
Optimization for data science
Constrained Optimization and Standard Problems

R. Flamary

Master Data Science, Institut Polytechnique de Paris

November 12, 2024

Full course overview
1. Introduction to optimization for data science

1.1 ML optimization problems and linear algebra recap
1.2 Optimization problems and their properties (Convexity, smoothness)

2. Smooth optimization : Gradient descent
2.1 First order algorithms, convergence for smooth and strongly convex functions

3. Smooth Optimization : Quadratic problems
3.1 Solvers for quadratic problems, conjugate gradient
3.2 Linesearch methods

4. Non-smooth Optimization : Proximal methods
4.1 Proximal operator and proximal algorithms
4.2 Lab 1: Lasso and group Lasso

5. Stochastic Gradient Descent
5.1 SGD and variance reduction techniques
5.2 Lab 2: SGD for Logistic regression

6. Constrained Optimization and Standard Problems
6.1 Lagrangian, LP, QP and Mixed Integer Programming

7. Coordinate descent
7.1 Algorithms and Labs

8. Newton and quasi-newton methods
8.1 Second order methods and Labs

9. Beyond convex optimization
9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

Current course overview
1. Introduction to optimization 4
2. Smooth optimization : Gradient descent 4
3. Smooth Optimization : Quadratic problems 4
4. Non-smooth optimization : Proximal methods 4
5. Stochastic Gradient Descent 4
6. Constrained Optimization and Standard Problems 4
6.1 Constrained optimization 6

6.1.1 Lagrangian of a constrained optimization problem
6.1.2 Karush-Kuhn-Tucker (KKT) optimality conditions
6.1.3 Interior point solvers

6.2 Linear Program (LP) 26
6.2.1 Problem formulation
6.2.2 Examples of LP in ML
6.2.3 Simplex Algorithm

6.3 Quadratic Program (QP) 41
6.3.1 Problem formulation
6.3.2 Examples of QP in ML
6.3.3 Active set (AS) and Sequentiel Minimal Optimization (SMO)

6.4 Other optimization problems 53
6.4.1 Integer Programming (IP)
6.4.2 Quadratically constrained QP and Cone Programming
6.4.3 Semi-Sefinite Programming (SDP)

6.5 Conclusion 62
7. Coordinate descent 63
8. Newton and quasi-newton methods 63
9. Beyond convex optimization 63

6.0.0 - - - 4/52

Constrained optimization and standard problems

Optimization problem (standard form)

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(1)

▶ F is convex and differentiable

▶ hj and gi are differentiable and define
convex constraints.

▶ The problem is convex.
−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Constrained optimization

g1
g2
x ⋆

Standard problems for specialized solvers

▶ Linear Programming (LP)

▶ Quadratic Programming (QP)

▶ Mixed Integer Programming (MIP)

▶ Quadratically Constrained QP, Second Order Cone Programming, etc.

6.0.0 - - - 4/52

Constrained optimization and standard problems

Optimization problem (standard form)

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(1)

▶ F is convex and differentiable

▶ hj and gi are differentiable and define
convex constraints.

▶ The problem is convex. −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Constrained optimization (eq. constraint)

g1
g2
h1
x ⋆

Standard problems for specialized solvers

▶ Linear Programming (LP)

▶ Quadratic Programming (QP)

▶ Mixed Integer Programming (MIP)

▶ Quadratically Constrained QP, Second Order Cone Programming, etc.

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 5/52

From indicator to Lagrangian (1)

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Constrained optimization
F
g1
g2
x ⋆

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Const. optimization with char. func.
F

F+∑
i
χgi ≤ 0

x ⋆

Constrained optimization problem

min
x∈Rn

F (x)

with gi(x) ≤ 0 ∀i = 1, . . . , q.
(2)

▶ The problem is equivalent to

min
x∈Rn

F (x) +
∑
i

χ≤0(gi(x))

where χ≤0 is the characteristic function of the negative values (+∞ for positive
value and 0 everywhere else).

▶ The problem is not differentiable but can sometimes be solved using :

▶ Projected Gradient Descent (PGD) for simple constraints.
▶ Proximal splitting methods for more complex constraints (needs prox.op.).

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 6/52

From indicator to Lagrangian (2)

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

−0.4

−0.2

0.0

0.2

0.4

0.6

Lower bound for characteristic function

χgi ≤ 0

1 * g1
10 * g1

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

−0.4

−0.2

0.0

0.2

0.4

0.6

Lagrangian function

F

F+∑
i
χgi ≤ 0

L= F+ 0.2g1 + 0.1g2

Lagrangian (details in [Knowles, 2010])

min
x∈Rn

F (x) +
∑
i

χ≤0(gi(x))

▶ Let us define the Lagrangian function L(x,u) such that u ≥ 0 and

L(x,u) = F (x) +
k∑

i=1

uigi(x)

▶ For u ≥ 0 we have

F (x) +
∑
i

χ≤0(gi(x)) = max
u≥0

L(x,u) ≥ L(x,u)

Because maxu≥0 uv = χ≤0(v) that is is +∞ for v > 0 and 0 for v ≤ 0.

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 7/52

Lagrangian for standard constrained optimization

Optimization problem (standard form)

min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

(3)

Lagrangian of the optimization problem

We define the Lagrangian of the problem the function L such that :

L(x,u,v) = F (x) +
k∑

i=1

uigi(x) +
m∑

j=1

vjhj(x) (4)

▶ Inequality constraints are multiplied by positive dual variables ui ≥ 0.

▶ Equality constraints are multiplied by dual variables vj (any sign).

▶ The constrained optimization problem can be reformulated as

min
x

max
u≥0,v

L(x,u,v)

Finding a saddle point of the problem solves the constrained problem.

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 8/52

Example of Lagrangian

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Constrained optimization
F
g1
x ⋆

−0.3
−0.2

−0.1x 0.0
0.2

0.4

u

−3.0

−2.5

−2.0

Lagrangian function
log(L(x,u))
F(x)

Optimization problem

min
x≤−0.1

F (x) = x2 + 0.05

▶ Constraint g(x) = x+ 0.1 ≤ 0.

▶ The Lagrangian is
L(x, u) = x2 + 0.05 + u(x+ 0.1)

with u ≥ 0.

