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Machine learning a.k.a minimizing a finite sum

Optimization problem

min
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w) (1)

▶ Standard ML problem (supervised or unsupervised learning).

▶ d is the number of parameter in the model, n the number of training samples.

▶ Can handle both ERM and regularized learning:

▶ Empirical Risk Minimization : fi(w) = (yi − xT
i w)2

▶ Regularization : fi(w) = (yi − xT
i w)2 + λ

2
∥w∥2

▶ Gradient of F is: ∇wF (w) = 1
n

∑n
i=1∇wfi(w)

Large sale optimization

▶ Both n and d can be very large.

▶ Computation of F and ∇F is O(nd).

▶ Dataset may not fit in memory.

⇒ Approximate the gradient: Stochastic Gradient Descent.
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Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) algorithm

1: Initialize x(0)

2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −∇xfi(k)(x(k))
5: x(k+1) ← x(k) + ρ(k)d(k)

6: end for

▶ d(k) ∈ Rn is an approximation of the full
gradient on one sample.

▶ Iteration complexity is O(d) VS O(nd) for GD.
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▶ With very small step size, SGD (over an epoch) is very close to GD.

▶ Step size strategies:

▶ Fixed step size : ρ(k) = ρ
▶ Decreasing step size : ρ(k) = 1√

k
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Convergence of SGD with fixed step size (1)

Assumptions

▶ F is µ-strongly convex.

▶ F = 1
n

∑
i fi has Expected Bounded Stochastic Gradients (EBSG):

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k (2)

Convergence of fixed step SGD on strongly convex functions

If F is µ-strongly convex and F = 1
n

∑
i fi has Expected Bounded Stochastic

Gradients, then for ρ < 1
µ
we have for fixed step SGD:

E[∥x(k) − x⋆∥2] ≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ

µ
B2 (3)

▶ Fast (exponential) convergence of the first term.

▶ Bias term ρ
µ
B2 proportional to the step size!
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Proof of convergence of fixed step SGD (1)

∥x(k+1) − x⋆∥2 = ∥x(k) − ρ∇fi(k)(x
(k))− x⋆∥2

≤ ∥x(k) − x⋆∥2 − 2ρ∇f⊤
i(k)(x

(k) − x⋆) + ρ2∥∇fi(k)(x
(k))∥2

By taking the expectation w.r.t. i(k) we get:

Ei(k)∼ 1
n
[∥x(k+1) − x⋆∥2] ≤

1
∥x(k) − x⋆∥2 − 2ρ∇F (x(k))⊤(x(k) − x⋆) + ρ2B2

≤
2
(1− ρµ)∥x(k) − x⋆∥2 + ρ2B2

Now taking the total expectation w.r.t. all steps

E[∥x(k+1) − x⋆∥2] ≤ (1− ρµ)E[∥x(k) − x⋆∥2] + ρ2B2

≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ2B2
k∑

i=0

(1− ρµ)i

≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ2B2 1− (1− ρµ)i+1

1− (1− ρµ)

≤ (1− ρµ)k∥x(0) − x⋆∥2 + ρ

ν
B2

1Unbiased gradient ∇F (x(k)) = Ei∼ 1
n
∇fi(x

(k)) and Ei∼ 1
n
[∥∇fi(x

(k))∥2] ≤ B2

2Strong convexity ∇F (x(k))⊤(x(k) − x⋆) ≥ µ∥x(k) − x⋆∥2
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Assumptions for convergence of SGD

Expected Bounded Stochastic Gradients (EBSG)

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k

Exercise 1: Linear regression

1. fi(w) = (yi − xT
i w)2.

2. Compute ∇fi(w)
∇fi(w) =

3. Compute E[∥∇fi(w)∥2]

E[∥∇fi(w)∥2] =

4. What is maxw E[∥∇fi(w)∥2]?
5. Is Quadratic loss EBSG?
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Assumptions for convergence of SGD
Expected Bounded Stochastic Gradients (EBSG)

Ei∼ 1
n
[∥∇fi(x(k))∥2] ≤ B2, ∀k

Exercise 1: Linear regression

1. fi(w) = (yi − xT
i w)2.

