
M2 - Optimisation for Data Science A. Gramfort

Conjugate Gradient

Contents
1 Conjugate gradient for linear systems 1

2 Conjugate gradient for general functions 3

Introduction
Conjugate gradient (CG) [1, 2] in its basic form is an iterative scheme to solve symmetric positive
definite linear systems. CG can be seen as an iterative scheme to minimize strictly convex quadratic
functions. It can be extended to non quadratic cost functions.

Let:
f(x) =

1

2
xTAx− bx+ c, x ∈ Rn

with A symmetric positive definite, then a stationary point of f is given by

∇f(x) = Ax− b = 0

which is equivalent to solving the linear system Ax = b.
Contrary to standard gradient descent, which uses at each iteration the “steepest” direction, without

any use of previous iterations, CG is a multistep approach in the sense that the next direction is informed
by the previous ones. This avoids the zig-zag of gradient descent with optimal step size, and is in practice
often faster for ill-conditioned problems.

0.
02

0.04 0
.0

90
.2

0
.4

0.
4

1
.0

Gradient

0.
02

0.04 0
.0

90
.2

0
.4

0.
4

1
.0

Conjugate Gradient

Figure 1: Gradient Descent and conjugate gradient on well conditioned problem.

1 Conjugate gradient for linear systems
Let A ∈ Sn++ a symmetric positive definite matrix. The scalar product associated with A is defined as:

〈x, y〉A = 〈Ax, y〉 = xTAy

page 1



M2 - Optimisation for Data Science A. Gramfort

0
.0

2

0
.0

20
.0

4

0
.0

4

0
.0

9 0
.0

9

0
.2

0
.2

0
.4

1
.0

Gradient

0
.0

2

0
.0

20
.0

4

0
.0

4

0
.0

9 0
.0

9

0
.2

0
.2

0
.4

1
.0

Conjugate Gradient

Figure 2: Gradient Descent and conjugate gradient on badly conditioned problem.

The CG method is descent method where the descent direction dk is not equal to the gradient gk =
Axk − b, but the gradient gk “corrected” such that all the directions dk obtained are orthogonal, a.k.a.,
conjugate, for the dot product 〈·, ·〉A. More precisely:

dk = gk + αkdk−1,

where αk ∈ R is such that:
〈dk, dk−1〉A = 0

The conjugate gradient algorithm reads:

Algorithm 1: Conjugate gradient
Require: A ∈ Rn×n and b ∈ Rn
1: x0 ∈ Rn, g0 = Ax0 − b
2: for k = 0 to n do
3: if gk = 0 then
4: break
5: end if
6: if k = 0 then
7: dk = g0
8: else
9: αk = − 〈gk,Adk−1〉

〈dk−1,Adk−1〉
10: dk = gk + αkdk−1
11: end if
12: ρk = 〈gk,dk〉

〈dk,Adk〉
13: xk+1 = xk − ρkdk
14: gk+1 = Axk+1 − b
15: end for
16: return xk+1

Theorem 1. The conjugate gradient algorithm converges to an optimal solution of a quadratic function
f , with A ∈ Rn×n a symmetric definite positive matrix, in at most n iterations.

proof. If gk = 0, then xk = x∗ is solution of the linear system Ax = b. For k = 1, we have d0 = g0, so:

〈g1, d0〉 = 〈Ax1 − b, d0〉 = 〈Ax0 − b, d0〉 − ρ0〈Ad0, d0〉 = 〈g0, d0〉 − ρ0〈Ad0, d0〉 = 0 (1)

by definition of ρ0. This leads to
〈g1, g0〉 = 〈g1, d0〉 = 0

and
〈d1, Ad0〉 = 〈g1, Ad0〉+ α0〈d0, Ad0〉 = 0

page 2



M2 - Optimisation for Data Science A. Gramfort

by definition of α0. One can prove the result by recurrence assuming that:

〈gk, gj〉 = 0 for 0 ≤ j < k

〈gk, dj〉 = 0 for 0 ≤ j < k

〈dk, Adj〉 = 0 for 0 ≤ j < k

(2)

If gk 6= 0, the algorithm computes xk+1, gk+1 and dk+1.

• By construction one has 〈gk+1, dk〉 = 0 (cf. (1)).

