Linear search methods

Alexandre Gramfort

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Table of Contents

1 [Motivation](#page-2-0)

Table of Contents

1 [Motivation](#page-2-0)

Descent algorithm reads:

$$
x_{k+1}=x_k+t_k d_k, t_k\geq 0
$$

where d_k is a descent direction ($\exists t_k > 0$ s.t. $f(x_{k+1}) < f(x_k)$). In the case of gradient descent one uses:

$$
d_k=-\nabla f(x_k)
$$

and if f has a Lipschitz continuous gradient with constant L then one can use $t_k=\frac{1}{L}$ $\frac{1}{L}$. **Problem:** L is a global quantity (does not depend on x_k) and can be unknown.

Objective: Derive strategies to estimate "good enough" t_k (optimal step can be really costly in non-quadratic case).

Why line search?

Let $\phi(t) = f(x_k + td_k)$ **Objective**: find $t > 0$ such that $\phi(t) \leq \phi(0)$ For f smooth, the optimal step size t^* is caracterized by:

$$
\begin{cases}\n\phi'(t^*) = 0 & \text{(is a minimum)} \\
\phi(t) \ge \phi(t^*) \text{ for } 0 \le t \le t^* & \text{(decreases objective)}\n\end{cases}
$$

Why line search?

Let

$$
\phi(t)=f(x_k+td_k)
$$

Objective: find $t > 0$ such that $\phi(t) \leq \phi(0)$

Exercise: Show that with $d_k = -\nabla f(x_k)$ and optimal step size one has $d_{k+1}^{\top}d_k=0$.

6 / 27 Alexandre Gramfort [Linear search methods](#page-0-0)

Security interval

Definition (Security interval)

 $[a, b]$ is a security interval if one can classify t values as:

- If $t < a$ then t is "too small"
- If $a < t < b$ then "t is ok"
- If $t > b$ then t is "too big"

Problem: How to translate these conditions from values of ϕ ? Problem: How to define a and h.

Security interval

Basic algorithm

Start from $[\alpha, \beta]$ with $[a, b] \subset [\alpha, \beta]$, e.g., $\alpha = 0$ and β large (always exists if f is coercive).

Basic algorithm

Start from $[\alpha, \beta]$ with $[a, b] \subset [\alpha, \beta]$, e.g., $\alpha = 0$ and β large (always exists if f is coercive).

Definition

f is coercive if

$$
\lim_{\|x\|\to\infty}f(x)=+\infty
$$

1 Choose t in $[\alpha, \beta]$

- **2** If t is too small then set $\alpha = t$ and go back to 1.
- **3** If t is too big then set $\beta = t$ and go back to 1.
- \bullet If t is ok then stop

Problem: How to translate the "too small", "too big" and "ok" from values of ϕ ?

Table of Contents

[Motivation](#page-2-0)

Armijo's rule

Set $\alpha = 0$ and fix $0 < c < 1$.

Definition (Armijo's rule)

- **1** If $\phi(t) > \phi(0) + c\phi'(0)t$, then t is "too big"
- **2** If $\phi(t) \leq \phi(0) + c\phi'(0)t$, then "ok"

Armijo's rule

Set $\alpha = 0$ and fix $0 < c < 1$.

Definition (Armijo's rule)

1 If $\phi(t) > \phi(0) + c\phi'(0)t$, then t is "too big"

2 If $\phi(t) \leq \phi(0) + c\phi'(0)t$, then "ok"

Problem: As $\alpha = 0$, t is never considered too small. So Armijo is not heavily used in practice.

Note: You have function scalar_search_armijo in [scipy/optimize/linesearch.py](https://github.com/scipy/scipy/blob/master/scipy/optimize/linesearch.py) but it does more (cubic interpolation, backtracking).

Goldstein's rule

Goldstein is Armijo with an extra inequality. Let $0 < c_1 < c_2 < 1$.

Definition (Goldstein's rule)

- **1** If $\phi(t) < \phi(0) + c_2\phi'(0)t$, then t is "too small"
- $\textbf{2}$ If $\phi(t) > \phi(0) + c_1 \phi'(0) t$, then t is "too big"
- **3** If $\phi(0) + c_1\phi'(0)t \ge \phi(t) \ge \phi(0) + c_2\phi'(0)t$, then ok

Goldstein's rule

 c_2 should be chosen such that t^* in the quadratic case is in the security interval.

In the quadratic case:

$$
\phi(t) = \frac{1}{2}at^2 + \phi'(0)t + \phi(0), a > 0
$$

and t^* satisfies $\phi'(t^*)=0$, so $t^*=-\frac{\phi'(0)}{a}$ $rac{(v)}{a}$ and so

$$
\phi(t^*) = \frac{\phi'(0)}{2}t^* + \phi(0)
$$

which means that one should have $c_2\geq \frac{1}{2}$ $rac{1}{2}$.

Common values used in practice are $c_1 = 0.1$ and $c_2 = 0.7$.

Wolfe's rule

Requires $\phi'(t) = d_k^{\top} \nabla f(x_k + t d_k)$ (in theory more costly).

