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Why line search?

Descent algorithm reads:

xk+1 = xk + tkdk , tk ≥ 0

where dk is a descent direction (∃tk > 0 s.t. f (xk+1) < f (xk)).
In the case of gradient descent one uses:

dk = −∇f (xk)

and if f has a Lipschitz continuous gradient with constant L then
one can use tk = 1

L .
Problem: L is a global quantity (does not depend on xk) and can
be unknown.
Objective: Derive strategies to estimate “good enough” tk
(optimal step can be really costly in non-quadratic case).
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Why line search?

Let ϕ(t) = f (xk + tdk)
Objective: find t > 0 such that ϕ(t) ≤ ϕ(0)
For f smooth, the optimal step size t∗ is caracterized by:{

ϕ′(t∗) = 0 (is a minimum)

ϕ(t) ≥ ϕ(t∗) for 0 ≤ t ≤ t∗ (decreases objective)

�(0)

�0(0)

t⇤

�0(t⇤) = 0
�(t⇤)

t0
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Why line search?

Let
ϕ(t) = f (xk + tdk)

Objective: find t > 0 such that ϕ(t) ≤ ϕ(0)

Exercise: Show that with dk = −∇f (xk) and optimal step size
one has d⊤

k+1dk = 0.
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Security interval

Definition (Security interval)

[a, b] is a security interval if one can classify t values as:

If t < a then t is “too small”

If a ≤ t ≤ b then “t is ok”

If t > b then t is “too big”

Problem: How to translate these conditions from values of ϕ?
Problem: How to define a and b.
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Security interval

�(0)

�0(0)
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�0(t⇤) = 0
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t0 a b
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Basic algorithm

Start from [α, β] with [a, b] ⊂ [α, β], e.g., α = 0 and β large
(always exists if f is coercive).

Definition

f is coercive if
lim

∥x∥→∞
f (x) = +∞

1 Choose t in [α, β]

2 If t is too small then set α = t and go back to 1.

3 If t is too big then set β = t and go back to 1.

4 If t is ok then stop

Problem: How to translate the “too small”, “too big” and “ok”
from values of ϕ?
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Armijo’s rule

Set α = 0 and fix 0 < c < 1.

Definition (Armijo’s rule)

1 If ϕ(t) > ϕ(0) + cϕ′(0)t, then t is “too big”

2 If ϕ(t) ≤ ϕ(0) + cϕ′(0)t, then “ok”

�(0)

�0(0)

t⇤

�0(t⇤) = 0
�(t⇤)

t0

c�0(0)

�(0) + c�0(0)t

Problem: As α = 0, t is never considered too small. So Armijo is
not heavily used in practice.

Note: You have function scalar search armijo in
scipy/optimize/linesearch.py but it does more (cubic
interpolation, backtracking).
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Goldstein’s rule

Goldstein is Armijo with an extra inequality. Let 0 < c1 < c2 < 1.

Definition (Goldstein’s rule)

1 If ϕ(t) < ϕ(0) + c2ϕ
′(0)t, then t is “too small”

2 If ϕ(t) > ϕ(0) + c1ϕ
′(0)t, then t is “too big”

3 If ϕ(0) + c1ϕ
′(0)t ≥ ϕ(t) ≥ ϕ(0) + c2ϕ

′(0)t, then ok

�(0)

�0(0)

t⇤

�0(t⇤) = 0
�(t⇤)

t0

�(0) + c1�
0(0)t

�(0) + c2�
0(0)t
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Goldstein’s rule

c2 should be chosen such that t∗ in the quadratic case is in the
security interval.
In the quadratic case:

ϕ(t) =
1

2
at2 + ϕ′(0)t + ϕ(0), a > 0

and t∗ satisfies ϕ′(t∗) = 0, so t∗ = −ϕ′(0)
a and so

ϕ(t∗) =
ϕ′(0)

2
t∗ + ϕ(0)

which means that one should have c2 ≥ 1
2 .

Common values used in practice are c1 = 0.1 and c2 = 0.7.
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Wolfe’s rule
Requires ϕ′(t) = d⊤

k ∇f (xk + tdk) (in theory more costly).

Definition: Wolfe’s rule (with 0 < c1 < c2 < 1)

1 If ϕ(t) > ϕ(0) + c1ϕ
′(0)t, then t is “too big” (like Goldstein)

2 If ϕ(t) ≤ ϕ(0) + c1ϕ
′(0)t, and ϕ′(t) < c2ϕ

′(0) then t is “too small”

3 If ϕ(t) ≤ ϕ(0) + c1ϕ
′(0)t, and ϕ′(t) ≥ c2ϕ

′(0), then “ok”

�(0)

�0(0)

t⇤

�0(t⇤) = 0
�(t⇤)

t0

�0(t) � c2�
0(0)

�(0) + c1�
0(0)t

Note: The idea is to guarantee that t is not too small by requiring
that the gradient is increased enough.
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Strong Wolfe’s rule

Requires ϕ′(t) = d⊤
k ∇f (xk + tdk) (in theory more costly).

Definition: Strong Wolfe’s rule (with 0 < c1 < c2 < 1)

1 If ϕ(t) > ϕ(0) + c1ϕ
′(0)t, then t is “too big” (like Goldstein)

2 If ϕ(t) ≤ ϕ(0) + c1ϕ
′(0)t, and |ϕ′(t)| > c2|ϕ′(0)| then t is “too small”

3 If ϕ(t) ≤ ϕ(0) + c1ϕ
′(0)t, and |ϕ′(t)| ≤ c2|ϕ′(0)|, then “ok”

Note: This is implemented in scipy.optimize.line search.
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Existence of steps that satisfy Wolfe conditions

Proposition (Existence)

Suppose that f : Rn → R is continuously differentiable.