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 9/52

Lagrange dual function

Lagrange dual function

The Lagrange dual function D of the problem is

D(u,v) = inf
x

L(x,u,v) (5)

▶ If F is not bounded below, D = −∞.

▶ D is always concave (even when F is non-convex)

Lower bound
For all u ≥ 0,v and feasible x we have

F (x) ≥ L(x,u,v) ≥ D(u,v)

Proof:

L(x,u,v) = F (x) +

k∑
i=1

uigi(x)︸ ︷︷ ︸
≤0

+

m∑
j=1

vjhj(x)︸ ︷︷ ︸
=0

≤ F (x)

because x feasible (gi(x) ≤ 0, hj(x) = 0) and u ≥ 0.

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 10/52

Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x+ 1)2

1. Express the Lagrangian of the problem above :

L(x, u) =

2. Solve the infimum w.r.t. x for a given dual variable u:

x⋆ =

3. Express the Lagrange Dual function D(u):

D(u) = L(x⋆, u) =

Check that the function is concave

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 10/52

Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x+ 1)2

1. Express the Lagrangian of the problem above :

L(x, u) = (x+ 1)2 − ux

2. Solve the infimum w.r.t. x for a given dual variable u:

x⋆ =

3. Express the Lagrange Dual function D(u):

D(u) = L(x⋆, u) =

Check that the function is concave

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 10/52

Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x+ 1)2

1. Express the Lagrangian of the problem above :

L(x, u) = (x+ 1)2 − ux

2. Solve the infimum w.r.t. x for a given dual variable u:

x⋆ =
u

2
− 1

3. Express the Lagrange Dual function D(u):

D(u) = L(x⋆, u) =

Check that the function is concave

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 10/52

Exercise 1: Lagrange dual

min
x,x≥0

F (x) = (x+ 1)2

1. Express the Lagrangian of the problem above :

L(x, u) = (x+ 1)2 − ux

2. Solve the infimum w.r.t. x for a given dual variable u:

x⋆ =
u

2
− 1

3. Express the Lagrange Dual function D(u):

D(u) = L(x⋆, u) = − u2

4
− u+ 4

Check that the function is concave

6.1.1 - Constrained optimization - Lagrangian of a constrained optimization problem - 11/52

Duality Gap and Strong duality

Definition
For a feasible primal variable x and feasible dual variables u,v we call duality gap the
following positive value

F (x)−D(u,v) ≥ 0 (6)

▶ One property of the duality gap is that

F (x)− F ⋆ ≤ F (x)−D(u,v)

▶ If the duality gap is 0 for a feasible triplet x⋆,u⋆,v⋆ then x⋆ is optimal for the
primal and u⋆,v⋆ are optimal for the dual problem.

▶ If F ⋆ = D⋆ the problem is said to have strong duality .

▶ Slater’s constraint qualification: if the primal problem is convex and there exists
a feasible solution :

∃x ∈ Rn, hj(x) = 0, gi(x) < 0 ∀i, j

then strong duality holds.

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 12/52

Karush-Kuhn-Tucker (KKT) conditions

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Constrained optimization
F
g1
g2
x ⋆

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
KKT optimality

x ⋆

∇F(x ⋆)
∇g1(x ⋆)

Optimization problems and Lagrangian
min
x∈Rn

F (x)

with hj(x) = 0 ∀j = 1, . . . , p
and gi(x) ≤ 0 ∀i = 1, . . . , q.

max
u∈Rq,v∈Rp

D(u,v)

with u ≥ 0

L(x,u,v) = f(x) +
∑k

i=1 uigi(x) +
∑m

j=1 vjhj(x), with u ≥ 0

Karush-Kuhn-Tucker (KKT) conditions
1. ∇xF (x) +

∑
i ui∇xgi(x) +

∑
j vj∇xhj(x) = 0 Stationarity

2. gi(x) ≤ 0, hj(x) = 0, ∀i, ∀j Primal feasibility

3. ui ≥ 0 ∀i Dual feasibility

4. uigi(x) = 0 ∀i Complementarity

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 13/52

Solution and optimality conditions

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Constrained optimization
F
g1
g2
x ⋆

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
KKT optimality

x ⋆

∇F(x ⋆)
∇g1(x ⋆)

Solution of the optimization problem

For a problem with strong duality (satisfying Slater’s conditions) the two following
statements are equivalent:

▶ x⋆ and u⋆,v⋆ are solutions of the primal and dual problems.

▶ x⋆ and u⋆,v⋆ satisfy the KKT conditions.

Finding a solution (sometimes)
1. Express the Lagrangian and the KKT conditions.

2. Try to find an analytic solution for x⋆ as function of u,v.

3. Express the dual problem and solve it if easier than primal.

4. Use KKT to recover the primal solution x⋆

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 14/52

Example of KKT optimality conditions

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
−0.4

−0.2

0.0

0.2

0.4

0.6

Constrained optimization
F
g1
x ⋆

−0.3
−0.2

−0.1x 0.0
0.2

0.4

u

−3.0

−2.5

−2.0

Optimality condition
F(x)
D(u)
(x ⋆ , u ⋆)

Optimization problem

min
x≤−0.1

F (x) = x2 + 0.05

▶ The Lagrangian is L(x, u) = x2 + 0.05 + u(x+ 0.1) with u ≥ 0.

▶ ∇xL(x, u) = 2x+ u = 0 gives x⋆ = −u
2
.

▶ D(u) = L(x⋆, u) = −u2

4
+ 0.1u+ 0.05.

▶ Optimal values are (x⋆, u⋆) = (−0.1, 0.2).

