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Why coordinate descent for datascience?

So far you have seen first order method:

gradient descent

proximal gradient descent

accelerated gradient descent

You’ll also see with me

Newton methods

quasi-Newton methods

Coordinate descent (CD) has received a lot of attention in
ML/stats over the last 10 years. It’s state-of-the-art techniques on
a number of learning problems, as CD applies in this settings (not
as general as gradient descent). It’s what R GLMNET package and
Scikit-Learn Lasso / Elastic-Net / LinearSVC estimators use.
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Coordinate wise optimization

We work in finite dimension Rn (think n parameters to optimize)

Coordinate descent is extremely simple

Idea: minimize one coordinate at a time (keeping the other fixed)

Question: Given convex, differentiable f : Rn → R, if we are at a
point x such that f (x) is minimized along each coordinate axis,
have we found a global minimizer?

i.e., does f (x + dUi ) ≥ f (x) ∀d ∈ R, ∀i ⇒ f (x) = minz f (z)?

where Ui = (0, . . . , 1, . . . , 0) ∈ Rn is the ith canonical basis vector.
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Coordinate wise optimization

f (x + dUi ) ≥ f (x), ∀d ∈ R implies that

∂f

∂x (i)
(x) = 0

which implies

∇f (x) =

(
∂f

∂x (1)
(x), . . . ,

∂f

∂x (n)
(x)

)
= 0

OK for f smooth and convex !
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Exact coordinate descent

Objective: minx∈Rn f (x)

Initialisation: x0 = (x
(1)
0 , . . . , x

(n)
0 ).

Algorithm:

Choose l = (k mod n) + 1 (cyclic rule){
x

(i)
k+1 = arg minz∈R f (x

(1)
k , . . . , x

(l−1)
k , z , x

(l+1)
k , . . . , x

(n)
k ) if i = l

x
(i)
k+1 = x

(i)
k if i 6= l

Note: The order of cycle through coordinates is arbitrary, can use
any permutation of 1, 2, . . . , n.
Note: We just have to solve 1D optimization problems but a lot of
them...
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Example

Coordinate descent on a 2D problem
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Example: Linear regression

Let f (x) = 1
2‖y − Ax‖2, where y ∈ Rm, A ∈ Rm×n is the design

matrix with columns A1, . . . ,An (one per feature)

Consider minimizing over x (i), with all x (j), j 6= i fixed:

0 = ∇i f (x) = A>i (Ax − y) = A>i (Aix
(i) + A−ix

(−i) − y)

i.e., we take:

x (i) =
A>i (y − A−ix

(−i))

A>i Ai

Repeat these update by cycling over coordinates
→ notebook
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Example: Linear regression

Note that doing:

x (i) =
A>i (y − A−ix

(−i))

A>i Ai

is equivalent to:

x (i) ← x (i) +
A>i r

A>i Ai

where r = y − Ax is the current residual. If current r is available
the cost of an update is O(m). Updating r is also O(m) so full
pass/epoch on coordinates is O(mn) as for gradient descent.

10 / 36 Alexandre Gramfort - Inria Coordinate descent



Exact coordinate descent Coordinate gradient descent Proximal coordinate descent Applications to ML estimators

Convergence of exact coordinate descent

Proposition (Warga (1963))

Assume that

f is continuously differentiable

f is strictly convex

there exists x∗ ∈ arg minx∈X f (x)

then the exact coordinate descent method converges to x∗.
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Counter-example: convex nonsmooth

What if f is convex and non-smooth?

x
0

x
1
 = x

2
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1

f (x (1), x (2)) = |x (1) − x (2)| −min(x (1), x (2))
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Counter-example: smooth nonconvex

What is f is smooth and non-convex? (Example due to Powell)

f (x (1), x (2), x (3)) =
−(x (1)x (2) + x (2)x (3) + x (3)x (1)) +

∑3
i=1 max(0, |x (i)| − 1)2
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Adaboost

yj = label
hj = weak classifier
Minimise the exponential loss:

f (x) =
m∑
j=1

exp(−yjh>j x).