Let dk be a descent direction at xk , and assume that f is bounded
below along the ray {xk + tdk |t > 0}.

Then if 0 < c1 < c2 < 1, there exist intervals of step lengths
satisfying the Wolfe conditions and the strong Wolfe conditions.

Take home message: One can always find a good step size for a
smooth and bounded below function.
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Proof of existence
Since ϕ(t) = f (xk + tdk) is bounded below for all t > 0 and since
0 < c1 < 1, the line l(t) = f (xk) + tc1∇f (xk)

⊤dk must intersect the
graph of ϕ at least once.
Let t ′ > 0 be the smallest intersecting value of t, that is,

f (xk + t ′dk) = f (xk) + t ′c1∇f ⊤k dk .

The sufficient decrease condition (Armijo) clearly holds for all t ≤ t ′.

By the mean value theorem, there exists t ′′ ∈ (0, t ′) such that

f (xk + t ′dk)− f (xk) = t ′∇f (xk + t ′′dk)
⊤dk .

By combining both, we obtain:

∇f (xk + t ′′dk)
⊤dk = c1∇f (xk)

⊤dk > c2∇f (xk)
⊤dk ,

since c1 < c2 and ∇f (xk)
⊤dk < 0.
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Proof of existence
This implies that t ′′ satisfies the Wolfe conditions and since t ′′ < t ′, the
inequalities in the 2 Wolfe conditions hold strictly.

By the smoothness assumption on f , there is an interval around t ′′ for
which the Wolfe conditions hold.

Moreover, since ∇f (xk + t ′′dk)
⊤dk (left-hand side in last equation) is

negative, the strong Wolfe conditions hold in the same interval.

Take home message: One can always find a good step size for a smooth
and bounded below function but it can take some time to find it...
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Convergence of line search methods

Theorem (Zoutendijk)

Consider any iteration of the form xk+1 = xk + tkdk , where dk is a

descent direction (cos θk = − d⊤
k ∇f (xk )

∥dk∥∥∇f (xk )∥ > 0) and tk satisfies the Wolfe
conditions.
Suppose that f is bounded below in Rn and that f is continuously
differentiable in an open set N containing the level set
L = {x : f (x) ≤ f (x0)}, where x0 is the starting point of the iteration.
Assume also that the gradient ∇f is Lipschitz continuous on N , that is,
there exists a constant L > 0 such that:

∥∇f (x)−∇f (x ′)∥ ≤ L∥x − x ′∥, ∀x , x ′ ∈ cN.

Then:
∞∑
k≥0

cos2 θk∥∇f (xk)∥2 < ∞
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Proof of Zoutendijk’s theorem
Wolfe’s condition (second) implies:

(∇f (xk+1)−∇f (xk))
⊤dk ≥ (c2 − 1)∇f (xk)

⊤dk

Lipschitz condition implies:

(∇f (xk+1)−∇f (xk))
⊤dk ≤ tkL∥dk∥2

Combining the 2 we obtain:

tk ≥ c2 − 1

L

∇f (xk)
⊤dk

∥dk∥2

Substituting this inequality into the first Wolfe condition we get:

f (xk+1) ≤ f (xk)− c1
1− c2

L

(∇f (xk)
⊤dk)

2

∥dk∥2
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Proof of Zoutendijk’s theorem

Which by the definion of θk is equivalent to:

f (xk+1) ≤ f (xk)− c∥∇f (xk)∥2 cos2 θk

where c = c1
1−c2
L .

Summing over k leads to:

f (xk+1) ≤ f (x0)− c
k∑

k=0

∥∇f (xk)∥2 cos2 θk

And since f is bounded below leads to:

∞∑
k=0

∥∇f (xk)∥2 cos2 θk < ∞
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Consequence of Zoutendijk’s theorem

A direct consequence is that:

∥∇f (xk)∥2 cos2 θk → 0

So if θk is never too close to 90◦:

∃δ > 0 s.t. cos θk ≥ δ

Then xk converges to a stationary point:

∥∇f (xk)∥ → 0

Take home message: ∥∇f (xk)∥ converges to zero, provided that search
directions are never too close to orthogonality with gradient. So gradient
descent with line search using Wolfe’s conditions always converges to a
stationary point ! (no need convexity but Lipschitz gradient)
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Reducing security interval

First search for starting interval or first value of t (α = 0).

1 If t is Ok then stop

2 If t is too big then set β = t and ok.

3 If t is too small, then set t to ct with c > 1 and back to 1.

Reducing the interval
Multiple strategies

1 Dichotomy. Try t = (α+ β)/2 and then work with [α, t] or
[t, β]

2 Polynomial approximation of ϕ, e.g., cubic approximation.
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Cubic approximation

Cubic approximation is compatible with Wolfe’s method which also
needs ϕ′. Take 2 values t0 and t1 (for example α and β). Define
the third order polynomial p such that:

p(t0) = ϕ(t0)

p(t1) = ϕ(t1)

p′(t0) = ϕ′(t0)

p′(t1) = ϕ′(t1)

Then propose for t the minimum of the polynomial. If it does not
provide a valid t you can fallback to dichotomy.
→ Demo on notebook

26 / 27 Alexandre Gramfort Linear search methods



Motivation Line search rules Theory Security interval update

References

Wright and Nocedal, Numerical Optimization, 1999, Springer,
Chapter 3.

27 / 27 Alexandre Gramfort Linear search methods


	Motivation
	Line search rules
	Theory
	Security interval update

