Optimization for data science Stochastic Gradient Descent

R. Flamary

Master Data Science, Institut Polytechnique de Paris

October 29, 2024

Full course overview

1. Introduction to optimization for data science

- $1.1\,$ ML optimization problems and linear algebra recap
- 1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent

2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems

- 3.1 Solvers for quadratic problems, conjugate gradient
- 3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods

- 4.1 Proximal operator and proximal algorithms
- 4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent

- **5.1** SGD and variance reduction techniques
- 5.2 Lab 2: SGD for Logistic regression

6. Standard formulation of constrained optimization problems 6.1 LP, QP and Mixed Integer Programming

7. Coordinate descent

7.1 Algorithms and Labs

8. Newton and quasi-newton methods

8.1 Second order methods and Labs

9. Beyond convex optimization

9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Current course overview

1. Introduction to optimization	4
2. Smooth optimization : Gradient descent	4
3. Smooth Optimization : Quadratic problems	4
4. Non-smooth optimization : Proximal methods	4
5. Stochastic Gradient Descent	4
5.1 Machine learning a.k.a minimizing a finite sum	4
5.2 SGD: Optimizing with gradient approximations	5
5.2.1 SGD with fixed and decreasing step size	
5.2.2 SGD with averaging	
5.3 Stochastic Variance Reduction methods	27
5.3.1 Controling the variance with covariates	
5.3.2 Stochastic Variance reduced method gradient (SVRG)	
5.3.3 Memory methods : SAG and SAGA	
5.4 Conclusion	39
5.4.1 SGD in machine learning	
5.4.2 Comparison of methods	
6. Standard formulation of constrained optimization problems	42
7. Coordinate descent	42
8. Newton and quasi-newton methods	
9. Beyond convex optimization	42

Machine learning a.k.a minimizing a finite sum

Optimization problem

$$\min_{\mathbf{w}\in\mathbb{R}^d} \qquad F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w}) \tag{1}$$

- Standard ML problem (supervised or unsupervised learning).
- d is the number of parameter in the model, n the number of training samples.
- Can handle both ERM and regularized learning:
 - ▶ Empirical Risk Minimization : f_i(**w**) = (y_i **x**_i^T**w**)²
 ▶ Regularization : f_i(**w**) = (y_i **x**_i^T**w**)² + ^λ/₂ ||**w**||²
- Gradient of F is: $\nabla_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} f_i(\mathbf{w})$

Large sale optimization

- Both n and d can be very large.
- Computation of F and ∇F is O(nd).
- Dataset may not fit in memory.
- \Rightarrow Approximate the gradient: Stochastic Gradient Descent.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm

- $\begin{array}{ll} & \text{1: Initialize } \mathbf{x}^{(0)} \\ & \text{2: for } k = 0, 1, 2, \dots \text{ do} \\ & \text{3: } i^{(k)} \leftarrow \text{randomly pick an index } i \in \{1, \dots, n\} \\ & \text{4: } \mathbf{d}^{(k)} \leftarrow -\nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x}^{(k)}) \\ & \text{5: } \mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)} \\ & \text{5: } \mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)} \\ & \text{5: } \mathbf{x}^{(k)} = 0 \\ & \text{5: } \mathbf{x}^{$
- 6: end for
- $\mathbf{d}^{(k)} \in \mathbb{R}^n$ is an approximation of the full gradient on one sample.
- Iteration complexity is O(d) VS O(nd) for GD.
- With very small step size, SGD (over an epoch) is very close to GD.
- Step size strategies:

Fixed step size :
$$\rho^{(k)} = \rho$$

• Decreasing step size : $ho^{(k)} = rac{1}{\sqrt{k}}$

Convergence of SGD with fixed step size (1)

Assumptions

- \blacktriangleright F is μ -strongly convex.
- $F = \frac{1}{n} \sum_{i} f_{i}$ has Expected Bounded Stochastic Gradients (EBSG):

$$\mathbb{E}_{i \sim \frac{1}{n}}[\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$
(2)

Convergence of fixed step SGD on strongly convex functions

If F is μ -strongly convex and $F = \frac{1}{n} \sum_{i} f_i$ has Expected Bounded Stochastic Gradients, then for $\rho < \frac{1}{\mu}$ we have for fixed step SGD:

$$\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] \le (1 - \rho\mu)^{k} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \frac{\rho}{\mu}B^{2}$$
(3)

Fast (exponential) convergence of the first term.

• Bias term $\frac{\rho}{\mu}B^2$ proportional to the step size!

