Optimization for data science Non-smooth optimization: Proximal methods

R. Flamary

Master Data Science, Institut Polytechnique de Paris

October 29, 2024

Full course overview

1. Introduction to optimization for data science

- 1.1 ML optimization problems and linear algebra recap
- 1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent

2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems

- 3.1 Solvers for quadratic problems, conjugate gradient
- 3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods

- 4.1 Proximal operator and proximal algorithms
- 4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent

- **5.1 SGD and variance reduction techniques**
- 5.2 Lab 2: SGD for Logistic regression

6. Standard formulation of constrained optimization problems

6.1 LP, QP and Mixed Integer Programming

7. Coordinate descent

7.1 Algorithms and Labs

8. Newton and quasi-newton methods

8.1 Second order methods and Labs

9. Beyond convex optimization

9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Nonsmooth optimization

Optimization problem

$$
\min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}),\tag{1}
$$

- \blacktriangleright F is convex, proper, lower semi-continuous can be non smooth, non continuous.
- ▶ Can be constrained optimization with $F(\mathbf{x}) = f(\mathbf{x}) + \chi_c(\mathbf{x})$.
- \blacktriangleright General strategy : use the structure of F, find fast iterations.

Optimization strategies

- ▶ Subgradient descent: slower than GD, used for training NN.
- Proximal Splitting : divide an conquer strategy, can be accelerated.
- Projected Gradient Descent : special case of proximal splitting.
- \triangleright Conditional Gradient : Use a linearization of F (see last course).

Constraints VS non-smooth

Characteristic function

Let A be a subset of \mathbb{R}^n , the characteristic function χ_A of A is the function

$$
\chi_A(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in A \\ +\infty, & \text{if } \mathbf{x} \notin A \end{cases} \tag{2}
$$

 \blacktriangleright If A is a closed set, χ_A is lower semi-continuous.

If A is a closed convex set, χ_A is convex.

Equivalent optimization problems

$$
\min_{\mathbf{x} \in \mathcal{C}} F(\mathbf{x}) \qquad \equiv \qquad \min_{\mathbf{x} \in \mathbb{R}^n} F(\mathbf{x}) + \chi_{\mathcal{C}}(\mathbf{x})
$$

▶ Constrained OP can be reformulated as a non-smooth unconstrained OP.

▶ The new objective function is a sum of two functions (splitting algorithms).

Semicontinuity

Lower semi-continuous function

A function F is lower semi-continuous (l.s.c.) if for any point $x_0 \in C$ we have

$$
F(\mathbf{x}_0) \le \lim_{\mathbf{x} \to \mathbf{x}_0} \inf F(\mathbf{x}) \tag{3}
$$

- ▶ Continuous functions are l.s.c. since it implies the equality above.
- \blacktriangleright If the function is l.s.c., there exists a local affine minorant.
- \blacktriangleright If the function is l.s.c. and convex it means that the sub-differential is never empty and the minorant is global : well defined problem.

Optimization problem in machine learning

Regularized supervised learning

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad f(\mathbf{x}) + g(\mathbf{x}) \tag{4}
$$

- \blacktriangleright f is the data fitting term, g the regularization term.
- \blacktriangleright Usually f is smooth (K Lipschitz gradient).
- \blacktriangleright q can be non-smooth for instance Lasso regularization.
- ▶ This course will focus on the optimization of this type of non-smooth problem.

Data fiting examples

Least square:

$$
f(\mathbf{x}) = \sum_{i} (y_i - \mathbf{h}_i^T \mathbf{x})^2
$$

Logistic regression:

$$
f(\mathbf{x}) = \sum_{i} \log(1 + \exp(-y_i \mathbf{h}_i^T \mathbf{x}))
$$

Regularization examples

 \blacktriangleright Ridge

$$
g(\mathbf{x}) = \frac{\lambda}{2} \sum_{k} x_{k}^{2}
$$

▶ Lasso

$$
g(\mathbf{x}) = \lambda \sum_{k} |x_k|
$$

4.1.1 - [Non-smooth optimization and definitions](#page-6-0) - [Non-smooth Machine Learning problems](#page-3-0) - 7/37

Non-smooth ML problems

Linear SVM [\[Vapnik, 2013\]](#page-56-0)

$$
\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i} \max(0, 1 - y_i \mathbf{w}^T \mathbf{h}_i)
$$
 (5)

Lasso regression [\[Tibshirani, 1996\]](#page-56-1)

$$
\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1 \tag{6}
$$

Multi-task learning (MTL)

▶ Low rank MTL [\[Argyriou et al., 2008\]](#page-54-0):

$$
\min_{\mathbf{W}} \quad \frac{1}{2} \|\mathbf{X}\mathbf{W} - \mathbf{Y}\|^2 + \lambda \|\mathbf{W}\|_* \tag{7}
$$

▶ Group Lasso MTL [\[Argyriou et al., 2008,](#page-54-0) [Obozinski et al., 2010\]](#page-56-2):

$$
\min_{\mathbf{W}} \quad \frac{1}{2} \|\mathbf{X}\mathbf{W} - \mathbf{Y}\|^2 + \lambda \sum_{k=1}^d \|\mathbf{W}_{k,:}\|_2 \tag{8}
$$

4.1.1 - [Non-smooth optimization and definitions](#page-7-0) - [Non-smooth Machine Learning problems](#page-3-0) - 8/37

Lasso regression

Principle [\[Tibshirani, 1996\]](#page-56-1)

$$
\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1
$$

 \blacktriangleright For a large enough λ the solution of the problem is sparse.

