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CONJUGATE GRADIENT
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Introduction

Conjugate gradient (CG) [1, 2] in its basic form is an iterative scheme to solve symmetric positive
definite linear systems. CG can be seen as an iterative scheme to minimize strictly convex quadratic
functions. It can be extended to non quadratic cost functions.

Let: 1
f(z) = ExTAx —br+c xelR”

with A symmetric positive definite, then a stationary point of f is given by
Vfx)=Az—-b=0

which is equivalent to solving the linear system Az = b.

Contrary to standard gradient descent, which uses at each iteration the “steepest” direction, without
any use of previous iterations, CG is a multistep approach in the sense that the next direction is informed
by the previous ones. This avoids the zig-zag of gradient descent with optimal step size, and is in practice
often faster for ill-conditioned problems.

Gradient

Conjugate Gradient

Figure 1: Gradient Descent and conjugate gradient on well conditioned problem.

1 Conjugate gradient for linear systems

Let A € S, a symmetric positive definite matrix. The scalar product associated with A is defined as:

<x7y>A = <A,’E,y> = xTAy
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Figure 2: Gradient Descent and conjugate gradient on badly conditioned problem.

The CG method is descent method where the descent direction dy is not equal to the gradient g, =
Azxy — b, but the gradient gi “corrected” such that all the directions dj, obtained are orthogonal, a.k.a.,
conjugate, for the dot product (-,-) ,. More precisely:

dr = g + opdi—1,

where oy € R is such that:
(dig,dp—1), =0

The conjugate gradient algorithm reads:

Algorithm 1: Conjugate gradient

Require: A € R™*" and b € R"”
1: xo ERn,g():Aon—b
2: for k=0ton do
3: if g = 0 then

4: break
5. end if
6: if k=0 then
7: dr, = go
8 else o Ade )
9% = —eTs
10: di, = g + apdi—1
11: end if

.d
12 = i)

13: Tpyr = Tk — prdy
14:  grp1 = Axpy —b
15: end for

16: return xpiq

Theorem 1. The conjugate gradient algorithm converges to an optimal solution of a quadratic function
f, with A € R™*"™ a symmetric definite positive matriz, in at most n iterations.

PROOF. If g =0, then zp = x* is solution of the linear system Az = b. For k = 1, we have dy = gq, so:

(91,do) = (Axy — b,do) = (Azg — b, do) — po(Ado,do) = (9o, do) — po{Ado,do) =0 (1)

by definition of py. This leads to
<91790> = <gl;d0> =0

and
<d1, Ad0> = (gl, Ad0> + Oéo<d0, Ad0> =0
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by definition of ay. One can prove the result by recurrence assuming that:

(g, g;) =0for 0 <j <k
(dg,Adj) =0for 0<j <k

If gi. # 0, the algorithm computes 11, gr+1 and dgy1.
e By construction one has (giy1,di) = 0 (cf. (1)).
e For j < k:
(Gr+1,d5) = (k1. d5) — (Gk» dj) = (Gk+1 — Gk dj) = —pr(Adi, d;j) = 0 (recurrence hypothesis)

e For j <k:
(gr+1,95) = (gk+1,dj) — aj(grt1,dj—1) =0,
since g; = dj — Oljdj_l.

o Now: diy1 = g1 + ag1d. For j <k
(dry1, Adj) = (gry1, Adj) + g1 (dy, Adj) = (grs1, Adj) .
As gj11 = g; — pjAd;, one obtains

1 .
(gr+1, Adj) = ;<9k+1agj —gj+1) = 0if p; #0.
J

This implies that if p; # 0, (dk+1, Ad;) =0 for j < k.
o Furthermore one has (dgt1, Adig) = 0. So (di41,Ad;) = 0 for j < k+ 1.
This completes the proof for p; # 0 and g; # 0. However one has that

<gkadk> = <gk7gk:> +ak<gkadk—1> = Hng2 )

and p = <ff§:l§z>. So pi can only be 0 if g = 0, which would imply that z; = x*.

Furthermore
ldx* = llgrll® + el de—1]* -
So if g # 0 then di # 0. Consequently, if the vectors gg, g1, -- ., gr are all non-zero, the vectors dy, dy,
..., dj are also non-zero. These vectors are an orthogonal basis for the dot product (-,-) , and the k +1
directions go, g1, - .., gr are an orthogonal basis for the dot product (-,-). These directions are therefore
independent. As a consequence, if gg, g1, ..., gn—1 are all non-zero, one has that d,, = g, = 0, which
demonstrates that algorithm has converged after n iterations at the most.

Remark 1. In practice due to numerical precision issues, the test gr, = 0 is replaced by ||gr|| < €, where
€ is a tolerance parameter.

2 Conjugate gradient for general functions

The conjugate gradient algorithm can be extended to differentiable functions, non necessarily quadratic
(See Algorithm 2). This method is also known as the method of Fletcher and Reeves.
This algorithm is motivated by the fact that in the quadratic case

o = — (gr; Adp—1) _llgll®
(Adp_1,dr—1)  lgr-1]?
Indeed, Adj_1 = g’ﬁl;;%g’“ so that {gg, Adj_1) = — ‘Lg]i”f. The same way:
(do1, Adg_1) = (di—1,gr—1) _ (gr—1 + ar—1dr—2, gr—1 _ lgr—1]1*

PE—1 Pr—1 Pr—1

See Figure 3 for an example on the Rosenbrock function.

Remark 2. Conjugate gradient can be applied to non-quadratic problems yet it is generally prefered to
use a quasi-newton method such as L-BFGS (cf. notes on Newton and quasi-Newton methods).
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Algorithm 2: Conjugate gradient

Require: € > 0 (tolerance), K (maximum number of iterations)
1: wg € R", go = V f(20)
2: for k=0to K do

3: if ||gx|| < e then

4: break

5. end if

6: if k=0 then

7: di, = go

8: else )

% o= -pip

10: di, = g + opdi—1
11:  end if

12: if <dkagk> > 0 then
13: di, = g, (steepest descent)
14: end if

15:  Optimize the step size py so that it minimizes f(xp — prdy) i.e.
(Vf(zr — pd),dr) =0
16: Tp+1 = Tk — pkdk

17: end for
18: return zy41

Conjugate Gradient
1

Figure 3: Conjugate gradient on non-quadratic problem (the Rosenbrock function).
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