^n, f(x+h) = f(x) + \nabla f(x)^\top h + \frac{1}{2}h^\top \nabla^2 f(x)h + o(\|h\|^2)$$

- $\nabla f(x) \in \mathbb{R}^n$ is the gradient.
- $\nabla^2 f(x) \in \mathbb{R}^{n \times n}$ the Hessian matrix.

Remark: It gives a local quadratic approximation

 \rightarrow Show that if $\nabla^2 f(x) = L I$ then minimizing the quadratic approximation leads to gradient descent. With what step size?

) Woo

Ridge regression

We consider problems with *n* samples, observations, and *p* features, variables. WARNING: Using standard ML notations (X, y)

Definition (Ridge regression)

Let $y \in \mathbb{R}^n$ the *n* targets to predict and $(x^i)_i$ the *n* samples in \mathbb{R}^p . Ridge regression consists in solving the following problem

$$\min_{w,b} \frac{1}{2} \|y - Xw - b\mathbf{1}_n\|^2 + \frac{\lambda}{2} \|w\|^2, \lambda > 0$$

where $w \in \mathbb{R}^{p}$ is called the weights vector, $b \in \mathbb{R}$ is the intercept (a.k.a. bias) and the *i*th row of X is x^{i} .

Remark: We have an optimization problem in dimension p + 1*Remark:* Note that the intercept is not penalized with λ .

Taking care of the intercept

Exercise

Let

$$\hat{w}, \hat{b} = \operatorname*{arg\,min}_{w,b} \frac{1}{2} \|y - Xw - b\mathbf{1}_n\|^2 + \frac{\lambda}{2} \|w\|^2, \lambda > 0$$

 $\overline{y} \in \mathbb{R}$ the mean of y and $\overline{X} \in \mathbb{R}^p$ the mean of each column of X. \rightarrow Show that $\hat{b} = -\overline{X}^{\top} \hat{w} + \overline{y}$.

Prin

rimal-Dual

Conjugate gradient

Taking care of the intercept

Exercise

Let

$$\hat{w}, \hat{b} = \operatorname*{arg\,min}_{w,b} \frac{1}{2} \|y - Xw - b\mathbf{1}_n\|^2 + \frac{\lambda}{2} \|w\|^2, \lambda > 0$$

 $\overline{y} \in \mathbb{R}$ the mean of y and $\overline{X} \in \mathbb{R}^p$ the mean of each column of X. \rightarrow Show that $\hat{b} = -\overline{X}^{\top} \hat{w} + \overline{y}$.

Ways to deal with the intercept:

• Option 1 (dense case): Center the target y and each column feature and solve:

$$\min_{w \in \mathbb{R}^{p}} \frac{1}{2} \|y - Xw\|^{2} + \frac{\lambda}{2} \|w\|^{2}$$

• Option 2 (sparse case): Add a column of 1 to X and try not to penalize it (too much).

Ridge regression

We consider:

$$\min_{w \in \mathbb{R}^{p}} \frac{1}{2} \|y - Xw\|^{2} + \frac{\lambda}{2} \|w\|^{2}$$

Exercise

- Show that ridge regression boils down to the minimization of a quadratic form.
- Propose a closed form solution.
- Show that the solution is obtained by solving a linear system.
- Is the objective function strongly convex?
- Assuming n convexity?
- \rightarrow cf. notebook

- SVD is a factorization of a matrix (real here)
- $M = U\Sigma V^{\top}$ where $M \in \mathbb{R}^{n \times p}$, $U \in \mathbb{R}^{n \times n}$, $\Sigma \in \mathbb{R}^{n \times p}$, $V \in \mathbb{R}^{p \times p}$
- $U^{\top}U = UU^{\top} = I_n$ (orthogonal matrix)
- $V^{\top}V = VV^{\top} = I_{p}$ (orthogonal matrix)
- Σ diagonal matrix
- $\Sigma_{i,i}$ are called the singular values
- U are left-singular vectors
- V are right-singular vectors

- SVD is a factorization of a matrix (real here)
- U contains the eigenvectors of MM^T associated to the eigenvalues Σ²_{i,i} for 1 ≤ i ≤ n.
- V contains the eigenvectors of M^TM associated to the eigenvalues Σ²_{i,i} for 1 ≤ i ≤ p.
- we assume here $\Sigma_{i,i} = 0$ for $\min(n, p) < i \le \max(n, p)$
- SVD is particularly useful to find the rank, null-space, image and pseudo-inverse of a matrix

Woodbury Primal-Dual Conjugate gradient

Matrix inversion lemma

Proposition (Matrix inversion lemma)

also known as "Woodbury matrix identity" states that:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1},$$

where $A \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{n \times k}$, $C \in \mathbb{R}^{k \times k}$, $V \in \mathbb{R}^{k \times n}$.