Under some conditions, support of true w can be recovered [\[Zhao and Yu, 2006\]](#page-57-0).
 $\Omega(\mathbf{w}) = \|\mathbf{w}\|_1$

(9)

- \blacktriangleright L1 regularization creates attraction points in 0 (see optimality condition).
- Lasso Problem is also equivalent to

$$
\min_{\mathbf{w}_\shortparallel,\|\mathbf{w}\|_1\leq \tau} \quad \frac{1}{2}\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2
$$

The geometrical constraints promotes sparse w on the axis.

Subgradients and subdifferential

Non differentiable function

▶ For a convex function $F(\mathbf{x})$, g is a subgradient of F in \mathbf{x}_0 if

$$
F(\mathbf{x}) \geq F(\mathbf{x}_0) + \mathbf{g}^\top(\mathbf{x} - \mathbf{x}_0)
$$
\n(10)

- ▶ The set of all subgradients at \mathbf{x}_0 is the subdifferential $\partial f(\mathbf{x}_0)$.
- ▶ If F is differentiable in \mathbf{x}_0 there is a unique subgradient: $\partial f(\mathbf{x}_0) = {\nabla_\mathbf{x} F(\mathbf{x})}$
- ▶ Optimality : x^* is a minimum of the convex function F if $0 \in \partial F(x^*)$.

Find the subdifferential $\partial F(\mathbf{x})$ for the following 1D functions:

1.
$$
F(x) = |x|
$$
, at $x \in \{-1, 0, 1\}$
\n2. $F(x) = \max(x, 0)$, at $x \in \{-1, 0, 1\}$
\n3. $F(x) = \max(x, 0) + x$, at $x \in \{-1, 0, 1\}$
\n4. $F(x) = |x| + x^2$, at $x \in \{-1, 0, 1\}$

Find the subdifferential $\partial F(\mathbf{x})$ for the following 1D functions:

1.
$$
F(x) = |x|
$$
, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{-1\}, \qquad \partial F(0) = \{g | -1 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n2. $F(x) = \max(x, 0)$, at $x \in \{-1, 0, 1\}$
\n3. $F(x) = \max(x, 0) + x$, at $x \in \{-1, 0, 1\}$
\n4. $F(x) = |x| + x^2$, at $x \in \{-1, 0, 1\}$

Find the subdifferential $\partial F(\mathbf{x})$ for the following 1D functions:

\n- 1.
$$
F(x) = |x|
$$
, at $x \in \{-1, 0, 1\}$
\n- $\partial F(-1) = \{-1\}, \qquad \partial F(0) = \{g | -1 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n- 2. $F(x) = \max(x, 0)$, at $x \in \{-1, 0, 1\}$
\n- $\partial F(-1) = \{0\}, \qquad \partial F(0) = \{g | 0 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n- 3. $F(x) = \max(x, 0) + x$, at $x \in \{-1, 0, 1\}$
\n- 4. $F(x) = |x| + x^2$, at $x \in \{-1, 0, 1\}$
\n

Find the subdifferential $\partial F(\mathbf{x})$ for the following 1D functions:

1.
$$
F(x) = |x|
$$
, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{-1\}, \qquad \partial F(0) = \{g | -1 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n2. $F(x) = \max(x, 0)$, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{0\}, \qquad \partial F(0) = \{g | 0 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n3. $F(x) = \max(x, 0) + x$, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{0\}, \qquad \partial F(0) = \{g | 1 \le g \le 2\}, \qquad \partial F(1) = \{2\}$
\n4. $F(x) = |x| + x^2$, at $x \in \{-1, 0, 1\}$

4.1.2 - [Non-smooth optimization and definitions](#page-13-0) - [Optimality and subgradient](#page-9-0) - 11/37

Find the subdifferential $\partial F(\mathbf{x})$ for the following 1D functions:

1.
$$
F(x) = |x|
$$
, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{-1\}, \qquad \partial F(0) = \{g | -1 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n2. $F(x) = \max(x, 0)$, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{0\}, \qquad \partial F(0) = \{g | 0 \le g \le 1\}, \qquad \partial F(1) = \{1\}$
\n3. $F(x) = \max(x, 0) + x$, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{0\}, \qquad \partial F(0) = \{g | 1 \le g \le 2\}, \qquad \partial F(1) = \{2\}$
\n4. $F(x) = |x| + x^2$, at $x \in \{-1, 0, 1\}$
\n $\partial F(-1) = \{-3\}, \qquad \partial F(0) = \{g | -1 \le g \le 1\}, \qquad \partial F(1) = \{3\}$

4.1.2 - [Non-smooth optimization and definitions](#page-14-0) - [Optimality and subgradient](#page-9-0) - 11/37

Optimal solution for the Lasso

$$
\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1
$$

Optimality for Least Square ($\lambda = 0$)

$$
\mathbf{X}^\top(\mathbf{y}-\mathbf{X}\mathbf{w}_{LS}^\star)=\mathbf{0}
$$

Orthogonality between the columns of ${\bf X}$ and the residuals ${\bf y}-{\bf X}{\bf w}^{\star}_{LS}.$

Optimality for Lasso ($\lambda > 0$)

$$
\mathbf{0} \in \mathbf{X}^\top (\mathbf{y} - \mathbf{X} \mathbf{w}^\star) + \lambda \partial \|\mathbf{w}^\star\|_1
$$

Which is equivalent to

$$
-\mathbf{X}^{\top}(\mathbf{y}-\mathbf{X}\mathbf{w}^{\star})\in\lambda\partial\|\mathbf{w}^{\star}\|_{1}
$$

Using the subdifferential of the absolute value we can get $\forall i$

$$
\mathbf{X}_{:,i}^{\top}(\mathbf{y}-\mathbf{X}\mathbf{w}^{\star}) \in \begin{cases} \{\lambda\} & \text{if } w_i^{\star} > 0\\ [-\lambda, \lambda] & \text{if } w_i^{\star} = 0\\ \{-\lambda\} & \text{if } w_i^{\star} < 0 \end{cases} = \begin{cases} \{\lambda \text{sign}(w_i^{\star})\} & \text{if } w_i^{\star} \neq 0\\ [-\lambda, \lambda] & \text{if } w_i^{\star} = 0 \end{cases}
$$

What happens when $\max_i |\mathbf{X}_{:,i}^\top \mathbf{y}| < \lambda$?

