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Constrained optimization and standard problems

Optimization problem (standard form)

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(1)

▶ F is convex and differentiable

▶ hj and gi are differentiable and define
convex constraints.

▶ The problem is convex.
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Standard problems for specialized solvers

▶ Linear Programming (LP)

▶ Quadratic Programming (QP)

▶ Mixed Integer Programming (MIP)

▶ Quadratically Constrained QP, Second Order Cone Programming, etc.
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From indicator to Lagrangian (1)
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Constrained optimization problem

min
x∈Rn

F (x)

with gi(x) ≤ 0 ∀i = 1, . . . , q.
(2)

▶ The problem is equivalent to

min
x∈Rn

F (x) +
∑
i

χ≤0(gi(x))

where χ≤0 is the characteristic function of the negative values (+∞ for positive
value and 0 everywhere else).

▶ The problem is not differentiable but can sometimes be solved using :

▶ Projected Gradient Descent (PGD) for simple constraints.
▶ Proximal splitting methods for more complex constraints (needs prox.op.).
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From indicator to Lagrangian (2)
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Lagrangian (details in [Knowles, 2010])

min
x∈Rn

F (x) +
∑
i

χ≤0(gi(x))

▶ Let us define the Lagrangian function L(x,u) such that u ≥ 0 and

L(x,u) = F (x) +
k∑

i=1

uigi(x)

▶ For u ≥ 0 we have

F (x) +
∑
i

χ≤0(gi(x)) = max
u≥0

L(x,u) ≥ L(x,u)

Because maxu≥0 uv = χ≤0(v) that is is +∞ for v > 0 and 0 for v ≤ 0.
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Lagrangian for standard constrained optimization

Optimization problem (standard form)

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(3)

Lagrangian of the optimization problem

We define the Lagrangian of the problem the function L such that :

L(x,u,v) = F (x) +
k∑

i=1

uigi(x) +
m∑

j=1

vjhj(x) (4)

▶ Inequality constraints are multiplied by positive dual variables ui ≥ 0.

▶ Equality constraints are multiplied by dual variables vj (any sign).

▶ The constrained optimization problem can be reformulated as

min
x

max
u≥0,v

L(x,u,v)

Finding a saddle point of the problem solves the constrained problem.
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Example of Lagrangian

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Constrained optimization
F
g1
x ⋆

−0.3
−0.2

−0.1x 0.0
0.2

0.4

u

−3.0

−2.5

−2.0

Lagrangian function
log(L(x,u))
F(x)

Optimization problem

min
x≤−0.1

F (x) = x2 + 0.05

▶ Constraint g(x) = x+ 0.1 ≤ 0.

▶ The Lagrangian is
L(x, u) = x2 + 0.05 + u(x+ 0.1)

with u ≥ 0.



6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 9/52

Lagrange dual function

Lagrange dual function

The Lagrange dual function D of the problem is

D(u,v) = inf
x

L(x,u,v) (5)

▶ If F is not bounded below, D = −∞.

▶ D is always concave (even when F is non-convex)

Lower bound
For all u ≥ 0,v and feasible x we have

F (x) ≥ L(x,u,v) ≥ D(u,v)

Proof:

L(x,u,v) = F (x) +

k∑
i=1

uigi(x)︸ ︷︷ ︸
≤0

+

m∑
j=1

vjhj(x)︸ ︷︷ ︸
=0

≤ F (x)

because x feasible (gi(x) ≤ 0, hj(x) = 0) and u ≥ 0.
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Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x+ 1)2

1. Express the Lagrangian of the problem above :

L(x, u) =

2. Solve the infimum w.r.t. x for a given dual variable u:

x⋆ =

3. Express the Lagrange Dual function D(u):

D(u) = L(x⋆, u) =

Check that the function is concave
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Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x+ 1)2

1. Express the Lagrangian of the problem above :

L(x, u) = (x+ 1)2 − ux

2. Solve the infimum w.r.t. x for a given dual variable u:

x⋆ =
u

2
− 1

3. Express the Lagrange Dual function D(u):

D(u) = L(x⋆, u) = − u2

4
− u+ 4

Check that the function is concave
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Duality Gap and Strong duality

Definition
For a feasible primal variable x and feasible dual variables u,v we call duality gap the
following positive value

F (x)−D(u,v) ≥ 0 (6)

▶ One property of the duality gap is that

F (x)− F ⋆ ≤ F (x)−D(u,v)

▶ If the duality gap is 0 for a feasible triplet x⋆,u⋆,v⋆ then x⋆ is optimal for the
primal and u⋆,v⋆ are optimal for the dual problem.