2. Compute ∇fi(w)
∇fi(w) = −2(yi − xT

i w)xi

3. Compute E[∥∇fi(w)∥2]

E[∥∇fi(w)∥2] = 4

n

∑
i

∥xi(yi − x⊤w)∥2

=
4

n

∑
i

∥xi∥2(yi − x⊤
i w)2

=
4

n
∥y −Xw∥2diag(∥xi∥)−1

4. What is maxw E[∥∇fi(w)∥2]?
5. Is Quadratic loss EBSG?
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Convergence of SGD with fixed step size (2)

Assumptions

▶ F is µ-strongly convex.

▶ F = 1
n

∑
i fi and each fi is Li-smooth.

▶ Definition: Gradient noise
σ2 = Ei∼ 1

n
[∥∇fi(x⋆)∥2] (4)

Convergence of fixed step SGD on strongly convex and smooth functions

If F is µ-strongly convex and F = 1
n

∑
i fi with ∀i, fi is Li-smooth and

Lmax = maxi Li , then for ρ ≤ 1
2Lmax

we have for fixed step SGD:

E[∥x(k) − x⋆∥2] ≤ (1− ρµ)k∥x(0) − x⋆∥2 + 2ρ

µ
σ2 (5)

▶ Fast (exponential) convergence of the first term.

▶ Bias term ρ
µ
σ2 proportional to the step size but now only on solution.

▶ Homework exercise on moodle, proof available in [Gower et al., 2019].
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Example optimization problem
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1D Logistic regression

min
w,b

n∑
i=1

log(1 + exp(−yi(wxi + b))) + λ
w2

2

▶ Linear prediction model : f(x) = wx+ b

▶ Training data (xi, yi) : (1,−1), (2,−1), (3, 1), (4, 1).
▶ Problem solution for λ = 1 : x∗ = [w⋆, b⋆] = [0.96,−2.40]
▶ Initialization : x(0) = [1,−0.5].
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Example of constant step SGD
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Discussion

▶ SGD VS GD (as a function of iterations and nb of grad. computation).

▶ Fixed step size : ρ(k) = 0.01 and ρ(k) = 0.02

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ Complexity O(d) per iteration but not convergence (bias).
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Example of constant step SGD
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Exercise 2: Calculating smoothness constants (1)

Ridge regression

F (w) =
1

n

n∑
i=1

(yi − xT
i w)2 + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = (yi − xT
i w)2 + λ∥w∥2.

2. Compute ∇fi(w).

∇fi(w) = − 2(yi − xT
i w)xi + 2λw

3. Compute ∇2fi(w).
∇2fi(w) = 2xix

⊤
i + 2λI

4. Find Li.
∥∇2fi(w)∥ =

5. Fin Lmax =.
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Exercise 2: Calculating smoothness constants (1)

Ridge regression

F (w) =
1

n

n∑
i=1

(yi − xT
i w)2 + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = (yi − xT
i w)2 + λ∥w∥2.

2. Compute ∇fi(w).

∇fi(w) = − 2(yi − xT
i w)xi + 2λw

3. Compute ∇2fi(w).
∇2fi(w) = 2xix

⊤
i + 2λI

4. Find Li.
∥∇2fi(w)∥ =≤ 2∥xi∥2 + 2λ = Li

5. Fin Lmax = 2(λ+maxi ∥xi∥2).
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Exercise 3: Calculating smoothness constants (2)

Logistic regression

F (w) =
1

n

n∑
i=1

log(1 + exp(−yix⊤
i w)) + λ∥w∥2

Compute the smoothness constant Li and Lmax.

1. fi(w) = log(1 + exp(−yix⊤
i w)) + λ∥w∥2.

2. Compute ∇fi(w) =

3. Compute ∇2fi(w)

∇2fi(w) =
xix

⊤
i exp(yix

⊤
i w)

(1 + exp(yix⊤
i w))2

+ 2λI

4. Find Li.

∇2fi(w) ⪯ ∥xi∥2

4
I+ 2λI = LiI (hint et/(1 + et)2 ≤ 1

4
)

5. Find Lmax = maxi ∥xi∥2
4

+ 2λ.
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SGD with decreasing step size

Convergence for strongly convex and smooth function with ρ(k) = O( 1
k
)

If F = 1
n

∑
i fi µ-strongly convex with ∀i, fi is Li-smooth with K = Lmax

µ
and the

step size is

ρ(k) =

{
1

2Lmax
if k ≤ 4⌈K⌉

2k+1
(k+1)2µ

else

for k > 4⌈K⌉ we have for SGD:

E[∥x(k) − x⋆∥2] ≤ 8σ2

µ2k
+

16⌈K⌉2∥x(0) − x⋆∥2

e2k2
(6)

Convergence for smooth function with ρ(k) = O( 1√
k
)

If F = 1
n

∑
i fi with ∀i, fi is Li-smooth and ρ(k) = ρ√

1+k
and ρ ≤ 1

4Lmax
we have for

SGD:

E[F (x̄(k))− F (x⋆)] ≤ ∥x
(0) − x⋆∥2 + 2ρ(F (x̄(0))− F (x⋆))

2ρ
√
k − 1

+
2σ2(log(k) + 1)√

k − 1
(7)

with x̄(k) = 1
k+1

∑k
i=0 x

(i).

See details in [Garrigos and Gower, 2023]
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Example of decreasing step SGD
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Discussion

▶ Decreasing step size : ρ(k) = 1√
k

▶ Slow convergence but less noise for large number of iterations.

▶ Complexity O(d) per iteration.
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SGD with averaging (SGDA)

SGD with late start averaging

1: Initialize x(0) set s0 ≥ 0
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −∇xfi(k)(x(k))
5: x(k+1) ← x(k) + ρ(k)d(k)

6: if k ≥ s0 then
7: x̄(k) = 1

k−s0

∑k
i=s0

x(i)

8: else
9: x̄(k) = x(k)

10: end if
11: end for

▶ Principle : Averaging of the iterates after a certain number of steps to
compensate oscillations around optimality.

▶ Convergence of the average x̄(k) to the optimality in O( 1√
k
) for Li smooth and

convex functions fi [Polyak and Juditsky, 1992].

▶ Convergence remains slow because averaging slows changes.
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Example of SGD with averaging
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Discussion

▶ Decreasing step size : ρ(k) = 1√
k

▶ Slow convergence of x̄(k) but less noise that SGD.

▶ Complexity O(d) per iteration (how is that implemented?).
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Convergence of SGD VS GD
Iteration complexity for a linear model is with d parameters and n samples and k
iterations.

On strongly convex and smooth functions

Method Cost 1 iter. Convergence Nb. iter. Running time

GD nd exp(−k/κ) κ log(1/ϵ) ndκ log(1/ϵ)
SGD (O( 1

k
) step) d κ/k κ/ϵ dκ/ϵ

▶ Conditioning of the problem is κ = Lmax
µ

.

▶ SGD more efficient when n≫ 1
ϵ log(ϵ)

is very large.

On smooth functions

Method Cost 1 iter. Convergence Nb. iter. Running time

GD nd 1/k 1/ϵ dn/ϵ
AGD nd 1/k2 1/

√
ϵ dn/

√
ϵ

SGDA (O( 1√
k
) step) d 1/

√
k 1/ϵ2 d/ϵ2

▶ SGD more efficient than GD when n≫ 1
ϵ
is very large.

Limits of SGD

▶ Convergence remains slow in practice because of gradient noise.

▶ Better estimation of the gradient can be done with variance reduction methods.
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Stochastic Variance Reduced methods

Principle

▶ Keep iteration cost of SVG (compute only one gradient ∇fi(k)).

▶ Use and estimate g(k) ≈ ∇F (x(k)) with low variance updated (for cheap) at
each step.

▶ Use g(k) to compute the descent update.

x(k+1) = x(k) − ρ(k)g(k)

What we want for g(k)

▶ Unbiased estimator of the gradient ∇F (x(k)):

Ei∼ 1
n
[g(k)] = ∇F (x(k))

▶ Low variance VAR[g(k)] = E[∥g(k) −∇F (x(k))∥2] for faster convergence.
▶ Convergence in L2 to 0 at solution (no need for decreasing step size):

lim
x(k)→x⋆

E[∥g(k)∥2] = 0
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Controling the variance with covariates

Controlled Stochastic Reformulation

▶ Covariate function : zi is a function of the sample i, ∀i ∈ 1, . . . , n.

▶ Reformulation of original problem:

1

n

n∑
i=1

fi(x) = Ei∼ 1
n
[fi(x)] = Ei∼ 1

n
[fi(x)− zi(x) + zi(x)]

= Ei∼ 1
n
[fi(x)− zi(x) + Ei∼ 1

n
[zi(x)]]

▶ Equivalent optimization problem but one can use the gradient estimation for
sample i:

gi = ∇fi(x)−∇zi(x) + Ei∼ 1
n
[∇zi(x)]

▶ How to choose zi to control the variance?