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 15/52

Exercise 2: KKT conditions

min
x

1

2
∥x∥2 subject to

n∑
i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) =

2. Express the KKT of the problem:

2.1
2.2
2.3
2.4

3. Deduce from 1 and 2 above the optimal v⋆ by maximizing D(v) then x⋆:

D(v) =

v⋆i = x⋆
i =

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 15/52

Exercise 2: KKT conditions

min
x

1

2
∥x∥2 subject to

n∑
i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) = 1

2
∥x∥2 + v(

n∑
i=1

xi − 1)

2. Express the KKT of the problem:

2.1
2.2
2.3
2.4

3. Deduce from 1 and 2 above the optimal v⋆ by maximizing D(v) then x⋆:

D(v) =

v⋆i = x⋆
i =

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 15/52

Exercise 2: KKT conditions

min
x

1

2
∥x∥2 subject to

n∑
i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) = 1

2
∥x∥2 + v(

n∑
i=1

xi − 1)

2. Express the KKT of the problem:

2.1 xi + v = 0, ∀i
2.2

∑n
i=1 xi − 1 = 0

2.3 None
2.4 None

3. Deduce from 1 and 2 above the optimal v⋆ by maximizing D(v) then x⋆:

D(v) =

v⋆i = x⋆
i =

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 15/52

Exercise 2: KKT conditions

min
x

1

2
∥x∥2 subject to

n∑
i=1

xi = 1

1. Express the Lagrangian of the problem above :

L(x, v) = 1

2
∥x∥2 + v(

n∑
i=1

xi − 1)

2. Express the KKT of the problem:

2.1 xi + v = 0, ∀i
2.2

∑n
i=1 xi − 1 = 0

2.3 None
2.4 None

3. Deduce from 1 and 2 above the optimal v⋆ by maximizing D(v) then x⋆:

D(v) = − nv2

2
− v

v⋆i = − 1

n
, ∀i x⋆

i =
1

n
, ∀i

6.1.2 - Constrained optimization - Karush-Kuhn-Tucker (KKT) optimality conditions - 16/52

Linear equality constraints (change of variables)

min
x∈Rn

F (x) (7)

s.t. Ax = b

0 1 2 3
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Change of variable

h1
x ⋆

̃x
f1

0 1 2z
1

2

3

4

5

6
Optim. in the subspace

F(̃x+ fz)
(0, F(̃x))
(z ⋆ , F(̃x+ fz ⋆))

▶ With A ∈ Rp×n defining p linearly independent constraints.

▶ We can eliminate the equality constraints using basic linear algebra.

{x|Ax = b} = {Fz+ x̂|z ∈ Rn−p}

where x̂ is a vector satisfying Ax̂ = b and Im(F) = Ker(A).

▶ In Python one can compute F with scipy.linalg.null space.

▶ The equivalent unconstrained problem is then

min
z∈Rn−p

F (Fz+ x̂) (8)

where we can recover the solution of (7) with x⋆ = Fz⋆ + x̂.

6.1.3 - Constrained optimization - Interior point solvers - 17/52

Log-Barrier function

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
Log barrier function

F
Log barrier δ= 10
Log barrier δ= 100

Approximating the inequality constraints

▶ The log-barrier function is an approximation of the characteristic function χ.

▶ The hard constraints can then be replaced by the log-barrier with δ > 0

min
x∈Rn

F (x)

s.t. gi(x) ≤ 0 ∀i
⇒ min

x∈Rn
F (x) +

1

δ

q∑
i=1

− log(−gi(x))

6.1.3 - Constrained optimization - Interior point solvers - 18/52

Interior point solver

x(δ) = arg min
x∈Rn

F (x) +
1

δ

q∑
i=1

− log(−gi(x)) (9)

Interior Point algorithm

Initialize with a feasible x, and
δ > 0, µ > 1

1. x = x(δ)

2. δ = µδ

3. Go to 1. until convergence.

Properties of the algorithm

▶ Requires a solver for the inner problem : computing x(δ)

▶ Inner problem is unconstrained and smooth inside the domain.

▶ Converges to the solution of the constrained problem : limδ→∞ x(δ) = x⋆

▶ All iterations are inside the constraints.

▶ Converges provably in polynomial time for LP and QP.

More details: [Boyd and Vandenberghe, 2004, Ch.11], [Nocedal and Wright, 2006, Ch.
19]

6.2.1 - Linear Program (LP) - Problem formulation - 19/52

Linear Program (LP)

Linear program in standard form

min
x∈Rn

c⊤x (10)

s.t. Ax = b

x ≥ 0

▶ Linear objective with c ∈ Rn

▶ Linear equality constraints with
A ∈ Rp×n,b ∈ Rp

▶ Positivity inequality constraints. −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Standard Linear Program

g1(x1 ≥ 0)
g2(x2 ≥ 0)
h1
x ⋆

c

Problem as a function of Ax = b

▶ Underdetermined (p < d) : more variables than equations.

▶ Determined (p = d) : as many independent equations than variables, a unique
solution x⋆ = A−1b if A invertible.

▶ Overdetermined (p > d) : not feasible.

We look at the case where p < d.

6.2.1 - Linear Program (LP) - Problem formulation - 20/52

Linear Program (LP)

General formulation for LP

min
x∈Rn

cTx (11)

s.t. Gx ≤ h

Ax = b

▶ Closer formulation to the constrained
optimization (1).

▶ A ∈ Rp×n,b ∈ Rp, and
G ∈ Rq×n,h ∈ Rq.

▶ Most standard solvers (open source
and commercial) use this formulation.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
General Linear Program

g1
g2
h1
x ⋆

c

Exercise 3: Classical constraints
Express the matrices and vectors from general LP above for the following constraints:

▶ Positivity x ≥ 0 :

▶ Simplex {x|x ≥ 0,
∑

i xi = 1} :

▶ Box constraints l ≤ x ≤ u:

6.2.1 - Linear Program (LP) - Problem formulation - 20/52

Linear Program (LP)

General formulation for LP

min
x∈Rn

cTx (11)

s.t. Gx ≤ h

Ax = b

▶ Closer formulation to the constrained
optimization (1).

▶ A ∈ Rp×n,b ∈ Rp, and
G ∈ Rq×n,h ∈ Rq.

▶ Most standard solvers (open source
and commercial) use this formulation.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
General Linear Program

g1
g2
h1
x ⋆

c

Exercise 3: Classical constraints
Express the matrices and vectors from general LP above for the following constraints:

▶ Positivity x ≥ 0 : G = −In,h = 0

▶ Simplex {x|x ≥ 0,
∑

i xi = 1} : A = [1, . . . , 1],b = [1],G = −In,h = 0

▶ Box constraints l ≤ x ≤ u: G =

[
In
−In

]
,h =

[
u
l

]

6.2.1 - Linear Program (LP) - Problem formulation - 21/52

Example of LP : Optimal Transport (OT)

Definition of the problem

▶ n factories produce ai, ∀i amount of goods (vector a).