Proof of convergence of fixed step SGD (1)

$$\begin{split} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|^{2} &= \|\mathbf{x}^{(k)} - \rho \nabla f_{i^{(k)}}(\mathbf{x}^{(k)}) - \mathbf{x}^{\star}\|^{2} \\ &\leq \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2} - 2\rho \nabla f_{i^{(k)}}^{\top}(\mathbf{x}^{(k)} - \mathbf{x}^{\star}) + \rho^{2} \|\nabla f_{i^{(k)}}(\mathbf{x}^{(k)})\|^{2} \end{split}$$

By taking the expectation w.r.t. $i^{(k)}$ we get:

$$\begin{split} \mathbb{E}_{i^{(k)} \sim \frac{1}{n}} [\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|^{2}] &\leq \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2} - 2\rho \nabla F(\mathbf{x}^{(k)})^{\top} (\mathbf{x}^{(k)} - \mathbf{x}^{\star}) + \rho^{2} B^{2} \\ &\leq (1 - \rho\mu) \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2} + \rho^{2} B^{2} \end{split}$$

Now taking the total expectation w.r.t. all steps

$$\begin{split} \mathbb{E}[\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|^{2}] &\leq (1 - \rho\mu)\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] + \rho^{2}B^{2} \\ &\leq (1 - \rho\mu)^{k}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \rho^{2}B^{2}\sum_{i=0}^{k}(1 - \rho\mu)^{i} \\ &\leq (1 - \rho\mu)^{k}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \rho^{2}B^{2}\frac{1 - (1 - \rho\mu)^{i+1}}{1 - (1 - \rho\mu)} \\ &\leq (1 - \rho\mu)^{k}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \frac{\rho}{\nu}B^{2} \end{split}$$

¹Unbiased gradient $\nabla F(\mathbf{x}^{(k)}) = \mathbb{E}_{i \sim \frac{1}{n}} \nabla f_i(\mathbf{x}^{(k)})$ and $\mathbb{E}_{i \sim \frac{1}{n}} [\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2$ ²Strong convexity $\nabla F(\mathbf{x}^{(k)}) = \sum_{i \sim \frac{1}{n}} \nabla f_i(\mathbf{x}^{(k)})$ and $\|\mathbf{x}^{(k)}\|_{1} = \sum_{i \sim \frac{1}{n}} \|\nabla f_i(\mathbf{x}^{(k)})\|^2 \le B^2$

Assumptions for convergence of SGD

Expected Bounded Stochastic Gradients (EBSG)

$$\mathbb{E}_{i \sim \frac{1}{n}} [\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$

Exercise 1: Linear regression

- 1. $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$.
- **2.** Compute $\nabla f_i(\mathbf{w})$

$$\nabla f_i(\mathbf{w}) =$$

3. Compute $\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$

$$\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2] =$$

- 4. What is $\max_{\mathbf{w}} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$?
- 5. Is Quadratic loss EBSG?

Assumptions for convergence of SGD

Expected Bounded Stochastic Gradients (EBSG)

$$\mathbb{E}_{i \sim \frac{1}{n}} [\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$

Exercise 1: Linear regression

- 1. $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$.
- 2. Compute $\nabla f_i(\mathbf{w})$

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w})\mathbf{x}_i$$

3. Compute $\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$

$$\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2] =$$

- 4. What is $\max_{\mathbf{w}} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$?
- 5. Is Quadratic loss EBSG?

Assumptions for convergence of SGD

Expected Bounded Stochastic Gradients (EBSG)

$$\mathbb{E}_{i \sim \frac{1}{n}} [\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$

Exercise 1: Linear regression

- 1. $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$.
- 2. Compute $\nabla f_i(\mathbf{w})$

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w}) \mathbf{x}_i$$

3. Compute $\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$

$$\begin{split} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2] &= \frac{4}{n} \sum_i \|\mathbf{x}_i(y_i - \mathbf{x}^\top \mathbf{w})\|^2 \\ &= \frac{4}{n} \sum_i \|\mathbf{x}_i\|^2 (y_i - \mathbf{x}_i^\top \mathbf{w})^2 \\ &= \frac{4}{n} \|\mathbf{y} - \mathbf{X} \mathbf{w}\|^2_{\mathsf{diag}(\|\mathbf{x}_i\|)^{-1}} \end{split}$$

- 4. What is $\max_{\mathbf{w}} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$?
- 5. Is Quadratic loss EBSG?