4.1.2 - [Non-smooth optimization and definitions](#page-15-0) - [Optimality and subgradient](#page-9-0) - 12/37

Subgradient methods

Subgradient descent

- 1: Initialize $\mathbf{x}^{(0)}$
- 2: for $k = 0, 1, 2, \ldots$ do
- 3: $\mathbf{g}^{(k)} \in \partial F(\mathbf{x}^{(k)})$
- 4: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} \rho^{(k)} \mathbf{g}^{(k)}$
- 5: end for
	- \blacktriangleright No convergence guarantee to a minimum with fixed step size $\rho^{(k)} = \rho$.
	- ▶ For fixed step on L Lipschitz F reaches an $\epsilon = \frac{L^2 \rho}{2}$ approx. solution.
	- ▶ Convergence for a Lischitz function is $O(\frac{1}{\sqrt{k}})$ with decreasing step $\rho^{(k)} = \frac{1}{\sqrt{n}}$.
	- Subgradient descent is slower than gradient descent.

Example dataset for the Lasso

2D Lasso optimization problem

$$
\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1
$$

 \blacktriangleright **X** is a $n \times 2$ matrix, **y** is a n vector with $n = 50$

- ▶ True model is $w^* = [5, 0]$ and additive noise is added to the data.
- Least square solution is not sparse $w_{LS} = [5.32, 0.30]$.
- λ selected to have a sparse solution (only the relevant variable) with solution ${\bf w}_{Lasso} = [4.064, 0].$

- ▶ Subgradient descent fixed step $\rho^{(k)} = \rho$ does not converge.
- Oscillation around optimal value 0 for w_2 .
- ▶ Convergence with decreasing step size $\rho^{(k)} = \frac{1}{\sqrt{k}}$.
- ▶ But slow convergence in $O(\frac{1}{\sqrt{k}})$.

- ▶ Subgradient descent fixed step $\rho^{(k)} = \rho$ does not converge.
- Oscillation around optimal value 0 for w_2 .
- ▶ Convergence with decreasing step size $\rho^{(k)} = \frac{1}{\sqrt{k}}$.
- ▶ But slow convergence in $O(\frac{1}{\sqrt{k}})$.

- Subgradient descent fixed step $\rho^{(k)} = \rho$ does not converge.
- Oscillation around optimal value 0 for w_2 .
- ▶ Convergence with decreasing step size $\rho^{(k)} = \frac{1}{\sqrt{k}}$.
- ▶ But slow convergence in $O(\frac{1}{\sqrt{k}})$.

- ▶ Subgradient descent fixed step $\rho^{(k)} = \rho$ does not converge.
- \triangleright Oscillation around optimal value 0 for w_2 .
- ▶ Convergence with decreasing step size $\rho^{(k)} = \frac{1}{\sqrt{k}}$.
- ▶ But slow convergence in $O(\frac{1}{\sqrt{k}})$.

Majorization Minimization of non-smooth functions

Assumptions (separable F)

$$
F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})
$$

- \blacktriangleright f is *L*-smooth and convex.
- \blacktriangleright g is convex and lower semi-continuous (can be smooth but not necessary).

Majorization Minimization of the smooth part

Since f is L gradient Lipschitz F can be upper bounded around $\mathbf{x}^{(0)}$ by:

$$
F(\mathbf{x}) \le f(\mathbf{x}^{(0)}) + \nabla f(\mathbf{x}^{(0)})^{\top}(\mathbf{x} - \mathbf{x}^{(0)}) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^{(0)}||^2 + g(\mathbf{x}),
$$
 (11)

Minimizing the upper bound above is equivalent to minimize:

$$
\min_{\mathbf{x}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{L} g(\mathbf{x}) \tag{12}
$$

with

$$
\mathbf{y} =
$$

Majorization Minimization of non-smooth functions

Assumptions (separable F)

$$
F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})
$$

- \blacktriangleright f is *L*-smooth and convex.
- \blacktriangleright g is convex and lower semi-continuous (can be smooth but not necessary).

Majorization Minimization of the smooth part

Since f is L gradient Lipschitz F can be upper bounded around $\mathbf{x}^{(0)}$ by:

$$
F(\mathbf{x}) \le f(\mathbf{x}^{(0)}) + \nabla f(\mathbf{x}^{(0)})^{\top}(\mathbf{x} - \mathbf{x}^{(0)}) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^{(0)}||^2 + g(\mathbf{x}),
$$
 (11)

Minimizing the upper bound above is equivalent to minimize:

$$
\min_{\mathbf{x}} \quad \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \frac{1}{L} g(\mathbf{x}) \tag{12}
$$

with

$$
\mathbf{y} = \mathbf{x}^{(0)} - \frac{1}{L} \nabla f(\mathbf{x}^{(0)})
$$

- \blacktriangleright The solution of [\(12\)](#page-22-1) is the proximal operator of g.
- ▶ Minimizing the upper bound iteratively corresponds to the Forward Backward Splitting or Proximal Gradient Descent algorithm.