▶ d stores need to sell sj , ∀j amount of goods ((vector s, same total as a)).

▶ There is a cost Ci,j of transporting a unitary amount of good from factory i to
store j.

▶ Find the optimal (cheapest) way to move all the goods between factories and
stores. A solution of the problem is called a transport matrix.

Optimal transport problem

min
X∈Rn×d

n,d∑
i=1,j=1

Ci,jXi,j

s.t.
∑
j

Xi,j = ai ∀i,
∑
i

Xi,j = sj ∀j

Xi,j ≥ 0 ∀i, j

▶ Resource allocation problem .

▶ Proposed by
[Kantorovich, 1942].

▶ Nobel prize in economy.

▶ Now used a lot in machine
learning.

6.2.1 - Linear Program (LP) - Problem formulation - 22/52

Exercise 4: OT expressed as general LP problem
We express the matrix x as the concatenation of the rows of the matrix X:

x = [X1,1, X1,2, X1,3, . . . Xn,d−1, Xn,d]
T

The cost matrix C is also vectorized as c.

1. Express the row-wise equality constraints
∑

j Xi,j = ai,∀i and A1x = a:

A1 =

The matrix can be expressed simply with the Kroenecker product ⊗
2. Express the column-wise equality constraints

∑
i Xi,j = sj , ∀j and A2x = s:

A2 =

3. Express all the matrices in the general LP :

A =

[
A1

A2

]
, b = , G = , h =

6.2.1 - Linear Program (LP) - Problem formulation - 22/52

Exercise 4: OT expressed as general LP problem
We express the matrix x as the concatenation of the rows of the matrix X:

x = [X1,1, X1,2, X1,3, . . . Xn,d−1, Xn,d]
T

The cost matrix C is also vectorized as c.

1. Express the row-wise equality constraints
∑

j Xi,j = ai,∀i and A1x = a:

A1 = In ⊗ 11,d

The matrix can be expressed simply with the Kroenecker product ⊗
2. Express the column-wise equality constraints

∑
i Xi,j = sj , ∀j and A2x = s:

A2 = 11,n ⊗ Id

3. Express all the matrices in the general LP :

A =

[
A1

A2

]
, b =

[
a
s

]
, G = − Ind, h = 0nd

6.2.1 - Linear Program (LP) - Problem formulation - 23/52

Reduction from general to standard problem

Reformulation to standard LP with positive variables

min
x∈Rn

cTx

s.t. Gx ≤ h

Ax = b

≡

min
x+∈Rn,x−∈Rn,s∈Rq

cTx+ − cTx− = c̃⊤x̃

s.t. Gx+ s = h

Ax+ −Ax− = b

x+ ≥ 0,x− ≥ 0, s ≥ 0

▶ We express x = x+ − x− as a difference of positive variables.

▶ Problem on the right can be reformulated as standard LP.

▶ The positive variable s ≥ 0 is used to recover an equality constraint.

▶ The standard problem optimizes over x̃ = [x+⊤,x−⊤, s⊤]⊤ ≥ 0.

▶ The matrix Ã and b̃ can be recovered from A, G, b and h.

▶ The two ”tricks” above are classical tools for reformulation.

6.2.1 - Linear Program (LP) - Problem formulation - 24/52

Primal and Dual problems

Primal LP

min
x∈Rn

c⊤x

s.t. Ax = b

x ≥ 0

Dual LP

max
v∈Rp

− b⊤v

s.t. −ATv ≤ c

Primal VS Dual

▶ The problem permute their variables and constraints.

▶ When there is strict duality (problem has a solution) duality gap is 0:

c⊤x⋆ = −b⊤v⋆

▶ Finding x⋆ from v⋆ and vice versa:

1. Find components of x⋆ equal to 0 from the equality (ATv⋆ − c)Tx⋆ = 0.
2. Solve the linear system Ax = b for the non-zero components of x⋆.

6.2.1 - Linear Program (LP) - Problem formulation - 25/52

Solution of the standard LP

min
x∈Rn

c⊤x

s.t. Ax = b

x ≥ 0

Property of the solution

▶ Problem is convex but possibly has an infinite number of solution (if on one side
of the polytope).

▶ Solution x⋆ is always on a border of the polytop describing the constraints.

▶ There is at most p (A ∈ Rp×n) components of x⋆ that are non-zero.

▶ Those non-zeros components are called active variables.

6.2.2 - Linear Program (LP) - Examples of LP in ML - 26/52

Robust regression with Least Absolute Deviation

min
w∈Rd

n∑
i=1

|yi − xT
i w|

▶ More robust to outliers than least squares but also less stable
[Barrodale and Roberts, 1973].

Exercise 5: Reformulations as LP

1. Reformulate problem above as a LP with additional variables e+ ≥ 0, e− ≥ 0
such that y −Xw = e+ − e− with X = [x1, . . . ,xn]

T :

min
w,e+,e−

2. Reformulate problem above as a LP with additional variable f ≥ 0n such that
|Hx− y| ≤ f :

min
w,f

6.2.2 - Linear Program (LP) - Examples of LP in ML - 26/52

Robust regression with Least Absolute Deviation

min
w∈Rd

n∑
i=1

|yi − xT
i w|

▶ More robust to outliers than least squares but also less stable
[Barrodale and Roberts, 1973].

Exercise 5: Reformulations as LP

1. Reformulate problem above as a LP with additional variables e+ ≥ 0, e− ≥ 0
such that y −Xw = e+ − e− with X = [x1, . . . ,xn]

T :

min
w,e+,e−

1T
ne

+ + 1T
ne

−

s.t. Xw − y = e+ − e−

e+ ≥ 0n, e
− ≥ 0n

2. Reformulate problem above as a LP with additional variable f ≥ 0n such that
|Hx− y| ≤ f :

min
w,f

1T
n f

s.t. Xw − y ≤ f , −Xw + y ≤ f

f ≥ 0n

6.2.2 - Linear Program (LP) - Examples of LP in ML - 27/52

L1 Support Vector Machines

min
w∈Rd

n∑
i=1

max(0, 1− yix
T
i w) (12)

s.t. ∥w∥1 ≤ β

▶ Proposed in [Zhu et al., 2004], to promote sparsity in SVM (with the L1 norm).