Convergence of SGD with fixed step size (2)

Assumptions

- F is μ -strongly convex.
- $F = \frac{1}{n} \sum_{i} f_i$ and each f_i is L_i -smooth.
- Definition: Gradient noise

$$\sigma^2 = \mathbb{E}_{i \sim \frac{1}{n}} [\|\nabla f_i(\mathbf{x}^*)\|^2]$$
(4)

Convergence of fixed step SGD on strongly convex and smooth functions If F is μ -strongly convex and $F = \frac{1}{n} \sum_{i} f_i$ with $\forall i, f_i$ is L_i -smooth and $L_{max} = \max_i L_i$, then for $\rho \leq \frac{1}{2L_{max}}$ we have for fixed step SGD:

$$\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] \le (1 - \rho\mu)^{k} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \frac{2\rho}{\mu}\sigma^{2}$$
(5)

- Fast (exponential) convergence of the first term.
- Bias term $\frac{\rho}{\mu}\sigma^2$ proportional to the step size but now only on solution.
- ▶ Homework exercise on moodle, proof available in [Gower et al., 2019].

Example optimization problem

1D Logistic regression

$$\min_{w,b} \quad \sum_{i=1}^{n} \log(1 + \exp(-y_i(wx_i + b))) + \lambda \frac{w^2}{2}$$

• Linear prediction model : f(x) = wx + b

- Training data (x_i, y_i) : (1, -1), (2, -1), (3, 1), (4, 1).
- ▶ Problem solution for $\lambda = 1$: $\mathbf{x}^* = [w^*, b^*] = [0.96, -2.40]$

• Initialization :
$$\mathbf{x}^{(0)} = [1, -0.5].$$

Example of constant step SGD

Discussion

- SGD VS GD (as a function of iterations and nb of grad. computation).
- Fixed step size : $\rho^{(k)}=0.01$ and $\rho^{(k)}=0.02$
- One GD iter $\equiv 4$ SGD iter (since n = 4).
- ▶ Complexity O(d) per iteration but not convergence (bias).

Example of constant step SGD

Discussion

- SGD VS GD (as a function of iterations and nb of grad. computation).
- Fixed step size : $\rho^{(k)}=0.01$ and $\rho^{(k)}=0.02$
- One GD iter $\equiv 4$ SGD iter (since n = 4).
- Complexity $\mathcal{O}(d)$ per iteration but not convergence (bias).

Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

1.
$$f_i(\mathbf{w}) = (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$
.

2. Compute $\nabla f_i(\mathbf{w})$.

$$\nabla f_i(\mathbf{w}) =$$

3. Compute
$$\nabla^2 f_i(\mathbf{w})$$
.

$$\nabla^2 f_i(\mathbf{w}) =$$

4. Find L_i .

$$\|\nabla^2 f_i(\mathbf{w})\| =$$

5. Fin $L_{max} = .$

Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

1.
$$f_i(\mathbf{w}) = (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$
.

2. Compute $\nabla f_i(\mathbf{w})$.

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w})\mathbf{x}_i + 2\lambda \mathbf{w}$$

3. Compute
$$\nabla^2 f_i(\mathbf{w})$$
.

$$\nabla^2 f_i(\mathbf{w}) =$$

4. Find L_i .

$$\|\nabla^2 f_i(\mathbf{w})\| =$$

5. Fin $L_{max} = .$

Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

1.
$$f_i(\mathbf{w}) = (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$
.

2. Compute $\nabla f_i(\mathbf{w})$.

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w})\mathbf{x}_i + 2\lambda \mathbf{w}$$

3. Compute
$$\nabla^2 f_i(\mathbf{w})$$
.

$$\nabla^2 f_i(\mathbf{w}) = 2\mathbf{x}_i \mathbf{x}_i^\top + 2\lambda \mathbf{I}$$

4. Find L_i .

 $\|\nabla^2 f_i(\mathbf{w})\| =$

5. Fin $L_{max} = .$

Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

- 1. $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2$.
- **2.** Compute $\nabla f_i(\mathbf{w})$.

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w})\mathbf{x}_i + 2\lambda \mathbf{w}$$

3. Compute
$$abla^2 f_i(\mathbf{w})$$
.
 $abla^2 f_i(\mathbf{w}) = 2\mathbf{x}_i \mathbf{x}_i^\top +$

4. Find L_i .

$$\|\nabla^2 f_i(\mathbf{w})\| \leq 2\|\mathbf{x}_i\|^2 + 2\lambda = L_i$$

5. Fin $L_{max} = 2(\lambda + \max_i ||\mathbf{x}_i||^2)$.

 $2\lambda \mathbf{I}$

Logistic regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w})) + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

- 1. $f_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^\top \mathbf{w})) + \lambda \|\mathbf{w}\|^2$.
- 2. Compute $\nabla f_i(\mathbf{w}) =$
- **3.** Compute $\nabla^2 f_i(\mathbf{w})$

$$\nabla^2 f_i(\mathbf{w}) =$$

4. Find L_i .

$$abla^2 f_i(\mathbf{w}) \preceq \qquad \qquad (\mathsf{hint} \ e^t / (1+e^t)^2 \leq rac{1}{4})$$

5. Find $L_{max} =$

Logistic regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w})) + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