Proximal operator

Definition [\[Bauschke et al., 2011\]](#page-54-1)

The Proximity (or proximal) operator of a function q is:

$$
\mathbf{prox}_{g}(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathbb{R}^n} g(\mathbf{u}) + \frac{1}{2} ||\mathbf{u} - \mathbf{x}||^2.
$$

Returns a vector minimizing q but close to x in the quadratic sense.

- ▶ Fixed point: $\text{prox}_g(x) = x$ if x if an only if $0 \in \partial g(x)$ (i.e. x is minimizer).
- ▶ Non expansiveness: $\|\text{prox}_{g}(\mathbf{x}) \text{prox}_{g}(\mathbf{y})\| \leq \|\mathbf{x} \mathbf{y}\|.$

Exercise 2: Proximal operator for L2 norm Compute the proximal operator for $g(\mathbf{x}) = \frac{\lambda}{2} ||\mathbf{x}||^2$ with $\lambda \geq 0$ Solution :

Proximal operator

Definition [\[Bauschke et al., 2011\]](#page-54-1)

The Proximity (or proximal) operator of a function q is:

$$
\mathbf{prox}_{g}(\mathbf{x}) = \arg\min_{\mathbf{u}\in\mathbb{R}^n} g(\mathbf{u}) + \frac{1}{2} ||\mathbf{u} - \mathbf{x}||^2.
$$

Returns a vector minimizing g but close to x in the quadratic sense.

- ▶ Fixed point: $\text{prox}_g(x) = x$ if x if an only if $0 \in \partial g(x)$ (i.e. x is minimizer).
- ▶ Non expansiveness: $\|\text{prox}_{g}(\mathbf{x}) \text{prox}_{g}(\mathbf{y})\| \leq \|\mathbf{x} \mathbf{y}\|.$

Exercise 2: Proximal operator for L2 norm Compute the proximal operator for $g(\mathbf{x}) = \frac{\lambda}{2} ||\mathbf{x}||^2$ with $\lambda \ge 0$ Solution : $\mathbf{prox}_{\frac{\lambda}{2} \|\cdot\|^2}(\mathbf{x}) = \frac{1}{1+\lambda} \mathbf{x}$

Exercise 3: Separable function q If $g(\mathbf{x}) = \sum_k g_k(x_k)$ then $\mathbf{prox}_g(\mathbf{x}) =$ Exercise 4: Characteristic function of set A If $g(\mathbf{x}) = \chi_A(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in A \\ 0, & \text{if } \mathbf{x} \in A \end{cases}$ $+\infty$, if $\mathbf{x} \notin A$ then $\mathbf{prox}_g(\mathbf{x}) =$

Exercise 5: Linear function If $g(\mathbf{x}) = \mathbf{b}^{\top}\mathbf{x} + c$ then

 $\mathbf{prox}_g(\mathbf{x}) =$

Exercise 6: Quadratic function If $g(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}$ then

 $\mathbf{prox}_g(\mathbf{x}) =$

Exercise 3: Separable function q

If $g(\mathbf{x}) = \sum_k g_k(x_k)$ then

$$
\mathbf{prox}_{g}(\mathbf{x}) = [\mathbf{prox}_{g_1}(x_1), \dots, \mathbf{prox}_{g_d}(x_d)]^\top
$$

Exercise 4: Characteristic function of set A
\nIf
$$
g(\mathbf{x}) = \chi_A(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in A \\ +\infty, & \text{if } \mathbf{x} \notin A \end{cases}
$$
 then
\n
$$
\mathbf{prox}_g(\mathbf{x}) = \mathbf{proj}_A(\mathbf{x}) \quad \text{(projection operator)}
$$

Exercise 5: Linear function If $g(\mathbf{x}) = \mathbf{b}^{\top}\mathbf{x} + c$ then

 $\mathbf{prox}_g(\mathbf{x}) =$

Exercise 6: Quadratic function If $g(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}$ then

 $\mathbf{prox}_g(\mathbf{x}) =$

Exercise 3: Separable function q

If $g(\mathbf{x}) = \sum_k g_k(x_k)$ then

$$
\mathbf{prox}_{g}(\mathbf{x}) = [\mathbf{prox}_{g_1}(x_1), \dots, \mathbf{prox}_{g_d}(x_d)]^\top
$$

Exercise 4: Characteristic function of set A
\nIf
$$
g(\mathbf{x}) = \chi_A(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in A \\ +\infty, & \text{if } \mathbf{x} \notin A \end{cases}
$$
 then
\n
$$
\mathbf{prox}_g(\mathbf{x}) = \mathbf{proj}_A(\mathbf{x}) \quad \text{(projection operator)}
$$

Exercise 5: Linear function If $g(\mathbf{x}) = \mathbf{b}^{\top}\mathbf{x} + c$ then

$$
\mathbf{prox}_g(\mathbf{x}) = \mathbf{x} - \mathbf{b}
$$

Exercise 6: Quadratic function If $g(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}$ then

 $\mathbf{prox}_g(\mathbf{x}) =$

Exercise 3: Separable function q If $g(\mathbf{x}) = \sum_k g_k(x_k)$ then

$$
\mathbf{prox}_{g}(\mathbf{x}) = [\mathbf{prox}_{g_1}(x_1), \dots, \mathbf{prox}_{g_d}(x_d)]^\top
$$

Exercise 4: Characteristic function of set A
\nIf
$$
g(\mathbf{x}) = \chi_A(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \in A \\ +\infty, & \text{if } \mathbf{x} \notin A \end{cases}
$$
 then
\n
$$
\mathbf{prox}_g(\mathbf{x}) = \mathbf{proj}_A(\mathbf{x}) \quad \text{(projection operator)}
$$