Algorithm:

Select the variable ik+1 such that ik+1 = arg maxi |∇i f (xk)|
(greedy rule a.k.a. Gauss-Southwell rule, requires to compute
the full gradient at each iteration)

Perform exact coordinate descent along coordinate ik+1

If yi ∈ {−1, 1} and hj ∈ {−1, 0, 1}n: closed form formulas
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Motivation

A 1D optimisation problem to solve at each iteration:
This may be expensive

We may solve it approximately since we’ve got plenty of
iterations left

We will do one single gradient step in the 1D problem
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Coordinate gradient descent

Parameters: γ1, . . . , γn > 0

Algorithm:
Choose ik+1 ∈ {1, . . . , n}{

x
(i)
k+1 = x

(i)
k − γi∇i f (xk) if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

Choice of γ: coordinate-wise Lipschitz constant i.e. Lipschitz
constant of

gi ,x : Xi → R

h 7→ f (x + Uih) = f (x (1), . . . , x (i−1), x (i) + h, x (i+1), . . . , x (n))

We will denote Li = L(∇gi ,x) this Lipschitz constant.
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Convergence speed

Assume f is convex; ∇f is Lipschitz continuous; ∀i , γi = 1
Li

.

Proposition (Beck and Tetruashvili (2013))

If ik+1 = (k mod n) + 1, then

f (xk+1)− f (x∗) ≤ 4Lmax(1 + n3L2
max/L

2
min)

R2(x0)

k + 8/n

where R2(x0) = maxx ,y∈X{‖x − y‖ : f (y) ≤ f (x) ≤ f (x0)},
Lmax = maxi Li and Lmin = mini Li .

Note: n3 can be prohibitive in high dimension. Due to
pathological cases of the cyclic rule this bound is very very
pessimistic (cf. linear regression).
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Convergence speed with randomization

Assume f is convex; ∇f is Lipschitz continuous; ∀i , γi = 1
Li

.

Proposition (Nesterov (2012))

If ik+1 is randomly generated, independently of i1, . . . , ik and
∀i ∈ {1, . . . , n}, P(ik+1 = i) = 1

n , then

E[f (xk+1)− f (x∗)] ≤ n

k + n

(
(1− 1

n
)(f (x0)− f (x∗)) +

1

2
‖x∗−x0‖2

L

)
where ‖x‖2

L =
∑n

i=1 Li‖x (i)‖2
2.

Note: As the algorithm is now stochastic the bounds are given in
expectation.
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Comparison with gradient descent

The iteration complexity of the gradient descent method is

f (xk+1)− f (x∗) ≤
L(∇f )

2(k + 1)
‖x∗ − x0‖2

2

To get an ε-solution (i.e., such that f (xk)− f (x∗) ≤ ε), we need

at most L(∇f )
2ε ‖x∗ − x0‖2

2 iterations.

while for coordinate descent we need (omitting randomization)

n

ε

(
(1− 1

n
)(f (x0)− f (x∗)) +

1

2
‖x∗ − x0‖2

L

)
iterations.
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Comparison with gradient descent

How do the cost of iterations compare?

Let C the cost of one GD iteration and c the cost of one CD
iteration.

Back to least square: C is the cost of computing
∇f (x) = A>(Ax − b) which means C = O(nnz(A)) or
C = O(mn) for a dense matrix.

We have for CD, ∇i f (x) = U>i A>(Ax − b) and with smart residual
updates c = O(nnz(A))/n or C = O(m) for a dense matrix. So

c ≈ C/n
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Comparison with gradient descent

Let’s recall number of iterations for CD:

n

ε

(
(1− 1

n
)(f (x0)− f (x∗)) +

1

2
‖x∗ − x0‖2

L

)

f (x0)− f (x∗) ≤ L(∇f )
2 ‖x0 − x∗‖2

2 and it may happen that

f (x0)− f (x∗)� L(∇f )
2 ‖x0 − x∗‖2

2

L(∇f ) = λmax(A>A) and Li = a>i ai with ai = AUi . We
always have Li ≤ L(∇f ) and it may happen that
Li = O(L(∇f )/n).