▶ If F ⋆ = D⋆ the problem is said to have strong duality .

▶ Slater’s constraint qualification: if the primal problem is convex and there exists
a feasible solution :

∃x ∈ Rn, hj(x) = 0, gi(x) < 0 ∀i, j

then strong duality holds.
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Karush-Kuhn-Tucker (KKT) conditions
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Optimization problems and Lagrangian
min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

max
u∈Rq,v∈Rp

D(u,v)

with u ≥ 0

L(x,u,v) = f(x) +
∑k

i=1 uigi(x) +
∑m

j=1 vjhj(x), with u ≥ 0

Karush-Kuhn-Tucker (KKT) conditions
1. ∇xF (x) +

∑
i ui∇xgi(x) +

∑
j vj∇xhj(x) = 0 Stationarity

2. gi(x) ≤ 0, hj(x) = 0, ∀i, ∀j Primal feasibility

3. ui ≥ 0 ∀i Dual feasibility

4. uigi(x) = 0 ∀i Complementarity
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Solution and optimality conditions
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Solution of the optimization problem

For a problem with strong duality (satisfying Slater’s conditions) the two following
statements are equivalent:

▶ x⋆ and u⋆,v⋆ are solutions of the primal and dual problems.

▶ x⋆ and u⋆,v⋆ satisfy the KKT conditions.

Finding a solution (sometimes)
1. Express the Lagrangian and the KKT conditions.

2. Try to find an analytic solution for x⋆ as function of u,v.

3. Express the dual problem and solve it if easier than primal.

4. Use KKT to recover the primal solution x⋆
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Example of KKT optimality conditions
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Optimization problem

min
x≤−0.1

F (x) = x2 + 0.05

▶ The Lagrangian is L(x, u) = x2 + 0.05 + u(x+ 0.1) with u ≥ 0.

▶ ∇xL(x, u) = 2x+ u = 0 gives x⋆ = −u
2
.

▶ D(u) = L(x⋆, u) = −u2

4
+ 0.1u+ 0.05.

▶ Optimal values are (x⋆, u⋆) = (−0.1, 0.2).
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Exercise 2: KKT conditions

min
x

1

2
∥x∥2 subject to

n∑
i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) =

2. Express the KKT of the problem:

2.1
2.2
2.3
2.4

3. Deduce from 1 and 2 above the optimal v⋆ by maximizing D(v) then x⋆:

D(v) =

v⋆i = x⋆
i =
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Exercise 2: KKT conditions

min
x

1

2
∥x∥2 subject to

n∑
i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) = 1

2
∥x∥2 + v(

n∑
i=1

xi − 1)

2. Express the KKT of the problem:

2.1 xi + v = 0, ∀i
2.2

∑n
i=1 xi − 1 = 0

2.3 None
2.4 None

3. Deduce from 1 and 2 above the optimal v⋆ by maximizing D(v) then x⋆:

D(v) = − nv2

2
− v

v⋆i = − 1

n
, ∀i x⋆

i =
1

n
, ∀i
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Linear equality constraints (change of variables)

min
x∈Rn

F (x) (7)

s.t. Ax = b
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(0, F( ̃x))
(z ⋆ , F( ̃x+ fz ⋆ ))

▶ With A ∈ Rp×n defining p linearly independent constraints.

▶ We can eliminate the equality constraints using basic linear algebra.

{x|Ax = b} = {Fz+ x̂|z ∈ Rn−p}

where x̂ is a vector satisfying Ax̂ = b and Im(F) = Ker(A).

▶ In Python one can compute F with scipy.linalg.null space.

▶ The equivalent unconstrained problem is then

min
z∈Rn−p

F (Fz+ x̂) (8)

where we can recover the solution of (7) with x⋆ = Fz⋆ + x̂.
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Log-Barrier function
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Approximating the inequality constraints

▶ The log-barrier function is an approximation of the characteristic function χ.

▶ The hard constraints can then be replaced by the log-barrier with δ > 0

min
x∈Rn

F (x)

s.t. gi(x) ≤ 0 ∀i
⇒ min

x∈Rn
F (x) +

1

δ

q∑
i=1

− log(−gi(x))
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Interior point solver

x(δ) = arg min
x∈Rn

F (x) +
1

δ

q∑
i=1

− log(−gi(x)) (9)

Interior Point algorithm

Initialize with a feasible x, and
δ > 0, µ > 1

1. x = x(δ)

2. δ = µδ

3. Go to 1. until convergence.

Properties of the algorithm

▶ Requires a solver for the inner problem : computing x(δ)

▶ Inner problem is unconstrained and smooth inside the domain.