Exercise 5: Linear function If $g(\mathbf{x}) = \mathbf{b}^{\top}\mathbf{x} + c$ then

$$
\mathbf{prox}_g(\mathbf{x}) = \mathbf{x} - \mathbf{b}
$$

Exercise 6: Quadratic function If $g(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}$ then

$$
\mathbf{prox}_{g}(\mathbf{x}) = (I + \mathbf{A})^{-1}(\mathbf{x} - \mathbf{b})
$$

$$
g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 = \lambda \sum_k |x_k|
$$

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

- **1.** Optimality condition for proximal operator: $\min_{u} \frac{1}{2}(u-x)^2 + \lambda |u|$
- 2. If $x > \lambda$ then
- 3. If $x < -\lambda$ then
- 4. If $-\lambda \leq x \leq \lambda$ then

$$
g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 = \lambda \sum_k |x_k|
$$

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

$$
u^\star \in x - \lambda \partial |u^\star|
$$

- 2. If $x > \lambda$ then
- 3. If $x < -\lambda$ then
- 4. If $-\lambda \leq x \leq \lambda$ then

$$
g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 = \lambda \sum_k |x_k|
$$

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

$$
u^\star \in x - \lambda \partial |u^\star|
$$

- 2. If $x > \lambda$ then $u^* = x \lambda$ $(u \le 0$ not possible)
- 3. If $x < -\lambda$ then
- 4. If $-\lambda \leq x \leq \lambda$ then

$$
g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 = \lambda \sum_k |x_k|
$$

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

$$
u^\star \in x - \lambda \partial |u^\star|
$$

- 2. If $x > \lambda$ then $u^* = x \lambda$ $(u \le 0$ not possible)
- 3. If $x < -\lambda$ then $u^* = x + \lambda (u \ge 0$ not possible)
- 4. If $-\lambda \leq x \leq \lambda$ then

$$
g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 = \lambda \sum_k |x_k|
$$

Exercise 7: Soft Thresholding operator

L1 norm is separable so we can compute the proximal operator for each component:

$$
u^* \in x - \lambda \partial |u^*|
$$

- 2. If $x > \lambda$ then $u^* = x \lambda$ $(u \le 0$ not possible)
- 3. If $x < -\lambda$ then $u^* = x + \lambda (u \ge 0$ not possible)
- 4. If $-\lambda \leq x \leq \lambda$ then $-\lambda \leq x u^* \leq \lambda$ only for $u^* = 0$.

$$
g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1 = \lambda \sum_k |x_k|
$$

Exercise 7: Soft Thresholding operator

The proximal operator for $\lambda \|\cdot\|_1$ is the soft thresholding operator:

$$
\mathbf{prox}_{\lambda \|\cdot\|_1}(\mathbf{x}) = \begin{cases} x - \lambda & \text{if } x > \lambda \\ 0 & \text{if } |x| \le \lambda \\ x + \lambda & \text{if } x < -\lambda \end{cases} = \text{sign}(\mathbf{x}) \max(0, |\mathbf{x}| - \lambda)
$$

The soft thresholding operator shrinks the values of x towards 0 and promotes sparsity.

Examples of separable proximal operators

Common proximal operators

 $g(\mathbf{x}) = 0$ $\mathbf{prox}_{a}(\mathbf{x}) = \mathbf{x}$ identity $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_2^2$ pro $\mathbf{x}_g(\mathbf{x}) = \frac{1}{1+\lambda}$ scaling $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$ pro $\mathbf{x}_g(\mathbf{x}) = \text{sign}(\mathbf{x}) \max(0, |\mathbf{x}| - \lambda)$ soft shrinkage $g(\mathbf{x}) = \lambda \|\mathbf{x}\|_{1/2}^{1/2}$ [\[Xu et al., 2012,](#page-57-1) Equation 11] power family $q(\mathbf{x}) = \chi_C(\mathbf{x})$ $(\mathbf{x}) = \underset{\mathbf{u} \in C}{\text{argmin}}$ $\frac{1}{2}\left\Vert \mathbf{u}-\mathbf{x}\right\Vert ^{2}$ orthogonal projection.

Both $|x|$ and $|x|^{\frac{1}{2}}$ promote sparsity (soft thresholds).

4.2.1 - [Proximal Gradient descent](#page-36-0) - [Majorization Minimization and proximal operator](#page-22-0) - 20/37

Proximal operator in 2D

4.2.1 - [Proximal Gradient descent](#page-37-0) - [Majorization Minimization and proximal operator](#page-22-0) - 21/37

Proximal Gradient Descent (PGD)

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad F(\mathbf{x}) = f(\mathbf{x}) + g(\mathbf{x})
$$

PGD algorithm [\[Combettes and Pesquet, 2011\]](#page-55-0)[\[Parikh and Boyd, 2014\]](#page-56-3).

- 1: Initialize $\mathbf{x}^{(0)}$ 2: for $k = 0, 1, 2, \ldots$ do 3: $\mathbf{d}^{(k)} \leftarrow -\nabla f(\mathbf{x}^{(k)})$ 4: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_{\rho^{(k)}g}(\mathbf{x}^{(k)} + \rho^{(k)}\mathbf{d}^{(k)})$ 5: end for
	- \triangleright One gradient step w.r.t. f and one proximal step w.r.t. q.
	- Also known as Forward Backward Splitting (FBS) [\[Combettes and Pesquet, 2011\]](#page-55-0)
	- Efficient when the proximal operator is simple to compute (closed form).
	- \triangleright When g is a characteristic function, FBS/PGD is the projected Gradient Descent.
	- ▶ Optimal solution is a fixed point: x^* min of F implies that for $\rho \leq \frac{2}{L}$

$$
-\nabla f(\mathbf{x}^*) \in \partial g(\mathbf{x}^*) \quad \Leftrightarrow \quad \mathbf{x}^* = \mathbf{prox}_{\rho g}(\mathbf{x}^* - \rho \nabla f(\mathbf{x}^*)) \tag{13}
$$