▶ Problem above can be reformulated as the following optimization problem :

min
f ,w+,w−

1T
n f

s.t. 1n − (y ⊙X)w+ + (y ⊙X)w− ≤ f

1T
d w

+ + 1T
d w

− ≤ β, f ≥ 0, w+ ≥ 0, w− ≥ 0

▶ The corresponding general LP problem with x = [w+T ,w−T , f]T has the
following matrices:

c =

 0
0
1n

 , G =

−(y ⊙X) (y ⊙X) −In

11,d 11,d 01,n

−Id 0d,d 0d,n

0d,d −Id 0d,n

0n,d 0n,d −In

 , h =

−1n

β
0d

0d

0n

6.2.3 - Linear Program (LP) - Simplex Algorithm - 28/52

Simplex Algorithm

Main idea behind the simplex

▶ Initialize with a basic feasible solution x(0) (on a vertex
or extreme point of the polytope).

▶ Update the solution to decrease the loss at each
iteration.

▶ Use the sparsity of x (add and remove active variables).

Simplex algorithm

▶ Invented by Dantzig around 1957.

▶ Solved the problem he thought was a homework exercise from his course.

▶ Standard algorithm for solving LP, very efficient for sparse problems but possibly
non polynomial (worst case).

▶ On network flow problems, the adapted network simplex is proven to be
polynomial [Orlin, 1997] (optimal transport).

▶ in Python : scipy.optimize.linprog(method=’simplex’)

More details: [Vanderbei et al., 2015, part 1]

6.2.3 - Linear Program (LP) - Simplex Algorithm - 29/52

Interior point solver

Interior point method (IPM) for LP

min
x∈Rn

c⊤x

s.t. Gx ≤ h

⇒
min
x∈Rn

δc⊤x+−
q∑

i=1

log(gT
i x− hi)

▶ Classical solver for linear programs.

▶ Simplex searches on the corners of the
polytope, IPM optimize inside it.

▶ Never against the constraints until numerical
precision is achieved.

▶ Polynomial complexity for LP (better than
simplex in theory).

▶ In Python: scipy.optimize.linprog

More details: [Boyd and Vandenberghe, 2004, Chapter 11], [Vanderbei et al., 2015,
Part 3], [Nocedal and Wright, 2006, Chapter 14]

6.2.3 - Linear Program (LP) - Simplex Algorithm - 30/52

Solving a Linear Program

Simplex and variants

▶ Exact solutions.

▶ Can be slow for large problems.

▶ Use it on structured graph flow.

Interior point problem

▶ Better at early stopping.

▶ Usually faster on large problems.

▶ Most generic commercial solvers.

LP solvers in Python

▶ Scipy : scipy.optimize.linprog function (both simplex and interior points)

▶ cvxopt : Interior point solver for standard problems + wrapper for commercial
solvers and GLPK [Vandenberghe, 2010].

▶ Mosek Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi Commercial solver (free for academics).

▶ CPLEX Commercial solver (free for academics).

Wrappers available : https://github.com/stephane-caron/lpsolvers

https://github.com/stephane-caron/lpsolvers

6.3.1 - Quadratic Program (QP) - Problem formulation - 31/52

Quadratic Program

Optimization problem

min
x∈Rn

1

2
xTQx+ cTx (13)

s.t. Gx ≤ h

Ax = b

▶ Q ∈ Rn× n is a symmetric positive
definite matrix (convex QP).

▶ A ∈ Rp×n,b ∈ Rp, and
G ∈ Rq×n,h ∈ Rq.

▶ Most standard solvers (open source
and commercial) use this formulation.

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Quadratic Program

g1
g2
h1
x ⋆

∇xF(x ⋆)

Special cases

▶ Unconstrained : close form solution or iterative methods (Conjugate gradients)

▶ Box constraints l ≤ x ≤ u: projected gradient (see proximal methods).

6.3.1 - Quadratic Program (QP) - Problem formulation - 32/52

QP Exemple: Portfolio optimization

▶ Model proposed by Markowitz in 1952 (Nobel Prize in economy).

▶ x is a portfolio of n assets (or stock).

▶ The price change for each asset is modeled as random variables with expected
price change p and covariance Σ.

▶ For a given portfolio x

▶ The expected gain (return) is : pTx
▶ The expected variance is : xTΣx

▶ The portfolio optimization can be expressed for a positive balance b > 0 as:

min
x∈Rn

xTΣx (14)

s.t. 1T
nx = b (15)

pTx ≥ rmin (16)

where rmin is the minimal return of the portfolio.

6.3.1 - Quadratic Program (QP) - Problem formulation - 33/52

Special Case : QP without constaints

min
x∈Rn

1

2
xTQx+ cTx (17)

Unconstrained QP

▶ The gradient of the term above is ∇x = 1
2
(Q+QT)x+ c

▶ For symmetric matrix Q a solution respects : Qx⋆ = −c

▶ If Q is invertible and strictly positive definite then : x⋆ = −Q−1c

▶ To solve the problem several approaches

1. Solve the linear equations : np. linalg . solve with complexityO(n3)
2. Solve the linear equations with Conjugate Gradient or other gradient descent

methods (see other courses).

Exercise 6: Least Square and Ridge

min
x

1

2
∥Hx− y∥2 min

x∈Rn

1

2
∥Hx− y∥2 + λ

1

2
∥x∥2

Recover the matrices Q and c of the equivalent QP for the problems above:

Q = c = Q = c =

6.3.1 - Quadratic Program (QP) - Problem formulation - 33/52

Special Case : QP without constaints

min
x∈Rn

1

2
xTQx+ cTx (17)

Unconstrained QP

▶ The gradient of the term above is ∇x = 1
2
(Q+QT)x+ c

▶ For symmetric matrix Q a solution respects : Qx⋆ = −c

▶ If Q is invertible and strictly positive definite then : x⋆ = −Q−1c

▶ To solve the problem several approaches

1. Solve the linear equations : np. linalg . solve with complexityO(n3)
2. Solve the linear equations with Conjugate Gradient or other gradient descent

methods (see other courses).