▶ Converges to the solution of the constrained problem : limδ→∞ x(δ) = x⋆

▶ All iterations are inside the constraints.

▶ Converges provably in polynomial time for LP and QP.

More details: [Boyd and Vandenberghe, 2004, Ch.11], [Nocedal and Wright, 2006, Ch.
19]
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Linear Program (LP)

Linear program in standard form

min
x∈Rn

c⊤x (10)

s.t. Ax = b

x ≥ 0

▶ Linear objective with c ∈ Rn

▶ Linear equality constraints with
A ∈ Rp×n,b ∈ Rp

▶ Positivity inequality constraints. −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
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c

Problem as a function of Ax = b

▶ Underdetermined (p < d) : more variables than equations.

▶ Determined (p = d) : as many independent equations than variables, a unique
solution x⋆ = A−1b if A invertible.

▶ Overdetermined (p > d) : not feasible.

We look at the case where p < d.
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Linear Program (LP)

General formulation for LP

min
x∈Rn

cTx (11)

s.t. Gx ≤ h

Ax = b

▶ Closer formulation to the constrained
optimization (1).

▶ A ∈ Rp×n,b ∈ Rp, and
G ∈ Rq×n,h ∈ Rq.

▶ Most standard solvers (open source
and commercial) use this formulation.
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Exercise 3: Classical constraints
Express the matrices and vectors from general LP above for the following constraints:

▶ Positivity x ≥ 0 :

▶ Simplex {x|x ≥ 0,
∑

i xi = 1} :

▶ Box constraints l ≤ x ≤ u:
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Linear Program (LP)
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Exercise 3: Classical constraints
Express the matrices and vectors from general LP above for the following constraints:

▶ Positivity x ≥ 0 : G = −In,h = 0

▶ Simplex {x|x ≥ 0,
∑

i xi = 1} : A = [1, . . . , 1],b = [1],G = −In,h = 0

▶ Box constraints l ≤ x ≤ u: G =

[
In
−In

]
,h =

[
u
l

]
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Example of LP : Optimal Transport (OT)

Definition of the problem

▶ n factories produce ai, ∀i amount of goods (vector a).

▶ d stores need to sell sj , ∀j amount of goods ((vector s, same total as a)).

▶ There is a cost Ci,j of transporting a unitary amount of good from factory i to
store j.

▶ Find the optimal (cheapest) way to move all the goods between factories and
stores. A solution of the problem is called a transport matrix.

Optimal transport problem

min
X∈Rn×d

n,d∑
i=1,j=1

Ci,jXi,j

s.t.
∑
j

Xi,j = ai ∀i,
∑
i

Xi,j = sj ∀j

Xi,j ≥ 0 ∀i, j

▶ Resource allocation problem .

▶ Proposed by
[Kantorovich, 1942].

▶ Nobel prize in economy.

▶ Now used a lot in machine
learning.



6.2.1 - Linear Program (LP) - Problem formulation - 22/52

Exercise 4: OT expressed as general LP problem
We express the matrix x as the concatenation of the rows of the matrix X:

x = [X1,1, X1,2, X1,3, . . . Xn,d−1, Xn,d]
T

The cost matrix C is also vectorized as c.

1. Express the row-wise equality constraints
∑

j Xi,j = ai,∀i and A1x = a:

A1 =

The matrix can be expressed simply with the Kroenecker product ⊗
2. Express the column-wise equality constraints

∑
i Xi,j = sj , ∀j and A2x = s:

A2 =

3. Express all the matrices in the general LP :

A =

[
A1

A2

]
, b = , G = , h =
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x = [X1,1, X1,2, X1,3, . . . Xn,d−1, Xn,d]
T

The cost matrix C is also vectorized as c.