Convergence of PGD

Convergenge for L-smooth f [\[Beck and Teboulle, 2009\]](#page-54-2)

For and L-smooth function f and a convex g the PGD with step size $\rho \leq \frac{1}{L}$ converges to a minimum of F with the following speed:

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) \le \frac{L}{2k} ||\mathbf{x}^{(0)} - \mathbf{x}^*||^2
$$

Convergence for L -smooth and μ -convex f

For and L-smooth and μ -convex function f and a convex q the PGD with step size $\rho \leq \frac{1}{L}$ converges to a minimum of F with the following speed:

$$
\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\| \le \left(1 - \frac{\mu}{L}\right)^k \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2
$$

Sketch of proof

$$
\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\| = \|\mathbf{prox}_{\rho g}(\mathbf{x}^{(k)} - \rho \nabla f(\mathbf{x}^{(k)})) - \mathbf{x}^{\star}\|
$$

\n
$$
= \|\mathbf{prox}_{\rho g}(\mathbf{x}^{(k)} - \rho \nabla f(\mathbf{x}^{(k)})) - \mathbf{prox}_{\rho g}(\mathbf{x}^{\star} - \rho \nabla f(\mathbf{x}^{\star}))\|
$$

\n
$$
\leq \|\mathbf{x}^{(k)} - \rho \nabla f(\mathbf{x}^{(k)}) - \mathbf{x}^{\star} - \rho \nabla f(\mathbf{x}^{\star})\|
$$

Next steps are similar to proof of Gradient descent convergence.

¹Use fixed point property (13)

²Use non-expansiveness of proximal operatoradient descent - [Proximal Gradient Descent and application to Lasso](#page-38-0) - 23/37

Exercise 8: Solving the Lasso with PGD

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_k |x_k|
$$

Known as Iterative Soft Thresholding Algorithm (ISTA) [\[Beck and Teboulle, 2009\]](#page-54-2).

1. Express the smooth function f and non-smooth functions g for the problem above

$$
f(\mathbf{x}) = \qquad \qquad g(\mathbf{x}) =
$$

2. Compute the gradient $\nabla f(\mathbf{x})$ and express the proximal of q.

$$
\nabla f(\mathbf{x}) = \mathbf{prox}_g(\mathbf{x}) =
$$

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed step rho :

 def lasso $(H, y, reg, rho, n \text{biter})$:

Exercise 8: Solving the Lasso with PGD

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_k |x_k|
$$

Known as Iterative Soft Thresholding Algorithm (ISTA) [\[Beck and Teboulle, 2009\]](#page-54-2).

1. Express the smooth function f and non-smooth functions g for the problem above

$$
f(\mathbf{x}) = \frac{1}{2} ||\mathbf{H}\mathbf{x} - \mathbf{y}||^2 \qquad g(\mathbf{x}) = \lambda \sum_{k} |x_k|
$$

2. Compute the gradient $\nabla f(\mathbf{x})$ and express the proximal of q.

$$
\nabla f(\mathbf{x}) = \mathbf{prox}_g(\mathbf{x}) =
$$

3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed step rho :

 def lasso $(H, v, reg, rho, n \text{b} iter)$:

Exercise 8: Solving the Lasso with PGD

$$
\min_{\mathbf{x} \in \mathbb{R}^d} \quad \frac{1}{2} \|\mathbf{H}\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_k |x_k|
$$

Known as Iterative Soft Thresholding Algorithm (ISTA) [\[Beck and Teboulle, 2009\]](#page-54-2).

1. Express the smooth function f and non-smooth functions g for the problem above

$$
f(\mathbf{x}) = \frac{1}{2} ||\mathbf{H}\mathbf{x} - \mathbf{y}||^2 \qquad g(\mathbf{x}) = \lambda \sum_{k} |x_k|
$$

- 2. Compute the gradient $\nabla f(\mathbf{x})$ and express the proximal of g. $\nabla f(\mathbf{x}) = \mathbf{H}^T(\mathbf{H}\mathbf{x} - \mathbf{y})$ pro $\mathbf{x}_g(\mathbf{x}) = \text{sign}(\mathbf{x}) \max(0, |\mathbf{x}| - \lambda)$
- 3. Express the FBS algorithm in Python/Numpy for solving the lasso with a fixed step rho :

 def lasso $(H, v, reg, rho, n \text{biter})$:

Example: PGD/ISTA for solving the Lasso

- ▶ PGD with fixed step $\rho^{(k)} = \rho$ is more stable than subgradient descent.
- ▶ No oscillation and only monotonous decrease.
- One variable is exactly 0 after 20 iterations.
- 2 regimes: support selection and then optimization of the subset of non-zeros components (that can be strongly convex on the subset).

Example: PGD/ISTA for solving the Lasso

- ▶ PGD with fixed step $\rho^{(k)} = \rho$ is more stable than subgradient descent.
- No oscillation and only monotonous decrease.
- One variable is exactly 0 after 20 iterations.
- ▶ 2 regimes: support selection and then optimization of the subset of non-zeros components (that can be strongly convex on the subset).