- 1. $f_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^\top \mathbf{w})) + \lambda \|\mathbf{w}\|^2$.
- 2. Compute $\nabla f_i(\mathbf{w}) = \frac{-y_i \mathbf{x}_i}{1 + \exp(y_i \mathbf{x}_i^\top \mathbf{w})} + 2\lambda \mathbf{w}$
- **3.** Compute $\nabla^2 f_i(\mathbf{w})$

$$\nabla^2 f_i(\mathbf{w}) =$$

4. Find L_i .

$$abla^2 f_i(\mathbf{w}) \preceq$$
 (hint $e^t / (1 + e^t)^2 \leq \frac{1}{4}$)

5. Find $L_{max} =$

Logistic regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w})) + \lambda \|\mathbf{w}\|^2$$

Compute the smoothness constant L_i and L_{max} .

- 1. $f_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^\top \mathbf{w})) + \lambda \|\mathbf{w}\|^2$.
- 2. Compute $\nabla f_i(\mathbf{w}) = \frac{-y_i \mathbf{x}_i}{1 + \exp(y_i \mathbf{x}_i^\top \mathbf{w})} + 2\lambda \mathbf{w}$
- 3. Compute $\nabla^2 f_i(\mathbf{w})$

$$\nabla^2 f_i(\mathbf{w}) = \frac{\mathbf{x}_i \mathbf{x}_i^\top \exp(y_i \mathbf{x}_i^\top \mathbf{w})}{(1 + \exp(y_i \mathbf{x}_i^\top \mathbf{w}))^2} + 2\lambda \mathbf{I}$$

4. Find L_i .

$$abla^2 f_i(\mathbf{w}) \preceq \frac{\|\mathbf{x}_i\|^2}{4} \mathbf{I} + 2\lambda \mathbf{I} = L_i \mathbf{I} \qquad (\text{hint } e^t / (1+e^t)^2 \leq \frac{1}{4})$$

5. Find $L_{max} = \frac{\max_i \|\mathbf{x}_i\|^2}{4} + 2\lambda$.

SGD with decreasing step size

Convergence for strongly convex and smooth function with $\rho^{(k)} = O(\frac{1}{k})$ If $F = \frac{1}{n} \sum_{i} f_i \mu$ -strongly convex with $\forall i, f_i$ is L_i -smooth with $\mathcal{K} = \frac{L_{max}}{\mu}$ and the step size is

$$\rho^{(k)} = \begin{cases} \frac{1}{2L_{max}} & \text{if } k \leq 4\lceil \mathcal{K} \rceil \\ \frac{2k+1}{(k+1)^2 \mu} & \text{else} \end{cases}$$

for $k > 4\lceil \mathcal{K} \rceil$ we have for SGD:

$$\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] \le \frac{8\sigma^{2}}{\mu^{2}k} + \frac{16[\mathcal{K}]^{2}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2}}{e^{2}k^{2}}$$
(6)

Convergence for smooth function with $\rho^{(k)} = O(\frac{1}{\sqrt{k}})$

If $F = \frac{1}{n} \sum_{i} f_i$ with $\forall i, f_i$ is L_i -smooth and $\rho^{(k)} = \frac{\rho}{\sqrt{1+k}}$ and $\rho \leq \frac{1}{4L_{max}}$ we have for SGD:

$$\mathbb{E}[F(\bar{\mathbf{x}}^{(k)}) - F(\mathbf{x}^{\star})] \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + 2\rho(F(\bar{\mathbf{x}}^{(0)}) - F(\mathbf{x}^{\star}))}{2\rho\sqrt{k-1}} + \frac{2\sigma^{2}(\log(k)+1)}{\sqrt{k-1}}$$
(7)

with $\bar{\mathbf{x}}^{(k)} = \frac{1}{k+1} \sum_{i=0}^{k} \mathbf{x}^{(i)}$.

See details in [Garrigos and Gower, 2023]

Example of decreasing step SGD

Discussion

- Decreasing step size : $\rho^{(k)} = \frac{1}{\sqrt{k}}$
- Slow convergence but less noise for large number of iterations.
- ▶ Complexity O(d) per iteration.

SGD with averaging (SGDA)

SGD with late start averaging

1: Initialize
$$\mathbf{x}^{(0)}$$
 set $s_0 \ge 0$
2: for $k = 0, 1, 2, ...$ do
3: $i^{(k)} \leftarrow$ randomly pick an index $i \in \{1, ..., n\}$
4: $\mathbf{d}^{(k)} \leftarrow -\nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x}^{(k)})$
5: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)}$
6: if $k \ge s_0$ then
7: $\bar{\mathbf{x}}^{(k)} = \frac{1}{k - s_0} \sum_{i = s_0}^{k} \mathbf{x}^{(i)}$
8: else
9: $\bar{\mathbf{x}}^{(k)} = \mathbf{x}^{(k)}$
10: end if
11: end for

- Principle : Averaging of the iterates after a certain number of steps to compensate oscillations around optimality.
- ► Convergence of the average x̄^(k) to the optimality in O(¹/_{√k}) for L_i smooth and convex functions f_i [Polyak and Juditsky, 1992].
- Convergence remains slow because averaging slows changes.