Exercise 6: Least Square and Ridge

min
x

1

2
∥Hx− y∥2 min

x∈Rn

1

2
∥Hx− y∥2 + λ

1

2
∥x∥2

Recover the matrices Q and c of the equivalent QP for the problems above:

Q = HTH, c = −HTy, Q = HTH+ λI, c = −HTy,

6.3.2 - Quadratic Program (QP) - Examples of QP in ML - 34/52

Support Vector Machines (1)

Hard margin SVM [Cortes and Vapnik, 1995]

min
w,b

1

2
∥w∥2 (18)

s.t. yi(x
T
i w + b) ≥ 1

▶ All samples (xi, yi) must be classified well
with a margin of at least 1.

▶ Needs the data to be linearly separable.

▶ Minimizing the norm of w corresponds to
maximizing the margin 2

∥w∥ .

Soft margin SVM

min
w∈Rd,b∈R

C
∑
i

max(0, 1− yi(x
T
i w + b)) +

1

2
∥w∥2 (19)

▶ The margin constraints are relaxed with the Hinge loss.

▶ C is the weight of the data fitting term.

▶ Non differentiable convex problem.

6.3.2 - Quadratic Program (QP) - Examples of QP in ML - 35/52

Support Vector Machines (2)
Primal SVM

min
w∈Rd,b∈R,z∈Rn

C
∑
i

zi +
1

2
∥w∥2 (20)

s.t. yi(x
T
i w + b) ≥ 1− zi, ∀i

z ≥ 0

▶ We introduce the variables zi ≥ 0 such that zi = max(0, 1− yi(x
T
i w + b)).

Dual SVM

min
α∈Rn

1

2
αTQα− 1T

nα (21)

s.t. yTα = 0

0n ≤ α ≤ C1n

▶ QP (Qi,j = yiyjx
T
i xj) with box constraints and one linear constraint.

▶ Primal solution can be recovered with : w⋆ =
∑

i yiα
⋆
ixi.

▶ b⋆ can be found on a support vector where inequality becomes equality.

▶ Most common formulation because allows the use of kernel for nonlinear
classification (Qi,j = yiyjk(xi,xj))

6.3.2 - Quadratic Program (QP) - Examples of QP in ML - 36/52

Lasso estimator

min
w

1

2
∥Xw − y∥2 + λ

∑
i

|wi| (22)

▶ Classical approach to perform regression with variable selection [Tibshirani, 1996].

▶ Quadratic data fitting, L1 regularization term.

▶ Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q = c = G = h =

6.3.2 - Quadratic Program (QP) - Examples of QP in ML - 36/52

Lasso estimator

min
w

1

2
∥Xw − y∥2 + λ

∑
i

|wi| (22)

▶ Classical approach to perform regression with variable selection [Tibshirani, 1996].

▶ Quadratic data fitting, L1 regularization term.

▶ Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

1

2
∥X(w+ −w−)− y∥2 + λ

∑
i

w+
i + w−

i

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q = c = G = h =

6.3.2 - Quadratic Program (QP) - Examples of QP in ML - 36/52

Lasso estimator

min
w

1

2
∥Xw − y∥2 + λ

∑
i

|wi| (22)

▶ Classical approach to perform regression with variable selection [Tibshirani, 1996].

▶ Quadratic data fitting, L1 regularization term.

▶ Expressed either as additive term or constraint (equivalent problem).

Exercise 7: Lasso reformulation as QP

1. Reformulate the Lasso problem as a positive QP with w = w+ −w−

min
w+,w−

1

2
∥X(w+ −w−)− y∥2 + λ

∑
i

w+
i + w−

i

s.t. w+ ≥ 0, w− ≥ 0

2. Express the matrices Q, c,G,h for standard QP corresponding to the problem.

Q =

[
XTX −XTX
−XTX XTX

]
, c =

[
−XTy + λ1d

XTy + λ1d

]
, G = −I2d, h = 02d

6.3.3 - Quadratic Program (QP) - Active set (AS) and Sequentiel Minimal Optimization (SMO) - 37/52

Active set Algorithm

min
x∈Rn

1

2
xTQx+ cTx

s.t. Gx ≤ h

Ax = b

Principle of active set method

▶ Search for the active constraints A(x⋆).

▶ If the optimal active set is known the problem is an equality constrained QP.

▶ QP with equality constraint can be solved with : null space + unconstrained QP.

▶ QP version of the simplex (search on which constraints is the solution).

▶ Very efficient on some problems (positivity, bloc constraints, SVM).

Active set Method (simplified)

Initialize feasible x , A(x) = {i|gT
i x = hi} the active set of inequality constraints.

1. Solve subproblem with inequality constraints in A(x) forced to equality.

2. Update the active set using KKT conditions.

More details: [Nocedal and Wright, 2006, Sec. 16.5]

6.3.3 - Quadratic Program (QP) - Active set (AS) and Sequentiel Minimal Optimization (SMO) - 38/52

Sequential Minimal Optimization (SMO)

min
α∈Rn

1

2
αTQα− 1T

nα

s.t. yTα = 0

0n ≤ α ≤ C1n

Principle of SMO

▶ Proposed by [Platt, 1998] to solve large scale SVM.

▶ Coordinate descent algorithm taking into account yTα = 0.

▶ The choice of the coordinates to update is sensitive.

▶ Sate of the art solver for SVM [Chang and Lin, 2001] also use a cache for
computing the kernel matrix.

SMO Algorithm

Initialize feasible α

1. Find two components αi and αj that violate KKT conditions.

2. Solve the QP on only those components in closed form (1D problem).

6.3.3 - Quadratic Program (QP) - Active set (AS) and Sequentiel Minimal Optimization (SMO) - 39/52

Solving a QP

min
x∈Rn

1

2
xTQx+ cTx

s.t. Gx ≤ h

Ax = b
Main Algorithms

▶ Interior points Efficient for large problems (commercial solvers).

▶ Active set General solver, an be very fast on structured problems (sparsity, SVM)

▶ SMO State of the art solver for SVM.