So in the quadratic case, CCD ≤ CGD and we may have
CCD = O(CGD/n).

Explains the results in the notebook...

22 / 36 Alexandre Gramfort - Inria Coordinate descent



Exact coordinate descent Coordinate gradient descent Proximal coordinate descent Applications to ML estimators

Table of Contents

1 Exact coordinate descent

2 Coordinate gradient descent

3 Proximal coordinate descent

4 Applications to ML estimators

23 / 36 Alexandre Gramfort - Inria Coordinate descent



Exact coordinate descent Coordinate gradient descent Proximal coordinate descent Applications to ML estimators

CD for composite separable problem?

Let us consider:

F (x) = f (x) +
n∑

i=1

gi (x
(i)) ,

with

f convex, differentiable

each gi convex

The non-smooth part is here separable.
Question: Does

F (x + dUi ) ≥ F (x) ∀d ∈ R, ∀i ?⇒ F (x) = min
z

F (z)
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CD for composite separable problem?

F (y)− F (x) ≥ ∇f (x)>(y − x) +
n∑

i=1

(gi (y
(i))− gi (x

(i)))

≥
n∑

i=1

[
∇i f (x)(y (i) − x (i)) + (gi (y

(i))− gi (x
(i)))

]
︸ ︷︷ ︸

≥0

≥ 0

This suggests that it should work . . .
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Proximal coordinate descent

Parameters: γ1, . . . , γn > 0

Algorithm:
Choose ik+1 ∈ {1, . . . , n}{
x

(i)
k+1 = proxγi ,gi

(
x

(i)
k − γi∇i f (xk)

)
if i = ik+1

x
(i)
k+1 = x

(i)
k if i 6= ik+1

proxγ,g (y) = arg minx∈Rn g(x) + 1
2‖x − y‖2

γ−1

proxγi ,gi (y) = arg minx∈R gi (x) + 1
2γi

(x − y)2

→ proximal operators for g(x) = λ|x |, g(x) = λ‖x‖2
2 and

g(x) = I[0,1](x).
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Convergence speed

We want to minimize F = f + g .
Assume f and g are convex; ∇f is Lipschitz continuous;
∀i , γi = 1

Li
.

Proposition (Richtárik and Takáč (2014))

If ik+1 is randomly generated, independently of i1, . . . , ik and
∀i ∈ {1, . . . , n}, P(ik+1 = i) = 1

n , then

E[F (xk+1)−F (x∗)] ≤ n

k + n

(
(1− 1

n
)(F (x0)−F (x∗))+

1

2
‖x∗−x0‖2

L

)
Note: One obtain the same rate as for non-composite objectives.
→ cf. Proof in lecture notes.
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Regression and classification under sparsity constraints

min
x∈Rn

F (x) = min
x∈Rn

f (x) +
n∑

i=1

gi (x
(i))

Lasso: f (x) = 1
2‖y − Ax‖2 and g(x) = ‖x‖1 =

∑
i |x (i)|

`1 log. reg.: f (x) = log(exp(−y � Ax) + 1) and g(x) = ‖x‖1

where � is the elementwise product (Hadamard product).

Box-constrained regression f (x) = 1
2‖y − Ax‖2 s.t. ‖x‖∞ ≤ κ

Non-negative least squares (NNLS) f (x) = 1
2‖y − Ax‖2 s.t.

x (i) ≥ 0

Note: Generally the regularizer is separable non-smooth and the
data fit is smooth.
→ write full algorithm for NNLS and Lasso
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Multi-output regression under sparsity constraints

Multi-task Lasso (k tasks):

min
x∈Rn×k

F (x) = min
x∈Rn×k

1

2
‖Y − Ax‖2

Fro +
n∑

i=1

‖x (i ,·)‖2

where x (i ,·) is the ith row of matrix x .