Covariates
Let x and z two random variables, we say that x and z are covariates if:

cov(x, z) = E[(x− E[x])(z − E[z])] ≥ 0
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Covariates and variance reduction

Variance reduced estimate
When x and z are covariates one can define the variance reduced estimate:

xz = x− z + E[z]

Exercise 4: Properties of variance reduction

1. Compute E[xz] = E[x]
2. Compute VAR[xz] = E[(xz − E[xz])

2]

VAR[xz] = E[(xz − E[xz])
2]

= E[(x− E[x]− (z − E[z]))2]

= E[(x− E[x])2] + E[(z − E[z])2]− 2E[(x− E[x])(z − E[z])]
= VAR[x] + VAR[z]− 2cov(x, z)

3. Under which condition is VAR[xz] ≤ VAR[x]?

cov(x, z) ≥ 1

2
VAR[z]

the larger the correlation the better the variance reduction.
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Stochastic Variance Reduced Gradient (SVRG)

Principle of SVRG [Johnson and Zhang, 2013]

▶ Use covariate function zi that is a linear approximation of fi:

zi(x) = fi(x̃) +∇fi(x̃)⊤(x− x̃) (8)

where x̃ is a reference (anchor) point.

▶ The gradient gi with the variance reduced estimate:

gi = ∇fi(x)−∇fi(x̃) +∇F (x̃)

▶ The variance of the gradient estimation is:

VAR[gi] = = E[∥∇fi(x)−∇fi(x̃)−∇F (x) +∇F (x̃)∥2]

≤
3
2E[∥∇fi(x)−∇F (x)∥2] + 2E[∥∇fi(x̃)−∇F (x̃)∥2]

≤ 2(L2
max + L2)∥x− x̃∥2

Smaller variance when x is close to x̃.

3Use ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2
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Algorithm of SVRG

Algorithm of SVRG [Johnson and Zhang, 2013]

1: Initialize x(0), x̃(0) = x(0)

2: for k = 0, 1, 2, . . . do
3: x(0) ← x̃(k)

4: for j = 0, . . . ,M − 1 do
5: i← randomly pick an index i ∈ {1, . . . , n}
6: g = ∇fi(x(j))−∇fi(x̃(k)) +∇F (x̃(k))
7: x(j+1) = x(j) − ρg
8: end for
9: x̃(k+1) = x(M)

10: end for
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−1.0

−0.8

−0.6

−0.4

SVRG gradients

x(j)

̄x
d SVRG
−∇F( ̄x)
−∇fi(x)
−∇fi( ̄x)

▶ The gradient g is the variance reduced estimate of the gradient.

▶ The anchor point x̃(k) is updated every M steps.

▶ The full gradient ∇F (x̃(k)) is computed when anchor point is updated.

▶ Need to choose the parameter M .

▶ Convergence in O(e−Ck) for strongly convex and smooth functions and M
sufficiently large (same as GD because full gradient...).
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Example of SVRG
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Discussion

▶ Fixed step : ρ(k) = 0.02 (same as GD)

▶ M = 500 = 125 ∗ n
▶ Convergence in O(e−Ck) similar to GD for strongly convex and smooth functions.

▶ Similar speed as GD in term of gradient computation (full gradient every M iter.).
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Stochastic Average Gradient (SAG)

Stochastic Average Gradient (SAG) [Roux et al., 2012]

1: Initialize x(0),gi = ∇fi(x(0)) ∀i
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: gi(k) ← ∇xfi(k)(x)
5: d(k) ← − 1

n

∑
i gi

6: x(k+1) ← x(k) + ρd(k)

7: end for
▶ Keep in memory all previous computed

gradients gi, update only for sample i(k).

▶ Iteration is O(d), memory is O(nd).

▶ Convergence speed [Roux et al., 2012]

E[F (x̄(k))−F (x⋆)] =

{
O( 1

k
) for F convex

O(e−Ck) for F strongly convex

0.0 0.5 1.0 1.5

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

SAG gradients

x(k)

x(k− 1)

−d(k) SAG
−d(k− 1) SAG
−∇fi(x(k))
−∇fi(x(k− 1))

Exercise 5: Efficient implementation of SAG

▶ How to implement (reformulate) line 5 to avoid O(n) complexity?