Example of SGD with averaging

Discussion

- Decreasing step size : $\rho^{(k)} = \frac{1}{\sqrt{k}}$
- Slow convergence of x
 ^(k) but less noise that SGD.
- Complexity $\mathcal{O}(d)$ per iteration (how is that implemented?).

Convergence of SGD VS GD

Iteration complexity for a linear model is with d parameters and \boldsymbol{n} samples and \boldsymbol{k} iterations.

On strongly convex and smooth functions

Method	Cost 1 iter.	Convergence	Nb. iter.	Running time
GD	nd	$\exp(-k/\kappa)$	$\kappa \log(1/\epsilon)$	$nd\kappa \log(1/\epsilon)$
SGD $(O(\frac{1}{k}) \text{ step})$	d	κ/k	κ/ϵ	$d\kappa/\epsilon$

- Conditioning of the problem is $\kappa = \frac{L_{max}}{\mu}$.
- \blacktriangleright SGD more efficient when $n \gg \frac{1}{\epsilon \log(\epsilon)}$ is very large.

On smooth functions

Method	Cost 1 iter.	Convergence	Nb. iter.	Running time
GD	nd	1/k	$1/\epsilon$	dn/ϵ
AGD	nd	$1/k^2$	$1/\sqrt{\epsilon}$	$dn/\sqrt{\epsilon}$
SGDA ($O(\frac{1}{\sqrt{k}})$ step)	d	$1/\sqrt{k}$	$1/\epsilon^2$	d/ϵ^2

▶ SGD more efficient than GD when $n \gg \frac{1}{\epsilon}$ is very large.

Limits of SGD

- Convergence remains slow in practice because of gradient noise.
- Better estimation of the gradient can be done with variance reduction methods. 5.2.2 - SGD: Optimizing with gradient approximations - SGD with averaging - 18/34

Stochastic Variance Reduced methods

Principle

- Keep iteration cost of SVG (compute only one gradient $\nabla f_{i^{(k)}}$).
- Use and estimate $\mathbf{g}^{(k)} \approx \nabla F(\mathbf{x}^{(k)})$ with low variance updated (for cheap) at each step.
- Use $\mathbf{g}^{(k)}$ to compute the descent update.

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \rho^{(k)} \mathbf{g}^{(k)}$$

What we want for $\mathbf{g}^{(k)}$

• Unbiased estimator of the gradient $\nabla F(\mathbf{x}^{(k)})$:

$$\mathbb{E}_{i \sim \frac{1}{n}}[\mathbf{g}^{(k)}] = \nabla F(\mathbf{x}^{(k)})$$

► Low variance $\mathbb{VAR}[\mathbf{g}^{(k)}] = \mathbb{E}[\|\mathbf{g}^{(k)} - \nabla F(\mathbf{x}^{(k)})\|^2]$ for faster convergence.

► Convergence in L2 to 0 at solution (no need for decreasing step size):

$$\lim_{\mathbf{x}^{(k)} \to \mathbf{x}^{\star}} \mathbb{E}[\|\mathbf{g}^{(k)}\|^2] = 0$$

Controling the variance with covariates

Controlled Stochastic Reformulation

- **Covariate function** : \mathbf{z}_i is a function of the sample $i, \forall i \in 1, ..., n$.
- Reformulation of original problem:

$$\frac{1}{n}\sum_{i=1}^{n}f_{i}(\mathbf{x}) = \mathbb{E}_{i\sim\frac{1}{n}}[f_{i}(\mathbf{x})] = \mathbb{E}_{i\sim\frac{1}{n}}[f_{i}(\mathbf{x}) - z_{i}(\mathbf{x}) + z_{i}(\mathbf{x})]$$
$$= \mathbb{E}_{i\sim\frac{1}{n}}[f_{i}(\mathbf{x}) - z_{i}(\mathbf{x}) + \mathbb{E}_{i\sim\frac{1}{n}}[z_{i}(\mathbf{x})]]$$

Equivalent optimization problem but one can use the gradient estimation for sample i:

$$\mathbf{g}_i = \nabla f_i(\mathbf{x}) - \nabla z_i(\mathbf{x}) + \mathbb{E}_{i \sim \frac{1}{n}} [\nabla z_i(\mathbf{x})]$$

How to choose z_i to control the variance?