Note: Here the g is still separable yet blocks of coordinates are
updated at each iteration (it’s block proximal coordinate descent).
First convergence proof due to Tseng (2001).
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Support vector machines

Coordinate descent can be applied to the SVM in the dual. If the
primal with (yi ∈ {−1, 1}) reads:

min
w∈Rp ,b∈R

C
n∑

i=1

max(0, 1− yi (z
>
i w + b)) +

1

2
‖w‖2

2

the classical dual of SVM for binary classification is given by:

max
α∈Rn

−1

2
α>Qα + 1>n α s.t. y>α = 0 and 0 ≤ α ≤ C1n

with Qij = yiyjz
>
i zj .

Note: Here w is the normal to the separating hyperplane and b is
the intercept.
→ Derive the dual from the primal writing the Lagrangian and
KKT optimality conditions.
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Support vector machines with SMO

The dual reads:

max
αRn
−1

2
α>Qα + 1>n α s.t. y>α = 0 and 0 ≤ α ≤ C1n

Sequential minimal optimization or SMO (Platt, 1998) is a
blockwise coordinate descent in blocks of 2. Instead of cycling, it
chooses the next block greedily.

Note: This does not meet separability assumptions for
convergence we have just seen.
Note: This is what is implemented in Scikit-Learn SVC and SVR
estimators that use internally the libsvm C++ library.
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Support vector machines with SDCA

If one does not fit an intercept b the primal reads:

min
w∈Rp

C
n∑

i=1

max(0, 1− yiz
>
i w) +

1

2
‖w‖2

2

and a dual formulation becomes:

max
α∈Rn

−1

2
α>Qα + 1>n α− I[0,C ]n(α).

Proximal coordinate ascent applies to this problem. When using
the stochastic approach this algorithm is called Stochastic Dual
Coordinate Ascent (SDCA).
Note: This is what is implemented in Scikit-Learn LinearSVC
when using parameter dual=True. It uses internally the liblinear
C++ library.
→ Write an implementation of SDCA.
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Support vector machines with SDCA

Proposition (Shalev-Shwartz and Zhang (2013))

Let us define a primal point wk = Z>Diag (y)αk , where (αk)k≥0

is generated by SDCA. The duality gap satisfies for all K ≥ n,

E
[ 1

K

2K−1∑
k=K

P(wk)− D(αk)
]
≤

n

K + n

(
(1− 1

n
)(D(α∗)− D(α0)) +

1

2
‖α∗ − α0‖2

L

)
+

n

2K
C 2

n∑
i=1

Li

where ∀i , Li = y2
i ‖zi‖2.

→ cf. Proof in lecture notes.
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Graphical Lasso

Let A ∈ Rn×p, where rows are independent Gaussian observations
drawn from N(0,Σ),
The graphical Lasso estimator (Banerjee et al., 2007, Friedman et
al., 2007) reads:

min
Θ∈Rp×p

− log det Θ + tr SΘ + λ‖Θ‖1

where ‖Θ‖1 =
∑

ij |Θij |.

It provides an estimate of Σ−1 (precision matrix) when
S = A>A/n is the empirical covariance.
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Graphical Lasso

Stationarity conditions:

−Θ−1 + S + λΓ = 0

where Γij ∈ ∂|Θij |. Posing W = Θ−1. It is possible to do a
coordinate descent on W . See Friedman et al. (2007).

Note: With λ = 0 one recovers the maximum likelihood estimator.
Note: This is implemented the GraphLasso estimator in
Scikit-Learn or in the glasso package in R.

36 / 36 Alexandre Gramfort - Inria Coordinate descent


	Exact coordinate descent
	Coordinate gradient descent
	Proximal coordinate descent
	Applications to ML estimators