Accelerated Proximal Gradient Descent (APGD)

PGD with Nesterov acceleration [\[Beck and Teboulle, 2009\]](#page-54-2)

- 1: Initialize $y^{(1)} = x^{(0)}, t^{(1)} = 1$ 2: for $k = 1, 2, ...$ do 3: $\mathbf{x}^{(k)} \leftarrow \mathbf{prox}_{\rho^{(k)}g}(\mathbf{y}^{(k)} - \rho^{(k)} \nabla f(\mathbf{y}^{(k)}))$ 4: $t^{(k+1)} \leftarrow \frac{1+\sqrt{1+4(t^{(k)})^2}}{2}$ 2 5: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \frac{t^{(k)} - 1}{t^{(k+1)}} (\mathbf{x}^{(k)} - \mathbf{x}^{(k-1)})$ 6: end for
	- \triangleright Use a similar momentum to accelerated gradient.
	- ▶ The function might not decrease at each iteration due to the momentum.
	- Convergence for and L -smooth function f is :

$$
F(\mathbf{x}^{(k)}) - F(\mathbf{x}^*) \le \frac{2L\|\mathbf{x}^{(0)} - \mathbf{x}^*\|^2}{(k+1)^2}
$$

▶ Also known as Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) when applied to the Lasso [\[Beck and Teboulle, 2009\]](#page-54-2).

Example: Accelerated PGD/FISTA for the Lasso

- Accelerated PGD with fixed step $\rho^{(k)} = \rho$ is faster than PGD.
- Inertia causes overshooting and oscillations but the algorithm converges faster.
- One variable is exactly 0 after 20 iterations.
- 2 regimes: support selection and then optimization of non-zeros components.

Example: Accelerated PGD/FISTA for the Lasso

- Accelerated PGD with fixed step $\rho^{(k)} = \rho$ is faster than PGD.
- Inertia causes overshooting and oscillations but the algorithm converges faster.
- \triangleright One variable is exactly 0 after 20 iterations.
- 2 regimes: support selection and then optimization of non-zeros components.

Chambolle-Pock Algorithm

Assumptions

$$
\min_{\mathbf{x} \in \mathbb{R}^n} \quad F(\mathbf{x}) = f(\mathbf{A}\mathbf{x}) + g(\mathbf{x})
$$

- \blacktriangleright Both f and g are convex (no smoothness necessary).
- \triangleright A is a linear operator (not needed to be square or invertible).

Chambolle-Pock Algorithm [\[Chambolle and Pock, 2011\]](#page-55-1)

- 1: Initialize $\mathbf{x}^{(0)} = \bar{\mathbf{x}}^{(0)}, \mathbf{y}^{(0)}, \rho_1, \rho_2 > 0, 0 \le \theta \le 1$ 2: for $k = 1, 2, ...$ do 3: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{prox}_{\rho_1 f}(\mathbf{y}^{(k)} + \rho_1 \mathbf{A} \bar{\mathbf{x}}^{(k)})$ 4: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_{\rho_2 g}(\mathbf{x}^{(k)} - \rho_2 \mathbf{A}^\top \mathbf{y}^{(k+1)})$ 5: $\bar{\mathbf{x}}^{(k+1)} \leftarrow \mathbf{x}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$ 6: end for
	- **EXECUTE:** Generalization of the Douglas-Rachford splitting (with a linear operator \bf{A}).
	- θ allows to use a momentum when > 0 .
	- Interesting when the prox of f and q are efficient.

Vu-Condat Algorithm

Assumptions

$$
\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x}) + h(\mathbf{A}\mathbf{x})
$$

 \blacktriangleright f convex and L-smooth, A is a linear operator.

 \blacktriangleright g and h are convex and have "simple" proximal operators.

Vu-Conda Algorithm [Vũ, 2013, [Condat, 2014\]](#page-55-2)

1: Initialize
$$
\mathbf{x}^{(0)} = \bar{\mathbf{x}}^{(0)}, \mathbf{y}^{(0)} = \bar{\mathbf{y}}^{(0)}, \rho_1, \rho_2 > 0, 0 \le \theta \le 1
$$

\n2: for $k = 1, 2, ...$ do
\n3: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_{\rho_2 g}(\bar{\mathbf{x}}^{(k)} - \rho_2 \nabla f(\bar{\mathbf{x}}^{(k)}) - \rho_2 \mathbf{A}^\top \bar{\mathbf{y}}^{(k)})$
\n4: $\bar{\mathbf{x}}^{(k+1)} \leftarrow \bar{\mathbf{x}}^{(k+1)} + \theta(\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}^{(k)})$
\n5: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{prox}_{\rho_1 h^*}(\bar{\mathbf{y}}^{(k)} + \rho_1 \mathbf{A}(2\mathbf{x}^{(k+1)} - \bar{\mathbf{x}}^{(k)}))$
\n6: $\bar{\mathbf{y}}^{(k+1)} \leftarrow \bar{\mathbf{y}}^{(k+1)} + \theta(\mathbf{y}^{(k+1)} - \bar{\mathbf{y}}^{(k)})$
\n7: end for

▶ pro $\mathbf{x}_{ph^*}(\mathbf{x}) = \mathbf{x} - \rho \mathbf{prox}_{h/p}(\mathbf{x}/\rho)$ is the proximal operator of the Fenchel–Rockafellar conjugate of h also called convex conjugate.

▶ General formulation in parallel with $h(\mathbf{A}x) = \sum_i h_i(\mathbf{A}_i x)$ in [\[Condat, 2014\]](#page-55-2).