Covariates

Let x and z two random variables, we say that x and z are covariates if:

$$\operatorname{cov}(x,z) = \mathbb{E}[(x-\mathbb{E}[x])(z-\mathbb{E}[z])] \geq 0$$

Covariates and variance reduction

Variance reduced estimate

When x and z are covariates one can define the variance reduced estimate:

 $x_z = x - z + \mathbb{E}[z]$

Exercise 4: Properties of variance reduction

1. Compute $\mathbb{E}[x_z] = \mathbb{E}[x]$

2. Compute
$$\mathbb{VAR}[x_z] = \mathbb{E}[(x_z - \mathbb{E}[x_z])^2]$$

=

$$\mathbb{VAR}[x_z] = \mathbb{E}[(x_z - \mathbb{E}[x_z])^2]$$

3. Under which condition is $\mathbb{VAR}[x_z] \leq \mathbb{VAR}[x]$?

Covariates and variance reduction

Variance reduced estimate

When x and z are covariates one can define the variance reduced estimate:

 $x_z = x - z + \mathbb{E}[z]$

Exercise 4: Properties of variance reduction

1. Compute $\mathbb{E}[x_z] = \mathbb{E}[x]$

2. Compute
$$\mathbb{VAR}[x_z] = \mathbb{E}[(x_z - \mathbb{E}[x_z])^2]$$

$$\begin{aligned} \mathbb{VAR}[x_z] &= \mathbb{E}[(x_z - \mathbb{E}[x_z])^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x] - (z - \mathbb{E}[z]))^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x])^2] + \mathbb{E}[(z - \mathbb{E}[z])^2] - 2\mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])] \\ &= \mathbb{VAR}[x] + \mathbb{VAR}[z] - 2\mathsf{cov}(x, z) \end{aligned}$$

3. Under which condition is $\mathbb{VAR}[x_z] \leq \mathbb{VAR}[x]$?

Covariates and variance reduction

Variance reduced estimate

When x and z are covariates one can define the variance reduced estimate:

 $x_z = x - z + \mathbb{E}[z]$

Exercise 4: Properties of variance reduction

1. Compute $\mathbb{E}[x_z] = \mathbb{E}[x]$

2. Compute
$$\mathbb{VAR}[x_z] = \mathbb{E}[(x_z - \mathbb{E}[x_z])^2]$$

$$\begin{aligned} \mathbb{VAR}[x_z] &= \mathbb{E}[(x_z - \mathbb{E}[x_z])^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x] - (z - \mathbb{E}[z]))^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x])^2] + \mathbb{E}[(z - \mathbb{E}[z])^2] - 2\mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])] \\ &= \mathbb{VAR}[x] + \mathbb{VAR}[z] - 2\mathsf{cov}(x, z) \end{aligned}$$

3. Under which condition is $\mathbb{VAR}[x_z] \leq \mathbb{VAR}[x]$?

$$\operatorname{cov}(x,z) \geq \frac{1}{2} \mathbb{VAR}[z]$$

the larger the correlation the better the variance reduction.

Stochastic Variance Reduced Gradient (SVRG)

Principle of SVRG [Johnson and Zhang, 2013]

• Use covariate function z_i that is a linear approximation of f_i :

$$z_i(\mathbf{x}) = f_i(\tilde{\mathbf{x}}) + \nabla f_i(\tilde{\mathbf{x}})^\top (\mathbf{x} - \tilde{\mathbf{x}})$$
(8)

where $\tilde{\mathbf{x}}$ is a reference (anchor) point.

▶ The gradient g_i with the variance reduced estimate:

$$\mathbf{g}_i = \nabla f_i(\mathbf{x}) - \nabla f_i(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})$$

The variance of the gradient estimation is:

$$\begin{aligned} \mathbb{VAR}[\mathbf{g}_i] &= \mathbb{E}[\|\nabla f_i(\mathbf{x}) - \nabla f_i(\tilde{\mathbf{x}}) - \nabla F(\mathbf{x}) + \nabla F(\tilde{\mathbf{x}})\|^2] \\ &\leq 2\mathbb{E}[\|\nabla f_i(\mathbf{x}) - \nabla F(\mathbf{x})\|^2] + 2\mathbb{E}[\|\nabla f_i(\tilde{\mathbf{x}}) - \nabla F(\tilde{\mathbf{x}})\|^2] \\ &\leq 2(L_{max}^2 + L^2)\|\mathbf{x} - \tilde{\mathbf{x}}\|^2 \end{aligned}$$