QP Solvers in Python

▶ Numpy (no constraints): (np. linalg . solve ornp. linalg . lstsq).

▶ quadprog : Implements active set [Goldfarb and Idnani, 1983]

▶ cvxopt : Interior point solver for standard problems + wrapper for Mosek.

▶ OSQP : Operator spliting QP solver [Stellato et al., 2017].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

Benchmark available : https://github.com/qpsolvers/qpbenchmark

https://github.com/qpsolvers/qpbenchmark

6.4.1 - Other optimization problems - Integer Programming (IP) - 40/52

Integer Programming

min
x∈Rn

F (x)

s.t. hj(x) = 0 ∀j = 1, . . . , p
gi(x) ≤ 0 ∀i = 1, . . . , q.
x ∈ Zn

(23)

▶ Classical optimization problem with additional integer constraints x ∈ Zn.

▶ Zero-one programming when variables can be only binary x ∈ {0, 1}n.
▶ Mixed Integer Programming (MIP) problems when only part of the variables

are integer : xi ∈ Z for i = 1, . . . , ni with ni ≤ n.

▶ Problem is extremely hard to solve exactly (NP complete).

Algorithms

▶ Continuous relaxation (and then rounding, can work well on MILP).

▶ Cutting Plane Algorithm (relaxation + iteratively add linear constraints).

▶ Branch and bound (exact method using upper and lower bounds to split the
space of solution).

6.4.1 - Other optimization problems - Integer Programming (IP) - 41/52

MILP and MIQP

Mixed Integer LP (MILP)

min
x∈Rn

cTx

s.t. x ≥ 0

Ax = b

xi ∈ Z, ∀i ∈ {1, . . . , ni}

Mixed Integer QP (MIQP)

min
x∈Rn

1

2
xTQx+ cTx

s.t. x ≥ 0

Ax = b

xi ∈ Z, ∀i ∈ {1, . . . , ni}
▶ Well studied MIP problems.

▶ For MILP, relaxation can be exact (when total unimodularity of A)

▶ Solved by Branch and Bound and cutting planes in general.

MIP solvers in Python

▶ cvxpy : General optimization (multiple wrappers) [Diamond and Boyd, 2016].

▶ ECOS : Embedded Conic Solver for MILP [Domahidi et al., 2013].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

6.4.1 - Other optimization problems - Integer Programming (IP) - 42/52

L0 sparse regression

min
x∈Rn

1

2
∥Hx− y∥2 + λ∥x∥0

Problem above can be reformulated as a MIQP [Bourguignon et al., 2015].

▶ First we introduce a binary vector z ∈ {0, 1}n.
▶ We suppose that zi = 1 if variable xi ̸= 0 else zi = 0. This means that for a big

enough M we have:
−Mz ≤ x ≤ Mz

▶ We can express the L0 sparse regression as the following optimization problem:

min
x∈Rn,z∈Rn

1

2
x⊤HTHx− (HTy)Tx+ λ1T

nz

s.t. −Mz ≤ x ≤ Mz

z ∈ {0, 1}n

Other formulations corresponds to constrained expression but all use the ”big M”
trick.

6.4.2 - Other optimization problems - Quadratically constrained QP and Cone Programming - 43/52

Quadratically Constrained QP (QCQP)

Optimization problem

min
x∈Rn

1

2
xTQ0x+ cT0 x (24)

s.t. xTQix+ cTi x ≤ hi, ∀i = 1, . . . ,m

Ax = b

▶ If Q0, . . . ,Qm are positive definite
then the problem is convex and can
be solved with interior point.

▶ Nonconvex QCQP is NP-hard,
because a constraint xi ∈ {0, 1} is
recovered with:

xi(1− xi) ≥ 0 and xi(1− xi) ≤ 0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Convex Quad. Constrained QP

x ⋆

QCQP solvers in Python

▶ cvxpy : with nonconvex QCQP extension [Park and Boyd, 2017] .

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

6.4.2 - Other optimization problems - Quadratically constrained QP and Cone Programming - 43/52

Quadratically Constrained QP (QCQP)

Optimization problem

min
x∈Rn

1

2
xTQ0x+ cT0 x (24)

s.t. xTQix+ cTi x ≤ hi, ∀i = 1, . . . ,m

Ax = b

▶ If Q0, . . . ,Qm are positive definite
then the problem is convex and can
be solved with interior point.

▶ Nonconvex QCQP is NP-hard,
because a constraint xi ∈ {0, 1} is
recovered with:

xi(1− xi) ≥ 0 and xi(1− xi) ≤ 0

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Nonconvex Quad. Constrained QP

x ⋆

QCQP solvers in Python

▶ cvxpy : with nonconvex QCQP extension [Park and Boyd, 2017] .

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

6.4.2 - Other optimization problems - Quadratically constrained QP and Cone Programming - 44/52

K-means as MIQCQP

min
x̄k,∀k

N∑
i=1

min
k

∥x̄k − xi∥2

▶ The argmin for each sample can be replaced by a linear term with a matrix
Z ∈ {0, 1}N,K modeling the clustering of the samples.

▶ We force a unique cluster selection with constraints

Z ∈ {0, 1}N,K , Z1K = 1N

▶ We introduce the distance variable as Di,k = ∥xi − x̄k∥2

▶ The optimization problem above can be expressed as

min
x̄k,∀k,Z∈RN×K ,D∈RN×K

∑
i,k

Zi,kDi,k (25)

s.t. Di,k = ∥xi − x̄k∥2, ∀i, ∀k
Z1K = 1N

Z ∈ {0, 1}N,K

Warning: Never try to solve K-means with this formulation!

6.4.2 - Other optimization problems - Quadratically constrained QP and Cone Programming - 45/52

Second Order Cone Programming (SOCP)

Optimization problem

min
x∈Rn

cTx (26)

s.t. ∥Aix− bi∥2 ≤ hT
i x+ di, i = 1, . . . ,m

A0x = b0

▶ The following constraint is called a
Second order cone constraint:

∥Ax− b∥2 ≤ hTx+ d
−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Second Order Cone Program (SOCP)

x ⋆

▶ When hi = 0, ∀i the problem is a QCQP (one can square the norm).

▶ Other kind of cone constraints can be used (positive definite matrices).