1. Express the row-wise equality constraints
∑

j Xi,j = ai,∀i and A1x = a:

A1 = In ⊗ 11,d

The matrix can be expressed simply with the Kroenecker product ⊗
2. Express the column-wise equality constraints

∑
i Xi,j = sj , ∀j and A2x = s:

A2 = 11,n ⊗ Id

3. Express all the matrices in the general LP :

A =

[
A1

A2

]
, b =

[
a
s

]
, G = − Ind, h = 0nd
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Reduction from general to standard problem

Reformulation to standard LP with positive variables

min
x∈Rn

cTx

s.t. Gx ≤ h

Ax = b

≡

min
x+∈Rn,x−∈Rn,s∈Rq

cTx+ − cTx− = c̃⊤x̃

s.t. Gx+ s = h

Ax+ −Ax− = b

x+ ≥ 0,x− ≥ 0, s ≥ 0

▶ We express x = x+ − x− as a difference of positive variables.

▶ Problem on the right can be reformulated as standard LP.

▶ The positive variable s ≥ 0 is used to recover an equality constraint.

▶ The standard problem optimizes over x̃ = [x+⊤,x−⊤, s⊤]⊤ ≥ 0.

▶ The matrix Ã and b̃ can be recovered from A, G, b and h.

▶ The two ”tricks” above are classical tools for reformulation.
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Primal and Dual problems

Primal LP

min
x∈Rn

c⊤x

s.t. Ax = b

x ≥ 0

Dual LP

max
v∈Rp

− b⊤v

s.t. −ATv ≤ c

Primal VS Dual

▶ The problem permute their variables and constraints.

▶ When there is strict duality (problem has a solution) duality gap is 0:

c⊤x⋆ = −b⊤v⋆

▶ Finding x⋆ from v⋆ and vice versa:

1. Find components of x⋆ equal to 0 from the equality (ATv⋆ − c)Tx⋆ = 0.
2. Solve the linear system Ax = b for the non-zero components of x⋆.
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Solution of the standard LP

min
x∈Rn

c⊤x

s.t. Ax = b

x ≥ 0

Property of the solution

▶ Problem is convex but possibly has an infinite number of solution (if on one side
of the polytope).

▶ Solution x⋆ is always on a border of the polytop describing the constraints.

▶ There is at most p (A ∈ Rp×n) components of x⋆ that are non-zero.

▶ Those non-zeros components are called active variables.
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Robust regression with Least Absolute Deviation

min
w∈Rd

n∑
i=1

|yi − xT
i w|

▶ More robust to outliers than least squares but also less stable
[Barrodale and Roberts, 1973].

Exercise 5: Reformulations as LP

1. Reformulate problem above as a LP with additional variables e+ ≥ 0, e− ≥ 0
such that y −Xw = e+ − e− with X = [x1, . . . ,xn]

T :

min
w,e+,e−

2. Reformulate problem above as a LP with additional variable f ≥ 0n such that
|Hx− y| ≤ f :

min
w,f
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Robust regression with Least Absolute Deviation

min
w∈Rd

n∑
i=1

|yi − xT
i w|

▶ More robust to outliers than least squares but also less stable
[Barrodale and Roberts, 1973].

Exercise 5: Reformulations as LP

1. Reformulate problem above as a LP with additional variables e+ ≥ 0, e− ≥ 0
such that y −Xw = e+ − e− with X = [x1, . . . ,xn]

T :

min
w,e+,e−

1T
ne

+ + 1T
ne

−

s.t. Xw − y = e+ − e−

e+ ≥ 0n, e
− ≥ 0n

2. Reformulate problem above as a LP with additional variable f ≥ 0n such that
|Hx− y| ≤ f :

min
w,f

1T
n f

s.t. Xw − y ≤ f , −Xw + y ≤ f

f ≥ 0n
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L1 Support Vector Machines

min
w∈Rd

n∑
i=1

max(0, 1− yix
T
i w) (12)

s.t. ∥w∥1 ≤ β

▶ Proposed in [Zhu et al., 2004], to promote sparsity in SVM (with the L1 norm).

▶ Problem above can be reformulated as the following optimization problem :

min
f ,w+,w−

1T
n f

s.t. 1n − (y ⊙X)w+ + (y ⊙X)w− ≤ f

1T
d w

+ + 1T
d w

− ≤ β, f ≥ 0, w+ ≥ 0, w− ≥ 0

▶ The corresponding general LP problem with x = [w+T ,w−T , f ]T has the
following matrices:

c =

 0
0
1n

 , G =


−(y ⊙X) (y ⊙X) −In

11,d 11,d 01,n

−Id 0d,d 0d,n

0d,d −Id 0d,n

0n,d 0n,d −In

 , h =


−1n

β
0d

0d

0n
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Simplex Algorithm

Main idea behind the simplex

▶ Initialize with a basic feasible solution x(0) (on a vertex
or extreme point of the polytope).