▶ For a linear model with fi(x) = li(a
⊤
i x), do we weed to store all gradients gi?
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Example of Stochastic Average Gradient (SAG)
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Discussion

▶ Constant step size : ρ(k) = 0.02

▶ Fast convergence because the problem is strongly convex..

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ SAG complexity O(d) per iteration (but O(nd) in memory).
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SAGA: Stochastic Average Gradient Accelerated

SAGA [Defazio et al., 2014]

1: Initialize x(0),gi = ∇fi(x(0)) ∀i
2: for k = 0, 1, 2, . . . do
3: i(k) ← randomly pick an index i ∈ {1, . . . , n}
4: d(k) ← −

(
∇xfi(k)(x(k))− gi(k) + 1

n

∑
i gi

)
5: gi(k) ← ∇xfi(k)(x(k))
6: x(k+1) ← x(k) + ρd(k)

7: x(k+1) ← proxρh(x
(k+1))

8: end for
▶ Minimizes the following problem:

min
x

F (x) + h(x) =
1

n

∑
i

fi(x) + h(x)

▶ SAGA is a variant of SAG that can handle proximal operators.

▶ Convergence speed is same as SAG but better constant [Defazio et al., 2014]

E[F (x̄(k))− F (x⋆)] =

{
O( 1

k
) for F convex

O(e−Ck) for F strongly convex
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Example of SAGA
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Discussion

▶ Constant step size : ρ(k) = 0.02

▶ Fast convergence because the problem is strongly convex..

▶ One GD iter ≡ 4 SGD iter (since n = 4).

▶ SAGA complexity O(d) per iteration (but O(n) in memory for linear models).
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SGD in machine learning

Large scale optimization [Bottou, 2010, Bottou et al., 2018]

▶ Used for training linear and non-linear models on very large datasets.

▶ State of the art algorithm for linear SVM, logistic regression, least square.

▶ Classification (SVM,Logistic) : sklearn.linear model.SGDClassifier.

▶ Regression (least square, huber) : sklearn.linear model.SGDRegressor.

Efficient implementation

▶ Minibatches (compute stochastic gradient on multiple samples).

▶ Sparse implementation for sparse data.

▶ Parallel implementation on CPU/GPU.

▶ Early stopping can be used as regularization.
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SGD in deep learning

Training Neural Networks with SGD

▶ Usually use fixed step or scheduling of the step decrease.

▶ Use early stopping as regularization (but not always : double descent).

▶ Works very well on continuous, nonconvex problems but not very well understood.

▶ Several momentum averaging and adaptive step size strategies:

▶ Momentum and Accelerated gradients [Nesterov, 1983]
▶ RMSPROP [Tieleman and Hinton, 2012].
▶ Adaptive gradient step ADAGRAD [Duchi et al., 2011].
▶ Adaptive Moment estimation ADAM [Kingma and Ba, 2014].
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Complexity of GD methods
▶ Iteration complexity for a linear model is with d parameters and n samples.

▶ Conditioning of the problem is κ = L
µ

or κ = Lmax
µ

for SGD.

On strongly convex and smooth functions

Method 1 iter. Convergence Nb. iter. Running time

GD nd exp(−k/κ) κ log(1/ϵ) ndκ log(1/ϵ)
SGD (O( 1

k
) step) d κ/k κ/ϵ dκ/ϵ

SAG(A)/SVRG d 1/k (n+ κ) log(1/ϵ) d(n+ κ) log(1/ϵ)

On smooth functions

Method Cost 1 iter. Convergence Nb. iter. Running time

GD nd 1/k 1/ϵ dn/ϵ
AGD nd 1/k2 1/

√
ϵ dn/

√
ϵ

SGDA (O( 1√
k
) step) d 1/

√
k 1/ϵ2 d/ϵ2

SAG(A)/SVRG d
√
n/k

√
n/ϵ d

√
n/ϵ

▶ SGD and variance reduction methods are more efficient for large n.

▶ SAGA only needs smoothness params but require to store gradients.

▶ SVRG is O(d) in memory but require full regular full gradienst (+ param M).

▶ Accelerated version of SAGA and SVRG are also available [Lin et al., 2018].
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