Woodburv

Primal-

Conjugate gradient

Matrix inversion lemma

Proposition (Matrix inversion lemma)

also known as "Woodbury matrix identity" states that:

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U(C^{-1} + VA^{-1}U)^{-1}VA^{-1},$$

where $A \in \mathbb{R}^{n \times n}$, $U \in \mathbb{R}^{n \times k}$, $C \in \mathbb{R}^{k \times k}$, $V \in \mathbb{R}^{k \times n}$.

Proof. Just check that (A+UCV) times the RHS of the Woodbury identity gives the identity matrix:

$$(A + UCV) \left[A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U \right)^{-1} VA^{-1} \right]$$

= $I + UCVA^{-1} - (U + UCVA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$
= $I + UCVA^{-1} - UC(C^{-1} + VA^{-1}U)(C^{-1} + VA^{-1}U)^{-1}VA^{-1}$
= $I + UCVA^{-1} - UCVA^{-1} = I$

Woodb

Conjugate gradient

Primal and dual implementation

We consider:

$$\min_{w \in \mathbb{R}^p} \frac{1}{2} \|y - Xw\|^2 + \frac{\lambda}{2} \|w\|^2$$

The solution is given by:

$$\hat{w} = (X^\top X + \lambda I_p)^{-1} X^\top y$$

Using matrix inversion lemma show that:

$$\hat{w} = X^{\top} (XX^{\top} + \lambda I_n)^{-1} y$$

This is a dual formulation and the matrix to invert is in $\mathbb{R}^{n \times n}$.

- \rightarrow Using the SVD of X propose an implementation.
- \rightarrow Can you use the SVD to confirm the primal-dual link?
- \rightarrow What if X is sparse, *n* is 1e5 and *p* is 1e6?

Conjugate gradient method: Solve Ax = b

The conjugate gradient method is an iterative method to solve linear systems with positive definite matrices $(A \succ 0)$. It only needs to know how to compute Ax (operation can be implicit).

Principle:

- Iterate: $x^{k+1} = x^k \beta_k d^k$
- The direction d^k depends on all the gradients at previous iterates (∇f(x¹), ..., ∇f(x^k)).
- $p^k = \beta_k d^k$ is chosen as the vector in span $(\nabla f(x^1), \dots, \nabla f(x^k))$ which minimizes $f(x^k - p^k)$

Conjugate gradient method: Solve Ax = b

Theorem (Convergence in *n* iterations)

The conjugate gradient algorithm finds the minimum of positive definite quadratic form q, in at most n iterations:

$$q(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x + c ,$$

and therefore solves the linear system Ax = b in in at most n iterations.

Conjugate gradient method: Solve Ax = b

Property

- $\forall l < k, Ad^k \perp d^l$
- i.e., vectors d^k and d^l are *conjugate* w.r.t. A
- Computation of the direction:
 - d^k = g^k + α_kd^{k-1} where g^k = ∇f(x^k) (we correct the gradient with a term that depends on previous iterations),

$$\alpha_k = -\frac{\langle \mathbf{g}^k, \mathbf{A} \mathbf{d}^{k-1} \rangle}{\langle \mathbf{A} \mathbf{d}^{k-1}, \mathbf{d}^{k-1} \rangle}$$

• Computation of optimal step size:

$$eta_k = rac{\langle g^k, d^k
angle}{\langle A d^k, d^k
angle}$$

Conjugate gradient: Solve Ax = b

Require: $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$ 1: $x^0 \in \mathbb{R}^n$, $g^0 = Ax^0 - b$ 2: **for** k = 0 to *n* **do** 3: if $g^k = 0$ then 4: break 5: end if 6: if k = 0 then 7: $d^k = g^0$ 8: else $\alpha_{k} = -\frac{\langle g^{k}, Ad^{k-1} \rangle}{\langle d^{k-1}, Ad^{k-1} \rangle}$ 9: $d^{k} = g^{k} + \alpha_{\nu} d^{k-1}$ 10: end if 11: 12: $\beta_k = \frac{\langle g^k, d^k \rangle}{\langle d^k, Ad^k \rangle}$ 13: $x^{k+1} = x^k - \beta_{\iota} d^k$ 14: $g^{k+1} = Ax^{k+1} - b$ 15: end for 16: return x^{k+1}

If $g^k = 0$, then $x^k = x^*$ is solution of the linear system Ax = b. For k = 1, we have $d^0 = g^0$, so:

$$\begin{array}{l} \langle g^{1}, d^{0} \rangle \\ = \langle Ax^{1} - b, d^{0} \rangle \\ = \langle Ax^{0} - b, d^{0} \rangle - \beta_{0} \langle Ad^{0}, d^{0} \rangle \\ = \langle g^{0}, d^{0} \rangle - \beta_{0} \langle Ad^{0}, d^{0} \rangle \\ = 0 \end{array}$$

$$(1)$$

by definition of β_0 . This leads to

$$\langle g^1, g^0 \rangle = \langle g^1, d^0 \rangle = 0$$

and

$$\langle d^1, Ad^0 \rangle = \langle g^1, Ad^0 \rangle + \alpha_0 \langle d^0, Ad^0 \rangle = 0$$

by definition of α_0 .