▶ Update the solution to decrease the loss at each
iteration.

▶ Use the sparsity of x (add and remove active variables).

Simplex algorithm

▶ Invented by Dantzig around 1957.

▶ Solved the problem he thought was a homework exercise from his course.

▶ Standard algorithm for solving LP, very efficient for sparse problems but possibly
non polynomial (worst case).

▶ On network flow problems, the adapted network simplex is proven to be
polynomial [Orlin, 1997] (optimal transport).

▶ in Python : scipy.optimize.linprog(method=’simplex’)

More details: [Vanderbei et al., 2015, part 1]
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Interior point solver

Interior point method (IPM) for LP

min
x∈Rn

c⊤x

s.t. Gx ≤ h

⇒
min
x∈Rn

δc⊤x+−
q∑

i=1

log(gT
i x− hi)

▶ Classical solver for linear programs.

▶ Simplex searches on the corners of the
polytope, IPM optimize inside it.

▶ Never against the constraints until numerical
precision is achieved.

▶ Polynomial complexity for LP (better than
simplex in theory).

▶ In Python: scipy.optimize.linprog

More details: [Boyd and Vandenberghe, 2004, Chapter 11], [Vanderbei et al., 2015,
Part 3], [Nocedal and Wright, 2006, Chapter 14]



6.2.3 - Linear Program (LP) - Simplex Algorithm - 30/52

Solving a Linear Program

Simplex and variants

▶ Exact solutions.

▶ Can be slow for large problems.

▶ Use it on structured graph flow.

Interior point problem

▶ Better at early stopping.

▶ Usually faster on large problems.

▶ Most generic commercial solvers.

LP solvers in Python

▶ Scipy : scipy.optimize.linprog function (both simplex and interior points)

▶ cvxopt : Interior point solver for standard problems + wrapper for commercial
solvers and GLPK [Vandenberghe, 2010].

▶ Mosek Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi Commercial solver (free for academics).

▶ CPLEX Commercial solver (free for academics).

Wrappers available : https://github.com/stephane-caron/lpsolvers

https://github.com/stephane-caron/lpsolvers
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Quadratic Program

Optimization problem

min
x∈Rn

1

2
xTQx+ cTx (13)

s.t. Gx ≤ h

Ax = b

▶ Q ∈ Rn× n is a symmetric positive
definite matrix (convex QP).

▶ A ∈ Rp×n,b ∈ Rp, and
G ∈ Rq×n,h ∈ Rq.

▶ Most standard solvers (open source
and commercial) use this formulation.
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∇xF(x ⋆ )

Special cases

▶ Unconstrained : close form solution or iterative methods (Conjugate gradients)

▶ Box constraints l ≤ x ≤ u: projected gradient (see proximal methods).
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QP Exemple: Portfolio optimization

▶ Model proposed by Markowitz in 1952 (Nobel Prize in economy).

▶ x is a portfolio of n assets (or stock).

▶ The price change for each asset is modeled as random variables with expected
price change p and covariance Σ.

▶ For a given portfolio x

▶ The expected gain (return) is : pTx
▶ The expected variance is : xTΣx

▶ The portfolio optimization can be expressed for a positive balance b > 0 as:

min
x∈Rn

xTΣx (14)

s.t. 1T
nx = b (15)

pTx ≥ rmin (16)

where rmin is the minimal return of the portfolio.
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Special Case : QP without constaints

min
x∈Rn

1

2
xTQx+ cTx (17)

Unconstrained QP

▶ The gradient of the term above is ∇x = 1
2
(Q+QT )x+ c

▶ For symmetric matrix Q a solution respects : Qx⋆ = −c

▶ If Q is invertible and strictly positive definite then : x⋆ = −Q−1c

▶ To solve the problem several approaches

1. Solve the linear equations : np. linalg . solve with complexityO(n3)
2. Solve the linear equations with Conjugate Gradient or other gradient descent

methods (see other courses).

Exercise 6: Least Square and Ridge

min
x

1

2
∥Hx− y∥2 min

x∈Rn

1

2
∥Hx− y∥2 + λ

1

2
∥x∥2

Recover the matrices Q and c of the equivalent QP for the problems above:

Q = c = Q = c =
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Special Case : QP without constaints

min
x∈Rn

1

2
xTQx+ cTx (17)

Unconstrained QP

▶ The gradient of the term above is ∇x = 1
2
(Q+QT )x+ c

▶ For symmetric matrix Q a solution respects : Qx⋆ = −c

▶ If Q is invertible and strictly positive definite then : x⋆ = −Q−1c

▶ To solve the problem several approaches

1. Solve the linear equations : np. linalg . solve with complexityO(n3)
2. Solve the linear equations with Conjugate Gradient or other gradient descent

methods (see other courses).