• For j < k:

〈gk+1, dj〉 = 〈gk+1, dj〉 − 〈gk, dj〉 = 〈gk+1 − gk, dj〉 = −ρk〈Adk, dj〉 = 0 (recurrence hypothesis)

• For j ≤ k:
〈gk+1, gj〉 = 〈gk+1, dj〉 − αj〈gk+1, dj−1〉 = 0 ,

since gj = dj − αjdj−1.

• Now: dk+1 = gk+1 + αk+1dk. For j < k

〈dk+1, Adj〉 = 〈gk+1, Adj〉+ αk+1〈dk, Adj〉 = 〈gk+1, Adj〉 .

As gj+1 = gj − ρjAdj , one obtains

〈gk+1, Adj〉 =
1

ρj
〈gk+1, gj − gj+1〉 = 0 if ρj 6= 0.

This implies that if ρj 6= 0, 〈dk+1, Adj〉 = 0 for j < k.

• Furthermore one has 〈dk+1, Adk〉 = 0. So 〈dk+1, Adj〉 = 0 for j < k + 1.

This completes the proof for ρj 6= 0 and gj 6= 0. However one has that

〈gk, dk〉 = 〈gk, gk〉+ αk〈gk, dk−1〉 = ‖gk‖2 ,

and ρk = 〈gk,dk〉
〈Adk,dk〉 . So ρk can only be 0 if gk = 0, which would imply that xk = x∗.

Furthermore
‖dk‖2 = ‖gk‖2 + α2

k‖dk−1‖2 .

So if gk 6= 0 then dk 6= 0. Consequently, if the vectors g0, g1, . . . , gk are all non-zero, the vectors d0, d1,
. . . , dk are also non-zero. These vectors are an orthogonal basis for the dot product 〈·, ·〉A and the k + 1
directions g0, g1, . . . , gk are an orthogonal basis for the dot product 〈·, ·〉. These directions are therefore
independent. As a consequence, if g0, g1, . . . , gn−1 are all non-zero, one has that dn = gn = 0, which
demonstrates that algorithm has converged after n iterations at the most.

Remark 1. In practice due to numerical precision issues, the test gk = 0 is replaced by ‖gk‖ < ε, where
ε is a tolerance parameter.

2 Conjugate gradient for general functions
The conjugate gradient algorithm can be extended to differentiable functions, non necessarily quadratic
(See Algorithm 2). This method is also known as the method of Fletcher and Reeves.

This algorithm is motivated by the fact that in the quadratic case

αk = − 〈gk, Adk−1〉
〈Adk−1, dk−1〉

=
‖gk‖2

‖gk−1‖2

Indeed, Adk−1 = gk−1−gk
ρk−1

so that 〈gk, Adk−1〉 = −‖gk‖
2

ρk−1
. The same way:

〈dk−1, Adk−1〉 =
〈dk−1, gk−1〉

ρk−1
=
〈gk−1 + αk−1dk−2, gk−1

ρk−1
=
‖gk−1‖2

ρk−1
.

See Figure 3 for an example on the Rosenbrock function.

Remark 2. Conjugate gradient can be applied to non-quadratic problems yet it is generally prefered to
use a quasi-newton method such as L-BFGS (cf. notes on Newton and quasi-Newton methods).

page 3



M2 - Optimisation for Data Science A. Gramfort

Algorithm 2: Conjugate gradient
Require: ε > 0 (tolerance), K (maximum number of iterations)
1: x0 ∈ Rn, g0 = ∇f(x0)
2: for k = 0 to K do
3: if ‖gk‖ < ε then
4: break
5: end if
6: if k = 0 then
7: dk = g0
8: else
9: αk = − ‖gk‖2

‖gk−1‖2
10: dk = gk + αkdk−1
11: end if
12: if 〈dk, gk〉 > 0 then
13: dk = gk (steepest descent)
14: end if
15: Optimize the step size ρk so that it minimizes f(xk − ρkdk) i.e.

〈∇f(xk − ρdk), dk〉 = 0

16: xk+1 = xk − ρkdk
17: end for
18: return xk+1

0.
1

1
.0

10
2

10
2

10
4

10
4

10 4

10
6 10

8

Conjugate Gradient

Figure 3: Conjugate gradient on non-quadratic problem (the Rosenbrock function).

References
[1] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.

Journal of Research of the National Bureau of Standards, 6, dec 1952.

[2] J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research and
Financial Engineering. Springer, New York, second edition, 2006.

page 4