One can prove the result by recurrence assuming that:

$$\langle g^k, g^j \rangle = 0 \text{ for } 0 \leq j < k$$

 $\langle g^k, d^j \rangle = 0 \text{ for } 0 \leq j < k$
 $\langle d^k, Ad^j \rangle = 0 \text{ for } 0 \leq j < k$

If $g^k \neq 0$, the algorithm computes x^{k+1} , g^{k+1} and d^{k+1} .

- By construction one has $\langle g^{k+1}, d^k \rangle = 0$ (cf. (1)).
- For j < k: $\langle g^{k+1}, d^j \rangle$ $= \langle g^{k+1}, d^j \rangle - \langle g^k, d^j \rangle$ $= \langle g^{k+1} - g^k, d^j \rangle$ $= -\beta_k \langle Ad^k, d^j \rangle$ = 0 (recurrence hypothesis) • For $j \le k$:

$$\label{eq:gk+1} \begin{split} \langle g^{k+1},g^j\rangle &= \langle g^{k+1},d^j\rangle - \alpha_j \langle g^{k+1},d^{j-1}\rangle = 0 \ , \end{split}$$
 since $g^j = d^j - \alpha_j d^{j-1}.$

• Now:
$$d^{k+1} = g^{k+1} + \alpha_{k+1}d^k$$
. For $j < k$
 $\langle d^{k+1}, Ad^j \rangle$
 $= \langle g^{k+1}, Ad^j \rangle + \alpha_{k+1} \langle d^k, Ad^j \rangle$
 $= \langle g^{k+1}, Ad^j \rangle$.

As
$$g^{j+1} = g^j - \beta_j A d^j$$
, one obtains

$$\langle g^{k+1}, Ad^j \rangle = \frac{1}{\beta_j} \langle g^{k+1}, g^j - g^{j+1} \rangle = 0 \text{ if } \beta_j \neq 0.$$

This implies that if $\beta_j \neq 0$, $\langle d^{k+1}, Ad^j \rangle = 0$ for j < k.

- Furthermore one has $\langle d^{k+1}, Ad^k \rangle = 0$.
- So $\langle d^{k+1}, Ad^j \rangle = 0$ for j < k+1.

- This completes the proof for $\beta_j \neq 0$ and $g^j \neq 0$.
- However one has that

$$\begin{split} \langle \mathbf{g}^k, \mathbf{d}^k \rangle &= \langle \mathbf{g}^k, \mathbf{g}^k \rangle + \alpha_k \langle \mathbf{g}^k, \mathbf{d}^{k-1} \rangle = \| \mathbf{g}^k \|^2 \ , \end{split}$$
 and $\beta_k &= \frac{\langle \mathbf{g}^k, \mathbf{d}^k \rangle}{\langle A \mathbf{d}^k, \mathbf{d}^k \rangle}. \end{split}$

- So β_k can only be 0 if $g^k = 0$, which would imply that $x^k = x^*$.
- Furthermore

$$\|d^k\|^2 = \|g^k\|^2 + \alpha_k^2 \|d^{k-1}\|^2$$

So if $g^k \neq 0$ then $d^k \neq 0$.

- Consequently, if the vectors g⁰, g¹, ..., g^k are all non-zero, the vectors d⁰, d¹, ..., d^k are also non-zero.
- These vectors are an orthogonal basis for the dot product $\langle\cdot,\cdot\rangle_A$ and the k+1 directions
- g^0, g^1, \ldots, g^k are an orthogonal basis for the dot product $\langle \cdot, \cdot \rangle$.
- These directions are therefore independent. As a consequence, if g^0 , g^1 , ..., g^{n-1} are all non-zero, one has that $d^n = g^n = 0$.
- So it converges after n iterations at the most.

Note on warm starts and paths

In machine learning it is common to try to solve a problem that is very similar to a previous one.

- You train a model every day and you need just to "update" the model
- You look for the best hyperparameter and evaluate the parameter on a grid of values to get a so-called "path" of solutions. For example on a grid of λ when doing cross-validation.

What it implies for optimization:

• Updating is natural for an iterative algorithm like CG.

Remark: Do you start with high or low regularization parameters?

Note: Conjugate gradient for sparse linear systems is implemented in scipy.sparse.linalg.cg

Note: Conjugate gradient for general smooth problems is implemented in scipy.optimize.fmin_cg

Note: sklearn.linear_model.Ridge has many solvers. Since v0.18 you have '*svd*', 'cholesky', 'lsqr', 'sparse_cg', 'sag' and 'auto' mode.

- \rightarrow more in the lecture notes.
- \rightarrow cf. notebook

• Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapter 5.