Exercise 6: Least Square and Ridge

min
x

1

2
∥Hx− y∥2 min

x∈Rn

1

2
∥Hx− y∥2 + λ

1

2
∥x∥2

Recover the matrices Q and c of the equivalent QP for the problems above:

Q = HTH, c = −HTy, Q = HTH+ λI, c = −HTy,
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Support Vector Machines (1)

Hard margin SVM [Cortes and Vapnik, 1995]

min
w,b

1

2
∥w∥2 (18)

s.t. yi(x
T
i w + b) ≥ 1

▶ All samples (xi, yi) must be classified well
with a margin of at least 1.

▶ Needs the data to be linearly separable.

▶ Minimizing the norm of w corresponds to
maximizing the margin 2

∥w∥ .

Soft margin SVM

min
w∈Rd,b∈R

C
∑
i

max(0, 1− yi(x
T
i w + b)) +

1

2
∥w∥2 (19)

▶ The margin constraints are relaxed with the Hinge loss.

▶ C is the weight of the data fitting term.

▶ Non differentiable convex problem.
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Support Vector Machines (2)
Primal SVM

min
w∈Rd,b∈R,z∈Rn

C
∑
i

zi +
1

2
∥w∥2 (20)

s.t. yi(x
T
i w + b) ≥ 1− zi, ∀i

z ≥ 0

▶ We introduce the variables zi ≥ 0 such that zi = max(0, 1− yi(x
T
i w + b)).

Dual SVM

min
α∈Rn

1

2
αTQα− 1T

nα (21)

s.t. yTα = 0

0n ≤ α ≤ C1n

▶ QP (Qi,j = yiyjx
T
i xj) with box constraints and one linear constraint.

▶ Primal solution can be recovered with : w⋆ =
∑

i yiα
⋆
ixi.

▶ b⋆ can be found on a support vector where inequality becomes equality.

▶ Most common formulation because allows the use of kernel for nonlinear
classification (Qi,j = yiyjk(xi,xj))



6.3.2 - Quadratic Program (QP) - Examples of QP in ML - 36/52

Lasso estimator

min
w

1

2
∥Xw − y∥2 + λ

∑
i

|wi| (22)

▶ Classical approach to perform regression with variable selection [Tibshirani, 1996].

▶ Quadratic data fitting, L1 regularization term.

▶ Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q = c = G = h =
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Lasso estimator

min
w

1

2
∥Xw − y∥2 + λ

∑
i

|wi| (22)

▶ Classical approach to perform regression with variable selection [Tibshirani, 1996].

▶ Quadratic data fitting, L1 regularization term.

▶ Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

1

2
∥X(w+ −w−)− y∥2 + λ

∑
i

w+
i + w−

i

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q = c = G = h =
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Lasso estimator

min
w

1

2
∥Xw − y∥2 + λ

∑
i

|wi| (22)

▶ Classical approach to perform regression with variable selection [Tibshirani, 1996].

▶ Quadratic data fitting, L1 regularization term.

▶ Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

1

2
∥X(w+ −w−)− y∥2 + λ

∑
i

w+
i + w−

i

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q =

[
XTX −XTX
−XTX XTX

]
, c =

[
−XTy + λ1d

XTy + λ1d

]
, G = −I2d, h = 02d
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Active set Algorithm

min
x∈Rn

1

2
xTQx+ cTx

s.t. Gx ≤ h

Ax = b

Principle of active set method

▶ Search for the active constraints A(x⋆).

▶ If the optimal active set is known the problem is an equality constrained QP.

▶ QP with equality constraint can be solved with : null space + unconstrained QP.

▶ QP version of the simplex (search on which constraints is the solution).

▶ Very efficient on some problems (positivity, bloc constraints, SVM).

Active set Method (simplified)

Initialize feasible x , A(x) = {i|gT
i x = hi} the active set of inequality constraints.