Smaller variance when ${\bf x}$ is close to $\tilde{{\bf x}}.$

 3 Use $\|\mathbf{x} + \mathbf{y}\|^{2} \leq 2 \|\mathbf{x}\|_{3.2}^{2} + \mathcal{L}\|\mathbf{y}\|_{c}^{2}$ Variance Reduction methods - Stochastic Variance reduced method gradient (SVRG) - 22/34

Algorithm of SVRG

Algorithm of SVRG [Johnson and Zhang, 2013]

- ▶ The gradient g is the variance reduced estimate of the gradient.
- The anchor point $\tilde{\mathbf{x}}^{(k)}$ is updated every M steps.
- The full gradient $\nabla F(\tilde{\mathbf{x}}^{(k)})$ is computed when anchor point is updated.
- Need to choose the parameter M.
- Convergence in O(e^{-Ck}) for strongly convex and smooth functions and M sufficiently large (same as GD because full gradient...).

Example of SVRG

Discussion

• Fixed step :
$$ho^{(k)} = 0.02$$
 (same as GD)

•
$$M = 500 = 125 * n$$

- Convergence in $O(e^{-Ck})$ similar to GD for strongly convex and smooth functions.
- Similar speed as GD in term of gradient computation (full gradient every M iter.).

Stochastic Average Gradient (SAG)

Stochastic Average Gradient (SAG) [Roux et al., 2012]

1: Initialize
$$\mathbf{x}^{(0)}, \mathbf{g}_i = \nabla f_i(\mathbf{x}^{(0)}) \forall i$$

2: for $k = 0, 1, 2, ...$ do -0
3: $i^{(k)} \leftarrow$ randomly pick an index $i \in \{1, ..., n\}$ -0
4: $\mathbf{g}_{i^{(k)}} \leftarrow \nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x})$
5: $\mathbf{d}^{(k)} \leftarrow -\frac{1}{n} \sum_i \mathbf{g}_i$ -0
6: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho \mathbf{d}^{(k)}$ -1
7: end for -1

Keep in memory all previous computed gradients g_i, update only for sample i^(k).

- Iteration is O(d), memory is O(nd).
- Convergence speed [Roux et al., 2012]

 $E[F(\bar{\mathbf{x}}^{(k)}) - F(\mathbf{x}^{\star})] = \begin{cases} O(\frac{1}{k}) & \text{for } F \text{ convex} \\ O(e^{-Ck}) & \text{for } F \text{ strongly convex} \end{cases}$

Exercise 5: Efficient implementation of SAG

- How to implement (reformulate) line 5 to avoid O(n) complexity?
- For a linear model with $f_i(\mathbf{x}) = l_i(\mathbf{a}_i^\top \mathbf{x})$, do we weed to store all gradients \mathbf{g}_i ?

Example of Stochastic Average Gradient (SAG)

Discussion

- Constant step size : $\rho^{(k)} = 0.02$
- Fast convergence because the problem is strongly convex..
- One GD iter $\equiv 4$ SGD iter (since n = 4).
- SAG complexity O(d) per iteration (but O(nd) in memory).

SAGA: Stochastic Average Gradient Accelerated

SAGA [Defazio et al., 2014]

1: Initialize
$$\mathbf{x}^{(0)}, \mathbf{g}_i = \nabla f_i(\mathbf{x}^{(0)}) \ \forall i$$

2: for $k = 0, 1, 2, ...$ do
3: $i^{(k)} \leftarrow$ randomly pick an index $i \in \{1, ..., n\}$
4: $\mathbf{d}^{(k)} \leftarrow -\left(\nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x}^{(k)}) - \mathbf{g}_{i^{(k)}} + \frac{1}{n} \sum_i \mathbf{g}_i\right)$
5: $\mathbf{g}_{i^{(k)}} \leftarrow \nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x}^{(k)})$
6: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho \mathbf{d}^{(k)}$
7: $\mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_{\rho h}(\mathbf{x}^{(k+1)})$

8: end for

Minimizes the following problem:

$$\min_{\mathbf{x}} \quad F(\mathbf{x}) + h(x) = \frac{1}{n} \sum_{i} f_i(\mathbf{x}) + h(\mathbf{x})$$

- SAGA is a variant of SAG that can handle proximal operators.
- Convergence speed is same as SAG but better constant [Defazio et al., 2014]

$$E[F(\bar{\mathbf{x}}^{(k)}) - F(\mathbf{x}^{\star})] = \begin{cases} O(\frac{1}{k}) & \text{for } F \text{ convex} \\ O(e^{-Ck}) & \text{for } F \text{ strongly convex} \end{cases}$$

Example of SAGA

Discussion

- Constant step size : $\rho^{(k)} = 0.02$
- Fast convergence because the problem is strongly convex..
- One GD iter $\equiv 4$ SGD iter (since n = 4).
- SAGA complexity O(d) per iteration (but O(n) in memory for linear models).