Definition: Wolfe's rule (with $0 < c_1 < c_2 < 1$)

- $\textbf{1}$ If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is "too big" (like Goldstein)
- **2** If $\phi(t) \leq \phi(0) + c_1\phi'(0)t$, and $\phi'(t) < c_2\phi'(0)$ then t is "too small"
- **3** If $\phi(t) \leq \phi(0) + c_1\phi'(0)t$, and $\phi'(t) \geq c_2\phi'(0)$, then "ok"

Wolfe's rule

Requires $\phi'(t) = d_k^{\top} \nabla f(x_k + t d_k)$ (in theory more costly).

Definition: Wolfe's rule (with $0 < c_1 < c_2 < 1$)

 $\textbf{1}$ If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is "too big" (like Goldstein)

2 If $\phi(t) \leq \phi(0) + c_1\phi'(0)t$, and $\phi'(t) < c_2\phi'(0)$ then t is "too small"

3 If $\phi(t) \leq \phi(0) + c_1\phi'(0)t$, and $\phi'(t) \geq c_2\phi'(0)$, then "ok"

Note: The idea is to guarantee that t is not too small by requiring that the gradient is increased enough.

Strong Wolfe's rule

Requires $\phi'(t) = d_k^{\top} \nabla f(x_k + t d_k)$ (in theory more costly).

Definition: Strong Wolfe's rule (with $0 < c_1 < c_2 < 1$)

 $\textbf{1}$ If $\phi(t) > \phi(0) + c_1 \phi'(0)t$, then t is "too big" (like Goldstein)

- **2** If $\phi(t) \leq \phi(0) + c_1\phi'(0)t$, and $|\phi'(t)| > c_2|\phi'(0)|$ then t is "too small"
- **3** If $\phi(t) \leq \phi(0) + c_1\phi'(0)t$, and $|\phi'(t)| \leq c_2|\phi'(0)|$, then "ok"

Note: This is implemented in [scipy.optimize.line](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.line_search.html)_search.

Table of Contents

[Motivation](#page-2-0)

Existence of steps that satisfy Wolfe conditions

Proposition (Existence)

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Let d_k be a descent direction at x_k , and assume that f is bounded below along the ray $\{x_k + td_k | t > 0\}$.

Then if $0 < c_1 < c_2 < 1$, there exist intervals of step lengths satisfying the Wolfe conditions and the strong Wolfe conditions.

Existence of steps that satisfy Wolfe conditions

Proposition (Existence)

Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable.

Let d_k be a descent direction at x_k , and assume that f is bounded below along the ray $\{x_k + td_k | t > 0\}$.

Then if $0 < c_1 < c_2 < 1$, there exist intervals of step lengths satisfying the Wolfe conditions and the strong Wolfe conditions.

Take home message: One can always find a good step size for a smooth and bounded below function.

Since $\phi(t) = f(x_k + td_k)$ is bounded below for all $t > 0$ and since $0 < c_1 < 1$, the line $I(t) = f(x_k) + t c_1 \nabla f(x_k)^\top d_k$ must intersect the graph of ϕ at least once.

Let $t' > 0$ be the smallest intersecting value of t , that is,

$$
f(x_k + t'd_k) = f(x_k) + t'c_1 \nabla f_k^{\top} d_k.
$$

The sufficient decrease condition (Armijo) clearly holds for all $t \leq t'.$

Since $\phi(t) = f(x_k + td_k)$ is bounded below for all $t > 0$ and since $0 < c_1 < 1$, the line $I(t) = f(x_k) + t c_1 \nabla f(x_k)^\top d_k$ must intersect the graph of ϕ at least once. Let $t' > 0$ be the smallest intersecting value of t , that is,

$$
f(x_k + t'd_k) = f(x_k) + t'c_1 \nabla f_k^{\top} d_k.
$$

The sufficient decrease condition (Armijo) clearly holds for all $t \leq t'.$ By the mean value theorem, there exists $t'' \in (0, t')$ such that

$$
f(x_k + t'd_k) - f(x_k) = t'\nabla f(x_k + t''d_k)^\top d_k.
$$

By combining both, we obtain:

$$
\nabla f(x_k + t'' d_k)^\top d_k = c_1 \nabla f(x_k)^\top d_k > c_2 \nabla f(x_k)^\top d_k,
$$

since $c_1 < c_2$ and $\nabla f(x_k)^\top d_k < 0$.

This implies that t'' satisfies the Wolfe conditions and since $t'' < t'$, the inequalities in the 2 Wolfe conditions hold strictly.

By the smoothness assumption on f , there is an interval around t'' for which the Wolfe conditions hold.

Moreover, since $\nabla f(x_k + t'' d_k)^{\top} d_k$ (left-hand side in last equation) is negative, the strong Wolfe conditions hold in the same interval.

This implies that t'' satisfies the Wolfe conditions and since $t'' < t'$, the inequalities in the 2 Wolfe conditions hold strictly.

By the smoothness assumption on f , there is an interval around t'' for which the Wolfe conditions hold.