Alternating Direction Method of Multipliers (ADMM)

Optimization problem and augmented Lagrangian

$$
\min_{\mathbf{x} \in \mathbb{R}^n, \mathbf{z} \in \mathbb{R}^m} \quad f(\mathbf{x}) + g(\mathbf{z}) \qquad \text{s.t.} \quad \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{c}
$$

The augmented Lagrangian of the problem is expressed as:

$$
L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z}) + \mathbf{y}^{T}(\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{c}) + \frac{\rho}{2} ||\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{c}||^{2}
$$
 (14)

ADMM Algorithm [\[Boyd et al., 2011\]](#page-55-3)

- 1: Initialize ${\bf x}^{(0)},{\bf z}^{(0)},{\bf y}^{(0)},\rho>0$ 2: for $k = 1, 2, ...$ do 3: $\mathbf{x}^{(k+1)} \leftarrow \arg \min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \mathbf{z}^{(k)}, \mathbf{y}^{(k)})$ 4: $\mathbf{z}^{(k+1)} \leftarrow \arg \min_{\mathbf{z}} L_{\rho}(\mathbf{x}^{(k+1)}, \mathbf{z}, \mathbf{y}^{(k)})$ 5: $\mathbf{y}^{(k+1)} \leftarrow \mathbf{y}^{(k)} + \rho (\mathbf{A} \mathbf{x}^{(k+1)} + \mathbf{B} \mathbf{z}^{(k+1)} - \mathbf{c})$ 6: end for
	- ▶ Updates 3 and 4 can often be expressed as proximal updates.
	- \triangleright When f or q is separable, the updates can be done in parallel.

Example: 2D Total Variation denoising

$$
\min_{\mathbf{X} \in \mathbb{R}_+^{d \times d}} \quad \|\mathbf{Y} - \mathbf{X}\|_F^2 + \lambda \left(\sum_{i=1,j=1}^{d,d-1} |X_{i,j} - X_{i,j+1}| + \sum_{i=1,j=1}^{d-1,d} |X_{i,j} - X_{i+1,j}| \right)
$$

- \blacktriangleright Image Y is noisy but a clean X that has piecewise constant parts.
- ▶ The regularization term measure the total variation (L1 norm of the gradients) of the image horizontally and vertically.

Exercise 9 (optional): Solve the problem

- For each algorithm: ADMM, Chambolle-Pock and Vu-Conda.
- Reformulate the problem with and without positivity constraints (recover f, q, h).
- ▶ Which algorithms can be used if the first term is $\|{\bf Y}-{\bf H} * {\bf X}\|_F^2$ (deconvolution)?

Conclusion

Proximal methods [\[Parikh and Boyd, 2014\]](#page-56-3)

- General strategy of proximal splitting: divide and conquer the objective function.
- Search for a stationary point, avoid subgradients.
- PGD/APGD for simple problems, ADMM or other for more complex splitting.
- ▶ For sparse optimization, intermediate iterates are sparse and better conditioned.
- Works also for non-convex problems [\[Attouch et al., 2010\]](#page-54-3).
- ▶ For deep learning non-convex problems subgradient descent is often used [\[Goodfellow, 2016\]](#page-56-4).

Bibliography I

Convex Optimization [\[Boyd and Vandenberghe, 2004\]](#page-55-4)

▶ Available freely online: <https://web.stanford.edu/~boyd/cvxbook/>.

Nonlinear Programming [\[Bertsekas, 1997\]](#page-54-4)

- ▶ Reference optimization book, contains also most of the course.
- \triangleright Unconstrained optimization (Ch. 1), duality and lagrangian (Ch. 3, 4, 5).

Convex analysis and monotone operator theory in Hilbert spaces [\[Bauschke et al., 2011\]](#page-54-1)

- ▶ Awesome book with lot's of algorithms, and convergence proofs.
- ▶ All definitions (convexity, lower semi continuity) in specific chapters.

Numerical optimization [\[Nocedal and Wright, 2006\]](#page-56-5)

 \blacktriangleright Classic introduction to numerical optimization.

References I

Argyriou, A., Evgeniou, T., and Pontil, M. (2008). Convex multi-task feature learning. Machine learning, 73:243–272.

Attouch, H., Bolte, J., Redont, P., and Soubeyran, A. (2010).

Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-Lojasiewicz inequality.

Mathematics of Operations Research, 35(2):438–457.

Bauschke, H. H., Combettes, P. L., et al. (2011).

Convex analysis and monotone operator theory in Hilbert spaces, volume 408. Springer.

Beck, A. and Teboulle, M. (2009).

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202.

Bertsekas, D. P. (1997).

Nonlinear programming.

Journal of the Operational Research Society, 48(3):334–334.

References II

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011).

Distributed optimization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends (\widehat{R}) in Machine learning, 3(1):1-122.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization.

Cambridge university press.

Chambolle, A. and Pock, T. (2011).

A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145.

Combettes, P. L. and Pesquet, J.-C. (2011).

Proximal splitting methods in signal processing.

In Fixed-point algorithms for inverse problems in science and engineering, pages 185–212. Springer.

Condat, L. (2014).

A generic proximal algorithm for convex optimization—application to total variation minimization.

IEEE Signal Processing Letters, 21(8):985–989.

References III

Goodfellow, I. (2016).

Deep learning.

Nocedal, J. and Wright, S. (2006).

Numerical optimization. Springer Science & Business Media.

Obozinski, G., Taskar, B., and Jordan, M. I. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20:231–252.

Parikh, N. and Boyd, S. P. (2014).

Proximal algorithms.

Foundations and Trends in optimization, 1(3):127–239.

Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267-288.

Vapnik, V. (2013).

The nature of statistical learning theory.

Springer science & business media.

References IV

Vũ, B. C. (2013).

A splitting algorithm for dual monotone inclusions involving cocoercive operators. Advances in Computational Mathematics, 38(3):667–681.

Xu, Z., Chang, X., Xu, F., and Zhang, H. (2012).

 $L_{1/2}$ regularization: a thresholding representation theory and a fast solver. Neural Networks and Learning Systems, IEEE Transactions on, 23(7):1013–1027.

Zhao, P. and Yu, B. (2006).

On model selection consistency of lasso.

The Journal of Machine Learning Research, 7:2541–2563.