SGD in machine learning

Large scale optimization [Bottou, 2010, Bottou et al., 2018]

- Used for training linear and non-linear models on very large datasets.
- State of the art algorithm for linear SVM, logistic regression, least square.
- Classification (SVM,Logistic) : sklearn.linear_model.SGDClassifier.
- Regression (least square, huber) : sklearn.linear_model.SGDRegressor.

Efficient implementation

- Minibatches (compute stochastic gradient on multiple samples).
- Sparse implementation for sparse data.
- Parallel implementation on CPU/GPU.
- Early stopping can be used as regularization.

SGD in deep learning

ConvNet classification fitting[model_size=18,model_type=resnet] Data: CIFAR[framework=pytorch]

Training Neural Networks with SGD

- Usually use fixed step or scheduling of the step decrease.
- Use early stopping as regularization (but not always : double descent).
- ▶ Works very well on continuous, nonconvex problems but not very well understood.

Time [sec]

- Several momentum averaging and adaptive step size strategies:
 - Momentum and Accelerated gradients [Nesterov, 1983]
 - RMSPROP [Tieleman and Hinton, 2012].
 - Adaptive gradient step ADAGRAD [Duchi et al., 2011].
 - Adaptive Moment estimation ADAM [Kingma and Ba, 2014].

Complexity of GD methods

- Iteration complexity for a linear model is with d parameters and n samples.
- Conditioning of the problem is $\kappa = \frac{L}{\mu}$ or $\kappa = \frac{L_{max}}{\mu}$ for SGD.

On strongly convex and smooth functions

Method	1 iter.	Convergence	Nb. iter.	Running time
GD	nd	$\exp(-k/\kappa)$	$\kappa \log(1/\epsilon)$	$nd\kappa \log(1/\epsilon)$
SGD $(O(\frac{1}{k}) \text{ step})$	d	κ/k	κ/ϵ	$d\kappa/\epsilon$
SAG(A)/ŜVRG	d	1/k	$(n+\kappa)\log(1/\epsilon)$	$d(n+\kappa)\log(1/\epsilon)$

On smooth functions

Method	Cost 1 iter.	Convergence	Nb. iter.	Running time
GD	nd	1/k	$1/\epsilon$	dn/ϵ
AGD	nd	$1/k^2$	$1/\sqrt{\epsilon}$	$dn/\sqrt{\epsilon}$
SGDA ($O(\frac{1}{\sqrt{k}})$ step)	d	$1/\sqrt{k}$	$1/\epsilon^2$	d/ϵ^2
SAG(A)/SVRG	d	\sqrt{n}/k	\sqrt{n}/ϵ	$d\sqrt{n}/\epsilon$

- ▶ SGD and variance reduction methods are more efficient for large *n*.
- SAGA only needs smoothness params but require to store gradients.
- SVRG is O(d) in memory but require full regular full gradienst (+ param M).
- Accelerated version of SAGA and SVRG are also available [Lin et al., 2018].

References I

Bottou, L. (2010).

Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT'2010, pages 177-186. Springer.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale machine learning. *SIAM review*, 60(2):223–311.

Saga: A fast incremental gradient method with support for non-strongly convex composite objectives.

In Advances in neural information processing systems, pages 1646–1654.

Duchi, J., Hazan, E., and Singer, Y. (2011).

Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(Jul):2121–2159.

Garrigos, G. and Gower, R. M. (2023).

Handbook of convergence theorems for (stochastic) gradient methods.

arXiv preprint arXiv:2301.11235.

References II

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., and Richtárik, P. (2019).

Sgd: General analysis and improved rates.

In International conference on machine learning, pages 5200-5209. PMLR.

Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance reduction.

In Advances in neural information processing systems, pages 315-323.

Kingma, D. P. and Ba, J. (2014).

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

Lin, H., Mairal, J., and Harchaoui, Z. (2018). Catalyst acceleration for first-order convex optimization: from theory to practice. *Journal of Machine Learning Research*, 18(212):1–54.

Nesterov, Y. E. (1983).

A method for solving the convex programming problem with convergence rate o (1/k^ 2).

In Dokl. akad. nauk Sssr, volume 269, pages 543-547.

References III

Polyak, B. T. and Juditsky, A. B. (1992).

Acceleration of stochastic approximation by averaging.

SIAM journal on control and optimization, 30(4):838–855.

Roux, N. L., Schmidt, M., and Bach, F. R. (2012).

A stochastic gradient method with an exponential convergence $_rate$ for finite training sets.

In Advances in neural information processing systems, pages 2663–2671.

Tieleman, T. and Hinton, G. (2012).

Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. *COURSERA: Neural networks for machine learning*, 4(2):26–31.