Moreover, since $\nabla f(x_k + t'' d_k)^{\top} d_k$ (left-hand side in last equation) is negative, the strong Wolfe conditions hold in the same interval.

Take home message: One can always find a good step size for a smooth and bounded below function but it can take some time to find it...

Convergence of line search methods

Theorem (Zoutendijk)

Consider any iteration of the form $x_{k+1} = x_k + t_k d_k$, where d_k is a descent direction $(\cos \theta_k = -\frac{d_k^\top \nabla f(x_k)}{\|d_k\| \|\nabla f(x_k)\|} > 0)$ and t_k satisfies the Wolfe conditions.

Suppose that f is bounded below in \mathbb{R}^n and that f is continuously differentiable in an open set N containing the level set $\mathcal{L} = \{x : f(x) \le f(x_0)\}\$, where x_0 is the starting point of the iteration. Assume also that the gradient ∇f is Lipschitz continuous on $\mathcal N$, that is, there exists a constant $l > 0$ such that:

$$
\|\nabla f(x)-\nabla f(x')\|\leq L\|x-x'\|, \forall x, x'\in cN.
$$

Then:

$$
\sum_{k\geq 0}^{\infty} \cos^2 \theta_k \|\nabla f(x_k)\|^2 < \infty
$$

Proof of Zoutendijk's theorem Wolfe's condition (second) implies:

$$
(\nabla f(x_{k+1}) - \nabla f(x_k))^{\top} d_k \geq (c_2 - 1) \nabla f(x_k)^{\top} d_k
$$

Lipschitz condition implies:

$$
(\nabla f(x_{k+1}) - \nabla f(x_k))^{\top} d_k \leq t_k L ||d_k||^2
$$

Combining the 2 we obtain:

$$
t_k \geq \frac{c_2 - 1}{L} \frac{\nabla f(x_k)^\top d_k}{\|d_k\|^2}
$$

Substituting this inequality into the first Wolfe condition we get:

$$
f(x_{k+1}) \leq f(x_k) - c_1 \frac{1 - c_2}{L} \frac{(\nabla f(x_k)^\top d_k)^2}{\|d_k\|^2}
$$

Proof of Zoutendijk's theorem

Which by the definion of θ_k is equivalent to:

$$
f(x_{k+1}) \leq f(x_k) - c \|\nabla f(x_k)\|^2 \cos^2 \theta_k
$$

where $c = c_1 \frac{1-c_2}{L}$.

Summing over k leads to:

$$
f(x_{k+1}) \leq f(x_0) - c \sum_{k=0}^{k} ||\nabla f(x_k)||^2 \cos^2 \theta_k
$$

And since f is bounded below leads to:

$$
\sum_{k=0}^{\infty} \|\nabla f(x_k)\|^2 \cos^2 \theta_k < \infty
$$

Consequence of Zoutendijk's theorem

A direct consequence is that:

$$
\|\nabla f(x_k)\|^2 \cos^2 \theta_k \to 0
$$

So if θ_k is never too close to 90°:

$$
\exists \delta > 0 \text{ s.t. } \cos \theta_k \ge \delta
$$

Then x_k converges to a stationary point:

 $\|\nabla f(x_k)\| \to 0$

Consequence of Zoutendijk's theorem

A direct consequence is that:

$$
\|\nabla f(x_k)\|^2 \cos^2 \theta_k \to 0
$$

So if θ_k is never too close to 90°:

$$
\exists \delta > 0 \text{ s.t. } \cos \theta_k \ge \delta
$$

Then x_k converges to a stationary point:

 $\|\nabla f(x_k)\| \to 0$

Take home message: $\|\nabla f(x_k)\|$ converges to zero, provided that search directions are never too close to orthogonality with gradient. So gradient descent with line search using Wolfe's conditions always converges to a stationary point ! (no need convexity but Lipschitz gradient)

Table of Contents

[Motivation](#page-2-0)

2 [Line search rules](#page-10-0)

Reducing security interval

First search for starting interval or first value of t ($\alpha = 0$).

- \bullet If t is Ok then stop
- **2** If t is too big then set $\beta = t$ and ok.
- **3** If t is too small, then set t to ct with $c > 1$ and back to 1.

Reducing the interval

Multiple strategies

- **1** Dichotomy. Try $t = (\alpha + \beta)/2$ and then work with $[\alpha, t]$ or $[t, \beta]$
- 2 Polynomial approximation of ϕ , e.g., cubic approximation.

Cubic approximation

Cubic approximation is compatible with Wolfe's method which also needs ϕ' . Take 2 values t_0 and t_1 (for example α and β). Define the third order polynomial p such that:

- $p(t_0) = \phi(t_0)$
- $p(t_1) = \phi(t_1)$
- $\rho'(t_0)=\phi'(t_0)$
- $\rho'(t_1)=\phi'(t_1)$

Then propose for t the minimum of the polynomial. If it does not provide a valid t you can fallback to dichotomy.

 \rightarrow Demo on notebook

References

Wright and Nocedal, Numerical Optimization, 1999, Springer, Chapter 3.