1. Solve subproblem with inequality constraints in A(x) forced to equality.

2. Update the active set using KKT conditions.

More details: [Nocedal and Wright, 2006, Sec. 16.5]
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Sequential Minimal Optimization (SMO)

min
α∈Rn

1

2
αTQα− 1T

nα

s.t. yTα = 0

0n ≤ α ≤ C1n

Principle of SMO

▶ Proposed by [Platt, 1998] to solve large scale SVM.

▶ Coordinate descent algorithm taking into account yTα = 0.

▶ The choice of the coordinates to update is sensitive.

▶ Sate of the art solver for SVM [Chang and Lin, 2001] also use a cache for
computing the kernel matrix.

SMO Algorithm

Initialize feasible α

1. Find two components αi and αj that violate KKT conditions.

2. Solve the QP on only those components in closed form (1D problem).
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Solving a QP

min
x∈Rn

1

2
xTQx+ cTx

s.t. Gx ≤ h

Ax = b
Main Algorithms

▶ Interior points Efficient for large problems (commercial solvers).

▶ Active set General solver, an be very fast on structured problems (sparsity, SVM)

▶ SMO State of the art solver for SVM.

QP Solvers in Python

▶ Numpy (no constraints): (np. linalg . solve ornp. linalg . lstsq ).

▶ quadprog : Implements active set [Goldfarb and Idnani, 1983]

▶ cvxopt : Interior point solver for standard problems + wrapper for Mosek.

▶ OSQP : Operator spliting QP solver [Stellato et al., 2017].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

Benchmark available : https://github.com/qpsolvers/qpbenchmark

https://github.com/qpsolvers/qpbenchmark
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Integer Programming

min
x∈Rn

F (x)

s.t. hj(x) = 0 ∀j = 1, . . . , p
gi(x) ≤ 0 ∀i = 1, . . . , q.
x ∈ Zn

(23)

▶ Classical optimization problem with additional integer constraints x ∈ Zn.

▶ Zero-one programming when variables can be only binary x ∈ {0, 1}n.
▶ Mixed Integer Programming (MIP) problems when only part of the variables

are integer : xi ∈ Z for i = 1, . . . , ni with ni ≤ n.

▶ Problem is extremely hard to solve exactly (NP complete).

Algorithms

▶ Continuous relaxation (and then rounding, can work well on MILP).

▶ Cutting Plane Algorithm (relaxation + iteratively add linear constraints).

▶ Branch and bound (exact method using upper and lower bounds to split the
space of solution).
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MILP and MIQP

Mixed Integer LP (MILP)

min
x∈Rn

cTx

s.t. x ≥ 0

Ax = b

xi ∈ Z, ∀i ∈ {1, . . . , ni}

Mixed Integer QP (MIQP)

min
x∈Rn

1

2
xTQx+ cTx

s.t. x ≥ 0

Ax = b

xi ∈ Z, ∀i ∈ {1, . . . , ni}
▶ Well studied MIP problems.

▶ For MILP, relaxation can be exact (when total unimodularity of A)

▶ Solved by Branch and Bound and cutting planes in general.

MIP solvers in Python

▶ cvxpy : General optimization (multiple wrappers) [Diamond and Boyd, 2016].

▶ ECOS : Embedded Conic Solver for MILP [Domahidi et al., 2013].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).
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L0 sparse regression

min
x∈Rn

1

2
∥Hx− y∥2 + λ∥x∥0

Problem above can be reformulated as a MIQP [Bourguignon et al., 2015].

▶ First we introduce a binary vector z ∈ {0, 1}n.
▶ We suppose that zi = 1 if variable xi ̸= 0 else zi = 0. This means that for a big

enough M we have:
−Mz ≤ x ≤ Mz

▶ We can express the L0 sparse regression as the following optimization problem:

min
x∈Rn,z∈Rn

1

2
x⊤HTHx− (HTy)Tx+ λ1T

nz

s.t. −Mz ≤ x ≤ Mz

z ∈ {0, 1}n

Other formulations corresponds to constrained expression but all use the ”big M”
trick.
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Quadratically Constrained QP (QCQP)

Optimization problem

min
x∈Rn

1

2
xTQ0x+ cT0 x (24)

s.t. xTQix+ cTi x ≤ hi, ∀i = 1, . . . ,m

Ax = b

▶ If Q0, . . . ,Qm are positive definite
then the problem is convex and can
be solved with interior point.

▶ Nonconvex QCQP is NP-hard,
because a constraint xi ∈ {0, 1} is
recovered with:

xi(1− xi) ≥ 0 and xi(1− xi) ≤ 0
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QCQP solvers in Python

▶ cvxpy : with nonconvex QCQP extension [Park and Boyd, 2017] .