SOCP solvers in Python

▶ cvxopt : Interior point solver [Vandenberghe, 2010].

▶ cvxpy : SOCP solver [Diamond and Boyd, 2016].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

6.4.2 - Other optimization problems - Quadratically constrained QP and Cone Programming - 46/52

Robust Support Vector Machines

min
w∈Rd,b∈R,z∈Rn

C
∑
i

zi +
1

2
∥w∥2 (27)

s.t. yi(x
T
i w + b) ≥ 1− zi + γi

∥∥∥∥Σ 1
2
i w

∥∥∥∥ , ∀i
z ≥ 0

▶ Proposed in [Shivaswamy et al., 2006] to handle uncertain and missing data.

▶ We suppose that we have uncertain data (xi, yi) and that the training sample xi

has a covariance matrix Σi to model its uncertainty.

▶ In this can one want to replace the hard margin constraint by a probabilistic
variant

P (yi(x
T
i w + b) ≥ 1− zi) ≥ 1− κi

were κi is small.

▶ When using the normal distribution on the training samples, one can recover the
optimization problem above with γi = ϕ−1(κi) where ϕ is the normal CDF.

6.4.3 - Other optimization problems - Semi-Sefinite Programming (SDP) - 47/52

Semi-Definite Programming
Optimization problem

min
X∈Sn

⟨X,C⟩Sn (28)

s.t. ⟨X,Ai⟩Sn = bi, i = 1, . . . ,m

X ⪰ 0

▶ Sn is the set of n× n symmeric matrices.

▶ ⟨X,C⟩Sn =
∑

i,j Xi,jCi,j is the Frobenius scalar product between matrices.

▶ The constraint X ⪰ 0 forces X to be semi-definite positive.

▶ Special case of cone programming (cone of positive semi-definite matrices).

▶ Can be solved efficiently with interior point solver.

SDP solvers in Python

▶ cvxopt : Interior point solver [Vandenberghe, 2010].

▶ cvxpy : SDP solver [Diamond and Boyd, 2016].

▶ Mosek : Commercial solver (free for academics) [Andersen and Andersen, 2000].

▶ Gurobi : Commercial solver (free for academics).

6.5.0 - Conclusion - - 48/52

Conclusion

Constrained optimization

▶ Constrained optimization is a very large field.

▶ Langrangian and KKT conditions are the main tools to solve and check solutions.

Standard Problems (properties)

▶ Important properties

▶ Linear or quadratic objective function.
▶ Linear, quadratic of conic constraints.
▶ Real of integer variables.

▶ Many existing generic solvers for those problems (commercial or free).

Solving DS and ML problems beyond gradient descent

▶ Constraints are important in many problems (fairness, robustness).

▶ You often have to model new ML problems depending on the constraints.

▶ Reformulation is key to use generic solvers (important skill).

References I

Andersen, E. D. and Andersen, K. D. (2000).

The mosek interior point optimizer for linear programming: an implementation of the
homogeneous algorithm.

In High performance optimization, pages 197–232. Springer.

Barrodale, I. and Roberts, F. D. (1973).

An improved algorithm for discrete l 1 linear approximation.

SIAM Journal on Numerical Analysis, 10(5):839–848.

Bourguignon, S., Ninin, J., Carfantan, H., and Mongeau, M. (2015).

Exact sparse approximation problems via mixed-integer programming: Formulations and
computational performance.

IEEE Transactions on Signal Processing, 64(6):1405–1419.

Boyd, S. and Vandenberghe, L. (2004).

Convex optimization.

Cambridge university press.

Chang, C.-C. and Lin, C.-J. (2001).

Libsvm: a library for support vector machines,” 2001. software available at http://www.
csie. ntu. edu. tw/˜ cjlin/libsvm.

References II

Cortes, C. and Vapnik, V. (1995).

Support-vector networks.

Machine learning, 20(3):273–297.

Diamond, S. and Boyd, S. (2016).

CVXPY: A Python-embedded modeling language for convex optimization.

Journal of Machine Learning Research, 17(83):1–5.

Domahidi, A., Chu, E., and Boyd, S. (2013).

ECOS: An SOCP solver for embedded systems.

In European Control Conference (ECC), pages 3071–3076.

Goldfarb, D. and Idnani, A. (1983).

A numerically stable dual method for solving strictly convex quadratic programs.

Mathematical programming, 27(1):1–33.

Kantorovich, L. V. (1942).

On the translocation of masses.

In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199–201.

Knowles, D. (2010).

Lagrangian duality for dummies.

References III

Nocedal, J. and Wright, S. (2006).

Numerical optimization.

Springer Science & Business Media.

Orlin, J. B. (1997).

A polynomial time primal network simplex algorithm for minimum cost flows.

Mathematical Programming, 78(2):109–129.

Park, J. and Boyd, S. (2017).

General heuristics for nonconvex quadratically constrained quadratic programming.

arXiv preprint arXiv:1703.07870.

Platt, J. (1998).

Sequential minimal optimization: A fast algorithm for training support vector machines.

Shivaswamy, P. K., Bhattacharyya, C., and Smola, A. J. (2006).

Second order cone programming approaches for handling missing and uncertain data.

Journal of Machine Learning Research, 7(Jul):1283–1314.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2017).

OSQP: An operator splitting solver for quadratic programs.

ArXiv e-prints.

References IV

Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267–288.

Vandenberghe, L. (2010).

The cvxopt linear and quadratic cone program solvers.

Online: http://cvxopt. org/documentation/coneprog. pdf.

Vanderbei, R. J. et al. (2015).

Linear programming.

Springer.

Zhu, J., Rosset, S., Tibshirani, R., and Hastie, T. J. (2004).

1-norm support vector machines.

In Advances in neural information processing systems, pages 49–56.

	Introduction to optimization
	Smooth optimization : Gradient descent
	Smooth Optimization : Quadratic problems
	Non-smooth optimization : Proximal methods
	Stochastic Gradient Descent
	Constrained Optimization and Standard Problems
	Constrained optimization
	Linear Program (LP)
	Quadratic Program (QP)
	Other optimization problems
	Conclusion

	Coordinate descent
	Newton and quasi-newton methods
	Beyond convex optimization