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).
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Quadratically Constrained QP (QCQP)

Optimization problem

min
x∈Rn

1
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s.t. xTQix+ cTi x ≤ hi, ∀i = 1, . . . ,m

Ax = b

▶ If Q0, . . . ,Qm are positive definite
then the problem is convex and can
be solved with interior point.

▶ Nonconvex QCQP is NP-hard,
because a constraint xi ∈ {0, 1} is
recovered with:

xi(1− xi) ≥ 0 and xi(1− xi) ≤ 0
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QCQP solvers in Python

▶ cvxpy : with nonconvex QCQP extension [Park and Boyd, 2017] .

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).
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K-means as MIQCQP

min
x̄k,∀k

N∑
i=1

min
k

∥x̄k − xi∥2

▶ The argmin for each sample can be replaced by a linear term with a matrix
Z ∈ {0, 1}N,K modeling the clustering of the samples.

▶ We force a unique cluster selection with constraints

Z ∈ {0, 1}N,K , Z1K = 1N

▶ We introduce the distance variable as Di,k = ∥xi − x̄k∥2

▶ The optimization problem above can be expressed as

min
x̄k,∀k,Z∈RN×K ,D∈RN×K

∑
i,k

Zi,kDi,k (25)

s.t. Di,k = ∥xi − x̄k∥2, ∀i, ∀k
Z1K = 1N

Z ∈ {0, 1}N,K

Warning: Never try to solve K-means with this formulation!
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Second Order Cone Programming (SOCP)

Optimization problem

min
x∈Rn

cTx (26)

s.t. ∥Aix− bi∥2 ≤ hT
i x+ di, i = 1, . . . ,m

A0x = b0

▶ The following constraint is called a
Second order cone constraint:

∥Ax− b∥2 ≤ hTx+ d
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▶ When hi = 0, ∀i the problem is a QCQP (one can square the norm).

▶ Other kind of cone constraints can be used (positive definite matrices).

SOCP solvers in Python

▶ cvxopt : Interior point solver [Vandenberghe, 2010].

▶ cvxpy : SOCP solver [Diamond and Boyd, 2016].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).
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Robust Support Vector Machines

min
w∈Rd,b∈R,z∈Rn

C
∑
i

zi +
1

2
∥w∥2 (27)

s.t. yi(x
T
i w + b) ≥ 1− zi + γi

∥∥∥∥Σ 1
2
i w

∥∥∥∥ , ∀i
z ≥ 0

▶ Proposed in [Shivaswamy et al., 2006] to handle uncertain and missing data.

▶ We suppose that we have uncertain data (xi, yi) and that the training sample xi

has a covariance matrix Σi to model its uncertainty.

▶ In this can one want to replace the hard margin constraint by a probabilistic
variant

P (yi(x
T
i w + b) ≥ 1− zi) ≥ 1− κi

were κi is small.

▶ When using the normal distribution on the training samples, one can recover the
optimization problem above with γi = ϕ−1(κi) where ϕ is the normal CDF.
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Semi-Definite Programming
Optimization problem

min
X∈Sn

⟨X,C⟩Sn (28)

s.t. ⟨X,Ai⟩Sn = bi, i = 1, . . . ,m

X ⪰ 0

▶ Sn is the set of n× n symmeric matrices.

▶ ⟨X,C⟩Sn =
∑

i,j Xi,jCi,j is the Frobenius scalar product between matrices.

▶ The constraint X ⪰ 0 forces X to be semi-definite positive.

▶ Special case of cone programming (cone of positive semi-definite matrices).

▶ Can be solved efficiently with interior point solver.

SDP solvers in Python

▶ cvxopt : Interior point solver [Vandenberghe, 2010].

▶ cvxpy : SDP solver [Diamond and Boyd, 2016].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).
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Conclusion

Constrained optimization

▶ Constrained optimization is a very large field.

▶ Langrangian and KKT conditions are the main tools to solve and check solutions.

Standard Problems (properties)

▶ Important properties

▶ Linear or quadratic objective function.
▶ Linear, quadratic of conic constraints.
▶ Real of integer variables.

▶ Many existing generic solvers for those problems (commercial or free).

Solving DS and ML problems beyond gradient descent

▶ Constraints are important in many problems (fairness, robustness).

▶ You often have to model new ML problems depending on the constraints.

▶ Reformulation is key to use generic solvers (important skill).
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